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Abstract We study sum uncertainty relations for arbitrary finite N quantummechan-
ical observables. Some uncertainty inequalities are presented by using skew informa-
tion introduced by Wigner and Yanase. These uncertainty inequalities are nontrivial
as long as the observables are mutually noncommutative. The relations among these
new and existing uncertainty inequalities have been investigated. Detailed examples
are presented.

Keywords Uncertainty relation ·Wigner–Yanase skew information ·Noncommuting
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1 Introduction

Uncertainty principle is considered to be one of the most singular characteristics of
quantum mechanics. Ever since the first uncertainty relation of position–momentum

B Bin Chen
chenbin5134@163.com

Shao-Ming Fei
feishm@cnu.edu.cn

Gui-Lu Long
gllong@tsinghua.edu.cn

1 State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics,
Tsinghua University, Beijing 100084, China

2 Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China

3 School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

4 Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig, Germany

5 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-016-1274-3&domain=pdf


2640 B. Chen et al.

was proposed by Heisenberg in 1927 [1], many efforts have been made in interpret-
ing the intrinsic meaning of this kind of inequalities. The traditional approach that
formulates uncertainty relations is based on the variance of measurement outcomes.
The most famous one is due to Robertson [2], who derived the following uncertainty
inequality for two observables A and B:

�ρ A�ρB ≥ 1

2
|〈[A, B]〉ρ |, (1)

where �ρ� =
√

〈�2〉ρ − 〈�〉2ρ is the standard deviation of an observable �, and

[A, B] = AB− BA. It is obvious that the above relation is nontrivial for two noncom-
muting observables when suitable states are measured. That is to say, the lower bound
in (1) can be used to capture the noncommutativity of two observables. There also
have been many ways to describe uncertainty relations, such as in terms of entropies
[3–8] and by means of majorization technique [9–14].

Based on several nice properties such as convexity and additivity, Wigner and
Yanase (WY) introduced their skew information. Being a measure for the noncom-
mutativity between a state ρ and an observable H , the skew information provides a
measure of quantum uncertainty of H in the state ρ and was used by Luo to derive a
refinement of Heisenberg’s uncertainty relation for mixed states [16].

On the other hand, the skew information

Iρ(H) = −1

2
Tr

(
[√ρ, H ]2

)
= 1

2
‖[√ρ, H ]‖2

was introduced byWigner and Yanase in 1963 [15] to quantify the information content
of a quantum state ρ with respect to the observables not commuting with (i.e., skew
to) the conserved quantity H . It becomes a useful tool in quantum information theory
in recent years, such as characterizing nonclassical correlations [21], being a measure
of the H coherence of the state ρ [22], and quantifying the dynamics of some physical
phenomena [23–25].

However, previous works demonstrated that the skew information is not suitable
for formulating uncertainty relations: The following relation:

Iρ(A)Iρ(B) ≥ 1

4
|〈[A, B]〉ρ |2

turned to be false [17–20]. Alternatively, in Ref. [16], Luo defined the quantityUρ(H),

Uρ(H) =
√

(�ρH)4 − [(�ρH)2 − Iρ(H)]2,

and provided a new Heisenberg-type uncertainty relation:

Uρ(A)Uρ(B) ≥ 1

4
|〈[A, B]〉ρ |2. (2)
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After that, Furuichi [26] derived a Schrödinger-type uncertainty relation using the
quantity Uρ(H), and a generalization of Schrödinger’s uncertainty relation based on
Wigner–Yanase skew information is presented in Ref. [27].

Besides uncertainty relations in the product form, variance-based and standard
deviation-based sum uncertainty relations are also attracting considerable attention
recently [28–31]. In Ref. [28], the authors derived two variance-based sum uncer-
tainty relations for two incompatible observables. They show that the lower bounds
are nontrivial whenever the two observables are incompatible on the state of the sys-
tem. Thus, the lower bounds of these uncertainty inequalities can be used to capture
the incompatibility of the observables. After that, Chen and Fei [29] presented two
uncertainty inequalities in terms of the sum of variances and standard deviations for
arbitrary N incompatible observables, respectively.

In this paper, we formulate sum uncertainty relations by use of the skew informa-
tion. We presented several uncertainty inequalities for arbitrary N observables. These
lower bounds have explicit physical meaning, i.e., they can be used to capture the
noncommutativity of the observables like Heisenberg–Robertson product uncertainty
relation (1). Some applications and examples are also provided.

2 Skew information-based sum uncertainty relations for two observables

We first present two skew information-based sum uncertainty inequalities for two
observables.

Theorem 1 For two observables A and B, we have

Iρ(A) + Iρ(B) ≥ 1

2
max

{
Iρ(A + B), Iρ(A − B)

}
. (3)

Proof Consider the parallelogram law in a Hilbert space: ‖u + v‖2 + ‖u − v‖2 =
2(‖u‖2 + ‖v‖2). Let u = [√ρ, A], v = [√ρ, B]. Then, we have

Iρ(A) + Iρ(B) = 1

2

[
Iρ(A + B) + Iρ(A − B)

]

≥ 1

2
max

{
Iρ(A + B), Iρ(A − B)

}
. (4)

This completes the proof. ��

If the lower bound in (3) is zero, then we have [√ρ, A + B] = [√ρ, A − B] = 0,
which implies that [√ρ, A] = [√ρ, B] = 0. Further, we can conclude that [ρ, A] =
[ρ, B] = 0 and 〈[A, B]〉ρ = 0. Hence, it is easy to see that if the two observables A and
B are noncommutative, the relation (3) is nontrivial. That is to say, skew information
can be used to formulate sum uncertainty relations, and the lower bound we derived
in (3) is meaningful. In particular, for pure states, we get the uncertainty relations
presented in Refs. [28,32], since in this case, Iρ(H) = (�ρH)2.
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Similar to the standard deviation-based sum uncertainty relations, we provide
another uncertainty inequality by using the quantity

√
Iρ(H). From the inequality

‖u ± v‖ ≤ ‖u‖ + ‖v‖, we have the following Theorem.

Theorem 2 For two observables A and B, we have

√
Iρ(A) + √

Iρ(B) ≥ max{√Iρ(A + B),
√
Iρ(A − B)}. (5)

It is obvious that the lower bound in (5) is nonzero as long as A and B are noncom-
mutative. Thus, the relation (5) can be used to characterize the noncommutativity of
A and B too.

3 Skew information-based sum uncertainty relations for arbitrary N
observables

Before generalizing the uncertainty relations (3) and (5) to arbitrary N observ-
ables case, let us first improve several uncertainty relations for N observables. Let
A1, . . . , AN be N observables. Since

√√√√Iρ

(
N∑

i=1

Ai

)
= 1√

2

∥∥∥∥∥

[
√

ρ,

N∑

i=1

Ai

]∥∥∥∥∥

≤ 1√
2

N∑

i=1

‖[√ρ, Ai ]‖

=
N∑

i=1

√
Iρ(Ai ), (6)

we get

N∑

i=1

√
Iρ(Ai ) ≥

√√√√Iρ

(
N∑

i=1

Ai

)
. (7)

If ρ is a pure state, then the relation (7) gives rise to the result presented in Ref. [30]:

∑

i

�ρ(Ai ) ≥ �ρ

(∑

i

Ai

)
.

Let {Ai }Ni=1 and {Bj }Nj=1 be two sets of noncommuting observables satisfying
[Ai , Bj ] = iδi jC . In Ref. [30], it has been proved that the product of sum of uncer-
tainties in the individual observables satisfies the following inequality:
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(
N∑

i=1

�ρ Ai

) (
N∑

i=1

�ρBj

)
≥ N

2
|〈C〉ρ |. (8)

By using uncertainty relation (2) and noting that
√
Uρ(H) ≤ �ρH , we have a refined

form of (8):

(
N∑

i=1

√
Uρ(Ai )

) ⎛
⎝

N∑

j=1

√
Uρ(Bj )

⎞
⎠ =

∑

i j

√
Uρ(Ai )Uρ(Bj )

≥ 1

2

∑

i j

|〈[Ai , Bj ]〉ρ |

= N

2
|〈C〉ρ |. (9)

The above uncertainty relation (8) can be further improved:

Theorem 3 Let {Ai }Ni=1 and {Bj }Nj=1 be two sets of noncommuting observables sat-
isfying [Ai , Bj ] = iδi jC. Then, we have

(
N∑

i=1

Uρ(Ai )

)⎛
⎝

N∑

j=1

Uρ(Bj )

⎞
⎠ ≥ N

4
|〈C〉ρ |2. (10)

Proof

(
N∑

i=1

Uρ(Ai )

)⎛
⎝

N∑

j=1

Uρ(Bj )

⎞
⎠ =

∑

i j

Uρ(Ai )Uρ(Bj )

≥ 1

4

∑

i j

|〈[Ai , Bj ]〉ρ |2

= N

4
|〈C〉ρ |2. (11)

To show that the uncertainty relation (10) is stronger than (9), one only need to note

that
(∑N

i=1

√
Uρ(�i )

)2 ≥
(∑N

i=1Uρ(�i )
)
, � = A, B. ��

Let us now generalize the uncertainty relation (3) to arbitrary N observables.
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Theorem 4 For arbitrary N observables A1, A2, . . ., AN , we have

N∑

i=1

Iρ(Ai ) ≥ 1

N − 2

⎡
⎣ ∑

1≤i< j≤N

Iρ(Ai + A j ) − 1

(N − 1)2

⎛
⎝ ∑

1≤i< j≤N

√
Iρ(Ai + A j )

⎞
⎠

2
⎤
⎥⎦ . (12)

If Ai s are mutually noncommutative, then the lower bound in (12) is nonzero.

Proof Consider the following inequality in a Hilbert space [29]:

N∑

i=1

‖ui‖2 ≥ 1

N − 2

⎡
⎢⎣

∑

1≤i< j≤N

‖ui + u j‖2 − 1

(N − 1)2

⎛
⎝ ∑

1≤i< j≤N

‖ui + u j‖
⎞
⎠

2
⎤
⎥⎦

≥ 1

2(N − 1)

∑

1≤i< j≤N

‖ui + u j‖2. (13)

Let ui = [√ρ, Ai ]. We obtain (12) directly. Moreover, if the lower bound (12) is zero,
then each Iρ(Ai + A j ) is equal to zero, which implies that Iρ(Ai ) = 0,∀i . Thus, we
have 〈[Ai , A j ]〉ρ = 0. That is to say, for N noncommuting observables, the relation
(12) is nontrivial. ��
Remark From (3), one may also trivially derive an uncertainty relation for N observ-
ables by adding the skew information of every pair of the observables. Nevertheless,
it can be seen from (13) that the lower bound in (12) is tighter than the one trivially
derived from (3) in such way.

We now generalize uncertainty relation (5) to arbitrary N observables case.

Theorem 5 For arbitrary N observables A1, A2, . . ., AN , we have

N∑

i=1

√
Iρ(Ai ) ≥ 1

N − 2

⎡
⎣ ∑

1≤i< j≤N

√
Iρ(Ai + A j ) −

√√√√Iρ

(
N∑

i=1

Ai

)⎤
⎦ . (14)

If Ai s are mutually noncommutative, then the lower bound in (14) is nonzero.

Proof Using the following inequality [29,33,34],

N∑

i=1

‖ui‖ ≥ 1

N − 2

⎛
⎝ ∑

1≤i< j≤N

‖ui + u j‖ −
∥∥∥∥∥

N∑

i=1

ui

∥∥∥∥∥

⎞
⎠

≥
∥∥∥∥∥

N∑

i=1

ui

∥∥∥∥∥ , (15)
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and setting ui = [√ρ, Ai ], we get (14). If the lower bound in (14) is zero, so is (7),
and all Iρ(Ai + A j ) are equal to zero. In this case, we have Iρ(Ai ) = 0,∀i , and
〈[Ai , A j ]〉ρ = 0. Thus, as long as Ai s are mutually noncommutative, the relation (14)
is nontrivial. ��

It can be verified from (15) that the inequality (14) is tighter than (7). In the fol-
lowing, we provide a new skew information-based sum uncertainty relation.

Theorem 6 Let A1, A2, . . ., AN be N observables, ρ a quantum state such that
Iρ(Ai ) �= 0,∀i . Let G be an N × N matrix with entries Gi j = Tr(Xi X j ), where
Xi = i[√ρ, Ai ]/‖[√ρ, Ai ]‖, i = √−1,∀i . Then, we have

N∑

i=1

Iρ(Ai ) ≥ 1

λmax(G)
Iρ

(
N∑

i=1

Ai

)
, (16)

where λmax(G) denotes the maximal eigenvalue of G.

Proof Since Xi s are Hermitian matrices, G is also Hermitian. Further, G is a positive
semi-definite matrix, since

∑
i, j x

∗
i Gi j x j = ∑

i, j x
∗
i Tr(Xi X j )x j = ‖∑

i xi Xi‖2 ≥
0. Thus, all eigenvalues of G are nonnegative numbers. Note that

Iρ

(∑

i

Ai

)
= −1

2
Tr

⎛
⎝

[
√

ρ,
∑

i

Ai

]2
⎞
⎠

= 1

2

∑

i, j

Tr
[
(i[√ρ, Ai ])(i[√ρ, A j ])

]

= 1

2

∑

i, j

‖[√ρ, Ai ]‖Gi j‖[√ρ, A j ]‖

=
∑

i, j

√
Iρ(Ai )Gi j

√
Iρ(A j )

≤ λmax(G)
∑

i

Iρ(Ai ), (17)

we get (16). ��
As an example, let us consider three observables case, the Pauli matrices σ1 =

|0〉〈1| + |1〉〈0|, σ2 = −i |0〉〈1| + i |1〉〈0|, and σ3 = |0〉〈0| − |1〉〈1|. Let the

measured states be given with Bloch vector −→r = (
√
3
2 cos θ,

√
3
2 sin θ, 0). Then,

we have Iρ(σ1) = 1
2 sin

2 θ , Iρ(σ2) = 1
2 cos

2 θ , Iρ(σ3) = 1
2 , λmax(G) = 2,

Iρ(σ1+σ2) = 1
2 (1−sin 2θ), Iρ(σ2+σ3) = 1

4 (3+cos 2θ), Iρ(σ1+σ3) = 1
4 (3−cos 2θ),

Iρ(σ1 +σ2 +σ3) = 1− 1
2 sin 2θ . The comparison between the lower bounds (12) and

(16) is given in Fig 1.
One can see that (16) is stronger than (12) in some cases. Therefore, we have the

following skew information-based sum uncertainty relation:
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Fig. 1 Horizontal line is the sum of the skew information Iρ(σ1) + Iρ(σ2) + Iρ(σ3). The dot-dashed line
is the bound (12). The dashed line is the bound (16)

Theorem 7

N∑

i=1

Iρ(Ai ) ≥ max{(lb1), (lb2)}, (18)

where (lb1) and (lb2) stand for the lower bounds in (12) and (16), respectively.

4 Conclusion

Skew information is an important quantity in the theory of quantum information and
plays significant roles in many quantum information processing tasks. In this paper,
we have demonstrated that skew information can be used to formulate sum uncertainty
relations for arbitrary N observables. The skew information-based sum uncertainty
relations are rather different from the variance-based ones like in Refs. [28,29,32].
First, the physical meaning of skew information is quite different to the variances
of measurement outcomes, although they are numerically equal when the physical
system is in a pure quantum state. On the other hand, uncertainty relations based
on skew information and variances have their own advantages. The lower bounds of
variance-based sum uncertainty relations in Refs. [28,29,32] capture the incompat-
ibility of the observables, i.e., the lower bound is nonzero as long as the quantum
states are not the common eigenstates of the observables, while the lower bounds
of skew information-based uncertainty relations we derived in this paper capture the
noncommutativity of the observables, i.e., the inequalities are nontrivial when the
observables are noncommutative with respect to the measured states. For pure states,
some of these skew information-based inequalities are reduced to the variance-based
ones [28,29,32]. We hope that these results may shed lights on further investigations
on skew information-based uncertainty relations.
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