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Abstract We propose a new scheme for efficient remote preparation of an arbitrary
two-qubit state, introducing two auxiliary qubits and using two Einstein–Podolsky–
Rosen (EPR) states as the quantum channel in a non-recursive way. At variance with
all existing schemes, our scheme accomplishes deterministic remote state preparation
(RSP) with only one sender and the simplest entangled resource (say, EPR pairs). We
construct the corresponding quantum logic circuit using a unitary matrix decompo-
sition procedure and analytically obtain the average fidelity of the deterministic RSP
process for dissipative environments. Our studies show that, while the average fidelity
gradually decreases to a stable value without any revival in the Markovian regime,
it decreases to the same stable value with a dampened revival amplitude in the non-
Markovian regime.We also find that the average fidelity’s approximate maximal value
can be preserved for a long time if the non-Markovian and the detuning conditions are
satisfied simultaneously.
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1 Introduction

As one of the most important discoveries in quantum information science, quantum
teleportation (QT), first proposed by Bennett et al. [1] in 1993, is a process that a
sender intends to teleport an unknown quantum state to a remote receiver with the
assistance of an entangled channel and some classical communication. Subsequently,
similar to QT, Lo [2], Pati [3], Bennett et al. [4] presented another quantum state
transmission protocol called remote state preparation (RSP), in which the sender has
complete knowledge of the original state to be transferred. Thus, in RSP there may
exist a trade-off between the required entanglement and the classical information cost.
Since then, various RSP protocols have been extensively investigated [5–18] in theory,
and experimental implementation of RSP has been demonstrated in optical systems
[19–24] and using liquid-state nuclear magnetic resonance techniques [25].

Generally, a realistic quantum system is not closed and will undergo unavoidable
interaction with its external environment, which makes the system lose its coherence.
Due to the decoherence effect of the system resulting from the ambient noises, usually
the initial state at the side of the sender cannot be exactly transferred to the final
state at the side of the remote receiver during the quantum state transmission process
[26–29]. What happens to the RSP protocols in realistic environments? We notice
that Chen et al. [30] studied how to remotely prepare a qubit via a W state subject
to Pauli noises by using the trace distance to characterize how close the initial state
is to the final state. Zhang et al. [31] investigated the scheme for remotely preparing
a general two-qubit pure state with real parameters through two Bell-like states in
non-Markovian environment. Furthermore, Liang et al. [32] examined the remote
preparation of a single qubit and of a bipartite entangled state through a GHZ-class
channel in the presence of dephasing and bit-flip noises. Recently, Sharma et al. [33]
suggested a protocol for probabilistic controlled bidirectional RSP under the influence
of the amplitude-damping and the phase-damping noises. Chen et al. [34] discussed
the influence of Pauli noises on the deterministic joint RSP of an arbitrary state of two
qubits via two GHZ states. On the experimental realization, Xiang et al. [35] reported
the remote preparation of pure and mixed states via dephasing noisy entanglement by
using spontaneous parametric down conversion and linear optical elements.

To our knowledge, the authors of Refs. [36–41] presented some schemes for deter-
ministic remote preparation of an arbitrary pure state of two qubits via various types
of entangled channels. However, these schemes need two or multi-senders who jointly
share the complete information of the two-qubit state to be prepared, and they require
at least one tripartite or multi-particle entangled state as shared quantum resource.
Meanwhile, An et al. [42] utilized four EPR pairs as entangled resource to joint
remotely prepare an arbitrary two-qubit state with unity probability and six classi-
cal bits. Moreover, An et al. [43] designed a protocol for RSP of a single-qubit state
with unit success probability and two classical bits by using an EPR state and one
ancillary qubit. In this paper, we put forward a new protocol to realize deterministic
RSP of an arbitrary two-qubit state through two EPR pairs by employing two auxiliary
qubits, and then its corresponding quantum logic circuit is designed by means of the
decomposition procedure of unitary matrix. Our protocol can economize two EPR
pairs and two bits of classical communication cost, compared with An et al.’s [42].
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Further, the protocol that we suggest takes into account the presence of dissipative
environments, and the average fidelity of the deterministic RSP process is derived
analytically. Through numerical analysis, our study reveals that the average fidelity of
the RSP subject to the Markovian environment and that subject to the non-Markovian
environment exhibit quite different evolution behaviors. To be specific, the average
fidelity decreases to a stable value asymptotically without any revival in the Markov-
ian regime, while it diminishes to the same stable value with a damping of its revival
amplitude in the non-Markovian regime. Besides, we find that the average fidelity can
preserve the approximate maximum being one for a long time if the non-Markovian
and the detuning conditions are satisfied at the same time.

This paper is organized as follows. In Sect. 2, we first propose a new deterministic
protocol for remotely preparing an arbitrary pure state of two qubits through two EPR
pairs, and then construct the corresponding quantum circuit of the RSP process by
virtue of unitary matrix decomposition method. In Sect. 3, we examine the average
fidelity of our RSP protocol under the influence of dissipative environments, and we
end in Sect. 4 a brief conclusion.

2 Deterministic RSP via two EPR pairs

In this section,weput forward a newdeterministicRSPprotocol for remotely preparing
an arbitrary two-qubit pure state in a non-recursive manner through two EPR states by
incorporating two auxiliary qubits. First of all, suppose that the sender Alice wants to
help the receiverBob remotely prepare an arbitrary two-qubit state taking the following
form

|ψ〉 = ε0 |00〉 + ε1e
iθ1 |01〉 + ε2e

iθ2 |10〉 + ε3e
iθ3 |11〉, (1)

where the real parameters θs ∈ [0, 2π)(s = 1, 2, 3) and εl ≥ 0 (l = 0, 1, 2, 3) with∑3
l=0(εl)

2 = 1. The parameters θs and εl are assumed to be known completely to
Alice but unknown to Bob. To realize the RSP task, we also suppose that Alice and
Bob share the following two EPR pairs as the quantum channel

|φ〉12 = 1√
2
(|01〉 + |10〉)12,

|φ〉34 = 1√
2
(|01〉 + |10〉)34, (2)

where qubits 1 and 3 belong to Alice, as well as qubits 2 and 4 to Bob. For the sake of
efficiently analyzing the RSP process in dissipative environments, Bob first performs
Pauli operation σx on each of his two qubits. In this way, the total state of the quantum
channel shared by Alice and Bob can be written as

[
(σx )2 |φ〉12

] ⊗ [
(σx )4 |φ〉34

] = 1

2
(|0000〉 + |0011〉 + |1100〉 + |1111〉)1234. (3)

To help Bob prepare the original state |ψ〉, Alice introduces two auxiliary qubits a and
b with their respective initial states |0〉a and |0〉b and performs two CNOT operations
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with particles 1 and 3 as the controlled qubits and auxiliary particles a and b as the
target qubits, respectively. Then the total state consisting of the six qubits 1, 2, 3, 4, a,
and b is given by

|�〉T = 1

2
(|00〉 |00〉 |00〉+|00〉 |11〉 |01〉+|11〉 |00〉 |10〉+|11〉 |11〉 |11〉)1234ab. (4)

Since Alice has complete knowledge of the original state to be prepared, she performs
a two-qubit projective measurement on her auxiliary two qubits, which depends on
the amplitude information of |ψ〉 and is described by

|η0〉ab = (ε0 |00〉 + ε1 |01〉 + ε2 |10〉 + ε3 |11〉)ab,
|η1〉ab = (ε1 |00〉 − ε0 |01〉 + ε3 |10〉 − ε2 |11〉)ab,
|η2〉ab = (ε2 |00〉 − ε3 |01〉 − ε0 |10〉 + ε1 |11〉)ab,
|η3〉ab = (ε3 |00〉 + ε2 |01〉 − ε1 |10〉 − ε0 |11〉)ab, (5)

where the four states {|ηm〉ab}(m = 0, 1, 2, 3) constitute a set of complete orthonormal
basis vectors in a four-dimensionalHilbert space.UsingEqs. (4) and (5),we can rewrite
the total state |�〉T as follows

|�〉T = 1

2

[|η0〉ab (ε0 |00〉13 |00〉24 + ε1 |01〉13 |01〉24
+ ε2 |10〉13 |10〉24 + ε3 |11〉13 |11〉24)
+ |η1〉ab (ε1 |00〉13 |00〉24 − ε0 |01〉13 |01〉24
+ ε3 |10〉13 |10〉24 − ε2 |11〉13 |11〉24)
+ |η2〉ab (ε2 |00〉13 |00〉24 − ε3 |01〉13 |01〉24
− ε0 |10〉13 |10〉24 + ε1 |11〉13 |11〉24)
+ |η3〉ab (ε3 |00〉13 |00〉24 + ε2 |01〉13 |01〉24
− ε1 |10〉13 |10〉24 − ε0 |11〉13 |11〉24)

]
. (6)

After making the projective measurement on the two auxiliary qubits a and b, Alice
transmits her measurement outcomes to Bob through two classical bits. According
to Eq. (6), if Alice obtains four possible measurement results {|ηm〉ab}, the particles
1, 2, 3, and 4 are correspondingly collapsed to four different states ab 〈ηm | �〉T , which
can be converted into the identical state |�〉1324 = ε0 |00〉13 |00〉24+ε1 |01〉13 |01〉24+
ε2 |10〉13 |10〉24 + ε3 |11〉13 |11〉24 via suitable unitary operations on particles a and
b. To be specific, when the outcome of Alice’s measurement on the two auxiliary
qubits is |η0〉 , |η1〉 , |η2〉 or |η3〉, the corresponding collapsed state of particles 1,
2, 3, and 4 can be transformed into the state |�〉1324 depending on the amplitude
information of the original state |ψ〉 by Alice performing unitary operation (I )1 ⊗
(I )3 ⊗ (I )2 ⊗ (I )4, (I )1 ⊗ (σx )3 ⊗ (I )2 ⊗ (iσy)4, (σx )1 ⊗ (I )3 ⊗ (iσy)2 ⊗ (σz)4 or
(σx )1 ⊗ (σx )3 ⊗ (iσy)2 ⊗ (σx )4, respectively. Here I is an identity operation, σx , σy

and σz are Pauli operations.
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At this stage, the RSP task is to retrieve the original state |ψ〉 from the collapsed
one |�〉1324. To do so, Alice proceeds the two-qubit projective measurement on her
own particles 1 and 3 under the following orthonormal basis

|χ0〉13 = 1

2

(
|00〉 + e−iθ1 |01〉 + e−iθ2 |10〉 + e−iθ3 |11〉

)

13
,

|χ1〉13 = 1

2

(
|00〉 − e−iθ1 |01〉 + e−iθ2 |10〉 − e−iθ3 |11〉

)

13
,

|χ2〉13 = 1

2

(
|00〉 + e−iθ1 |01〉 − e−iθ2 |10〉 − e−iθ3 |11〉

)

13
,

|χ3〉13 = 1

2

(
|00〉 − e−iθ1 |01〉 − e−iθ2 |10〉 + e−iθ3 |11〉

)

13
. (7)

Here the four states {|χn〉13}(n = 0, 1, 2, 3) are related to the phase information of
the original state to be remotely prepared. According to the above equation, we can
expand the state |�〉1324 of particles 1, 2, 3, and 4 as

|�〉1324 = 1

2

[
|χ0〉13

(
ε0 |00〉24 + ε1e

iθ1 |01〉24 + ε2e
iθ2 |10〉24 + ε3e

iθ3 |11〉24
)

+ |χ1〉13
(
ε0 |00〉24 − ε1e

iθ1 |01〉24 + ε2e
iθ2 |10〉24 − ε3e

iθ3 |11〉24
)

+ |χ2〉13
(
ε0 |00〉24 + ε1e

iθ1 |01〉24 − ε2e
iθ2 |10〉24 − ε3e

iθ3 |11〉24
)

+ |χ3〉13
(
ε0 |00〉24 − ε1e

iθ1 |01〉24 − ε2e
iθ2 |10〉24 + ε3e

iθ3 |11〉24
)]

.

(8)

After Alice performs the projective measurement on her two qubits under the basis
{|χn〉13} (n = 0, 1, 2, 3), she informs Bob of her measurement results with two bits
of classical communication. For instance, when Alice obtains the measurement result
|χ0〉13, the particles 2 and 4 are then collapsed to the state ε0 |00〉24 + ε1eiθ1 |01〉24 +
ε2eiθ2 |10〉24+ε3eiθ3 |11〉24, which is exactly the desired state |ψ〉 that Alice wishes to
prepare remotely. Moreover, if the outcome of Alice’s measurement on her two qubits
1 and 3 is |χ1〉 , |χ2〉 or |χ3〉, the particles 2 and 4 held by Bob will correspondingly be
collapsed to the state [(I )2⊗(σz)4] |ψ〉 , [(σz)2⊗(I )4] |ψ〉, or [(σz)2⊗(σz)4] |ψ〉with
the probability of 1/4, respectively. Summing up all the four possible measurement
outcomes of Alice, Bob is always able to restore the original state |ψ〉 at his side with
unit probability by means of proper local unitary operations on his two particles. Thus
our protocol for remotely preparing an arbitrary two-qubit pure state can be achieved
deterministicallywith four bits of classical communication fromAlice to Bob [44–47].

Based on the decomposition methods of unitary matrices [48,49], following the
aforementioned procedure, we design the quantum circuit for implementing the deter-
ministic RSP protocol in Fig. 1, where ‘H ’ is the Hadamard operation, the dot ‘•’
denotes the control qubit, ‘⊕’, ‘iσy’, ‘σz’ represent the target qubits, ‘σx ’, ‘σy’, ‘σz’
are three Pauli operations, ‘M1 ’, ‘M3’, ‘Ma’, ‘Mb’ represent the single-qubit pro-
jective measurement, as well as the double line denotes the classical communication.
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Fig. 1 (Color online) Quantum circuit for deterministic remote preparation of an arbitrary two-qubit state
via two EPR states, where the top two lines belong to Alice, the third and fourth lines belong to Bob, and
the two bottom lines represent the two auxiliary qubits

Furthermore, the unitary amplitude operator Uab and the unitary phase operator U13
take the following respective forms

Uab =

⎛

⎜
⎜
⎝

ε0 ε1 ε2 ε3
ε1 −ε0 ε3 −ε2
ε2 −ε3 −ε0 ε1
ε3 ε2 −ε1 −ε0

⎞

⎟
⎟
⎠ , (9)

U13 = 1

2

⎛

⎜
⎜
⎝

1 eiθ1 eiθ2 eiθ3

1 −eiθ1 eiθ2 −eiθ3

1 eiθ1 −eiθ2 −eiθ3

1 −eiθ1 −eiθ2 eiθ3

⎞

⎟
⎟
⎠ . (10)

3 Deterministic RSP in dissipative environments

An open quantum system will interact with its surrounding environment unavoidably,
which causes the system to lose its coherence gradually. Thus it is necessary to con-
sider and explore the realistic quantum state transmission process in the presence of
environmental noises. In this section, we will investigate the influence of dissipative
environments on the aforementioned deterministic RSP protocol. Here we assume the
four qubits 1, 2, 3, and 4 constituting the quantum channel given in Sect. 2 interact with
their respective independent vacuum reservoirs at zero temperature. The single-qubit
reservoir Hamiltonian (in units of h̄ = 1) is described by the well-known damped
Jaynes–Cummings model as follows [50–52]

H = ω0σ+σ− +
N∑

k=1

ωk b̂
+
k b̂k +

N∑

k=1

(
gkσ+b̂k + g∗

kσ−b̂+
k

)
, (11)

where ω0 is the transition frequency of two-level system, σ+(σ−) is the raising (low-
ering) operator of the qubit, b̂+

k (bk) is the creation (annihilation) operator of mode k of
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the reservoir with frequency ωk, gk is the strength of coupling between the qubit and
the reservoir mode k. Now the initial state of the EPR pair and the vacuum reservoir
can be written as

|�(0)〉 = |φ〉q1q2
∣
∣0

〉
e1

∣
∣0

〉
e2

= 1√
2
(|01〉 + |10〉)q1q2

∣
∣00

〉
e1e2

, (12)

where
∣
∣0

〉
e = ∏N

k=1 |0k〉e denotes the vacuum environment with N modes. Then the
time evolution of |�(0)〉 can be given by

|�(t)〉 = 1√
2

(
|0〉q1

∣
∣0

〉
e1

|ω(t)〉q2e2 + |ω(t)〉q1e1 |0〉q2
∣
∣0

〉
e2

)
, (13)

where |ω(t)〉q j e j ( j = 1, 2) takes the form

|ω(t)〉q j e j = ξ0(t) |1〉q j

∣
∣0

〉
e j

+
N∑

k=1

ξk(t) |0〉q j
|1k〉e j

= ξ0(t) |1〉q j

∣
∣0

〉
e j

+ ξ(t) |0〉q j

∣
∣1

〉
e j

. (14)

Here
∣
∣1

〉
e j

= 1
ξ(t)

∑N
k=1 ξk(t) |1k〉e j , |1k〉e j represents the state of the N -mode

environment with only a single excitation in the kth mode, ξ0(t) and ξk(t) are
the time-dependent probability amplitudes, and |ξ0(t)|2 + |ξ(t)|2 = 1. Gener-
ally, the dynamics of state |ω(t)〉q j e j is governed by the schrődinger equation:

i h̄ ∂
∂t |ω(t)〉q j e j = H |ω(t)〉q j e j . So the evolution of ξ0(t) and ξk(t) obeys the fol-

lowing equations

ξ̇0(t) = −i
N∑

k

gk exp [i (ω0 − ωk) t] ξk(t),

ξ̇k(t) = −ig∗
k exp [−i (ω0 − ωk) t] ξ0(t), (15)

with ξ0(t) = 1. By solving the second equation and substituting the solution into the
first one, we can obtain an integro-differential formulas for ξ0(t) as follows

ξ̇0(t) = −
∫ t

0
dt1 f (t − t1) ξ0 (t1) , (16)

where the correlation function f (t−t1) can be described by theFourier transformof the
environmental spectral density J (ω)with f (t−t1)=

∫
dωJ (ω) exp [i(ω0 − ω)(t−t1)].

Clearly, the explicit formof ξ0(t) depends on the particular choice of the environmental
spectral density. Next we take into account the spectral distribution of an electromag-
netic field inside a lossy cavity supporting the fundamental mode ωc. The effective
spectral density of the intracavity field exhibits a Lorentzian broadening with [53,54]
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J (ω) = 1

2π

�λ2

(ω0 − ω − �)2 + λ2
, (17)

in which � is related to the decay of the excited state for the qubit in the Markovian
limit of a flat spectrum, λ is the spectral width of the coupling, and � is the detuning
between the qubit transition frequencyω0 and the cavity center frequencyωc. By judg-
ing the relation of � and λ, we can distinguish the weak and strong coupling regimes.
Specifically, λ/� > 2 corresponds to the weak regime, called Markovian environ-
ment. On the contrary, λ/� < 2 means the strong regime, called non-Markovian
environment. Substituting Eq. (17) into Eq. (16) and using Laplace transform, the
time-dependent function ξ0(t) can be derived as

ξ0(t) = e− 1
2 (λ−i�)t

[

cosh

(
�t

2

)

+ λ − i�

�
sinh

(
�t

2

)]

, (18)

where � = √
(λ − i�)2 − 2λ�.

Following the above procedure to deal with system dynamics and after tracing out
the reservoir modes, we obtain the time evolution of the density matrix elements of
each EPR pair as follows

ρ12(t) = ρ34(t) = 1

2

⎛

⎜
⎜
⎝

2(1 − |ξ0(t)|2) 0 0 0
0 |ξ0(t)|2 |ξ0(t)|2 0
0 |ξ0(t)|2 |ξ0(t)|2 0
0 0 0 0

⎞

⎟
⎟
⎠ , (19)

under the basis {|11〉 , |10〉 , |01〉 , |00〉}. Then the whole dynamics of the two EPR
pairs serving as quantum channel is given by ρ12 (t) ⊗ ρ34 (t). Based on Fig. 1, the
output state of our RSP protocol via the noisy channel can be expressed as

ρout = ρ24 = Tr13ab
{
URSP (ρ12(t) ⊗ ρ34(t) ⊗ |0〉aa 〈0| ⊗ |0〉bb 〈0|)U+

RSP

}
, (20)

where Tr13ab is the partial trace over qubits 1, 3, a, b, and the unitary operator

URSP = (σz)3→4 (σz)1→2 (U13) (σz)a→4(iσy)b→4(iσy)a→2

(σx )b→3 (σx )a→1 (Uab) (σx )3→b (σx )1→a . (21)

Here (σq)e→ f denotes a two-qubit unitary controlled—σq (q = x, y, z) operationwith
e (e = 1, 3, a, b) as control qubit and f ( f = 1, 2, 3, 4, a, b) as target qubit. Through
analytical derivation, the output state ρout at Bob’s side takes the following form

ρout = ρ24 =
[

ε20 |ξ0(t)|4 +
(
ε21 + ε22

)
|ξ0(t)|2

(
1 − |ξ0(t)|2

)
+ ε23

(
1 − |ξ0(t)|2

)2
]

|00〉 〈00|

+
[
ε0ε1e

−iθ1 |ξ0(t)|4 + ε2ε3e
i(θ2−θ3) |ξ0(t)|2

(
1 − |ξ0(t)|2

)]
|00〉 〈01|

+
[
ε0ε2e

−iθ2 |ξ0(t)|4 + ε1ε3e
i(θ1−θ3) |ξ0(t)|2

(
1 − |ξ0(t)|2

)]
|00〉 〈10|
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+ ε0ε3e
−iθ3 |ξ0(t)|4 |00〉 〈11|

+
[
ε0ε1e

iθ1 |ξ0(t)|4 + ε2ε3e
i(θ3−θ2) |ξ0(t)|2

(
1 − |ξ0(t)|2

)]
|01〉 〈00|

+
[

ε21 |ξ0(t)|4 +
(
ε20 + ε23

)
|ξ0(t)|2

(
1 − |ξ0(t)|2

)
+ ε22

(
1 − |ξ0(t)|2

)2
]

|01〉 〈01|

+ ε1ε2e
i(θ1−θ2) |ξ0(t)|4 |01〉 〈10|

+
[
ε1ε3e

i(θ1−θ3) |ξ0(t)|4 + ε0ε2e
−iθ2 |ξ0(t)|2

(
1 − |ξ0(t)|2

)]
|01〉 〈11|

+
[
ε0ε2e

iθ2 |ξ0(t)|4 + ε1ε3e
i(θ3−θ1) |ξ0(t)|2

(
1 − |ξ0(t)|2

)]
|10〉 〈00|

+ ε1ε2e
i(θ2−θ1) |ξ0(t)|4 |10〉 〈01|

+
[

ε22 |ξ0(t)|4 +
(
ε20 + ε23

)
|ξ0(t)|2

(
1 − |ξ0(t)|2

)
+ ε21

(
1 − |ξ0(t)|2

)2
]

|10〉 〈10|

+
[
ε2ε3e

i(θ2−θ3) |ξ0(t)|4 + ε0ε1e
−iθ1 |ξ0(t)|2

(
1 − |ξ0(t)|2

)]
|10〉 〈11|

+ ε0ε3e
iθ3 |ξ0(t)|4 |11〉 〈00|

+
[
ε1ε3e

i(θ3−θ1) |ξ0(t)|4 + ε0ε2e
iθ2 |ξ0(t)|2

(
1 − |ξ0(t)|2

)]
|11〉 〈01|

+
[
ε2ε3e

i(θ3−θ2) |ξ0(t)|4 + ε0ε1e
iθ1 |ξ0(t)|2

(
1 − |ξ0(t)|2

)]
|11〉 〈10|

+
[

ε23 |ξ0(t)|4 +
(
ε21 + ε22

)
|ξ0(t)|2

(
1 − |ξ0(t)|2

)
+ ε20

(
1 − |ξ0(t)|2

)2
]

|11〉 〈11| .
(22)

To depict how much quantum information is transmitted from the initial state to
the output state through the noisy channel, it is quite useful to calculate the fidelity
defined by

F = 〈ψ | ρout |ψ〉 . (23)

By straightforward calculation, the fidelity of our RSP protocol subject to the noisy
environment can be derived as

F = ε40 |ξ0(t)|4 + ε41 |ξ0(t)|4 + ε42 |ξ0(t)|4 + ε43 |ξ0(t)|4 + 4ε20ε
2
3 |ξ0(t)|4 + 4ε21ε

2
2 |ξ0(t)|4

− 8ε0ε1ε2ε3 cos (θ1 + θ2 − θ3) |ξ0(t)|4 + 2ε20ε
2
1 |ξ0(t)|2 + 2ε20ε

2
2 |ξ0(t)|2

− 4ε20ε
2
3 |ξ0(t)|2 − 4ε21ε

2
2 |ξ0(t)|2 + 2ε21ε

2
3 |ξ0(t)|2 + 2ε22ε

2
3 |ξ0(t)|2

+ 8ε0ε1ε2ε3 cos (θ1 + θ2 − θ3) |ξ0(t)|2 + 2ε20ε
2
3 + 2ε21ε

2
2 . (24)

Generally, the initial state to be remotely prepared is an arbitrary two-qubit state.
Thus it is of great significance for us to examine the average fidelity over all possible
initial states, which can be formulated by [34]

Fav =
(∫ 2π

0

∫ 2π

0

∫ 2π

0
dθ1dθ2dθ3

∫ π

0

∫ π

0

∫ π

0
F sin α sin β sin δdαdβdδ

)

/64π3,

(25)
with ε0 = cos α

2 cos
β
2 , ε1 = cos α

2 sin
β
2 , ε2 = sin α

2 cos
δ
2 , ε3 = sin α

2 sin
δ
2 , and

α, β, δ ∈ [0, π ]. Substituting Eq. (24) into Eq. (25), we can analytically calculate the
average fidelity to be

123



2164 J.-F. Li et al.

Fig. 2 (Color online) Average fidelity Fav(t) is plotted versus the dimensionless quantity �t for different
amount of non-Markovianity λ/� with � = 0

Fav(t) = 7

9
|ξ0(t)|4 + 1

18
|ξ0(t)|2 + 1

6
. (26)

Clearly, the average fidelity Fav(0) is equal to 1 when the two EPR pairs serving as
the entangled channel are in the absence of noisy environments (say, ξ(0) = 1). Next
we numerically discuss the average fidelity of our RSP protocol under the influence
of Markovian and non-Markovian regimes.

In Fig. 2, we plot the average fidelity as a function of �t for different values
of λ/� with � = 0. It can be seen from the figure that the evolution behavior of
Fav(t) in non-Markovian regime is essentially different from that inMarkovian regime.
More specifically, the average fidelity in non-Markovian regime (λ/� < 2) decreases
gradually to the stable value of 1/6 and then revives for a period of finite time with
a damping amplitude, whereas the average fidelity in Markovian regime (λ/� >

2) decays asymptotically to the same value of 1/6 without any revival. The revival
phenomenon is due to thememory effects of non-Markovian environment which allow
the backflow of information from the environment to the system [55–57]. Moreover,
it can also be seen that the revival amplitude and the non-Markovian decay rate are
related to the amount of non-Markovianity λ/�. With the decreasing λ/�, the revival
amplitude increases and the non-Markovian decay rate diminishes, this is mainly owed
to more information fed from the narrower environmental spectrum.

In Fig. 3, we plot Fav(t) as a function of �t for different detuning. As shown in
Fig. 3a, b, the average fidelity decreases exponentially to the stable value of 1/6 in
Markovian regime without the oscillation phenomenon no matter whether the detun-
ing is zero or not. Furthermore, the detuning is helpful to prolong the decay time of the
average fidelity, which implies that the larger the detuning is, the longer the average
fidelity takes to decay. From Fig. 3c, d, we can see that with the amount of the non-
Markovianity increasing, the average fidelity takes longer to survive and its revival
amplitude becomes larger. Besides, it is interesting to notice from Fig. 3c, d that the
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(a) (b)

(c) (d)

Fig. 3 (Color online) Average fidelity Fav(t) is plotted as a function of �t for different detuning. Here
a the Markovian regime λ/� = 10, b the Markovian regime λ/� = 5, c the non-Markovian regime
λ/� = 0.05, d the non-Markovian regime λ/� = 0.01

average fidelity in non-Markovian regime exhibits the phenomenon of slow decay for
large detuning. That is to say, the average fidelity oscillates rapidly at the very begin-
ning for large value of the detuning, but as�t increases it can preserve a nearlymaximal
stationary value of 1 together with the great amount of non-Markovianity. This robust
preserving of the average fidelity can efficiently overcome the environmental impact,
which is of great significance in quantum information processing. Therefore, if the
non-Markovian condition and the detuning condition are satisfied simultaneously in
appropriate physical systems [58,59], the average fidelity of the RSP can maintain the
approximate ideal value of one for a long time.

4 Conclusions

In summary, we have proposed a new protocol for deterministic remote preparation of
an arbitrary two-qubit state via two EPR states serving as the entanglement resource
by incorporating two ancillary qubits. Our protocol mainly includes two stages: the
first stage is amplitude manipulation by means of Alice adjusting the initial quantum
channel into the target channel which has the same amplitude parameters with the
prepared state, and the second stage is phase manipulation by Alice performing suit-
able unitary phase operation on her own qubits. In this way, our remote preparation
of the two-qubit pure state with complex parameters can be achieved faithfully in a
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nonrecursive way, which is relatively simpler than previous RSP protocols [60–62],
where the recursive channel modulation needs to be implemented until its succeeds.
In contrast to An et al.’s protocol [42], ours can economize two EPR pairs and two
bits of classical information. Moreover, the quantum circuit of the deterministic RSP
protocol we have proposed is designed by means of unitary matrix decomposition
technique, and the corresponding average fidelity is derived analytically for the case
that the quantum channel is subject to dissipative environments. Through numerical
analysis, our findings have revealed that the average fidelity decreases to a stable value
exponentially in the Markovian regime, but it attenuates to the identical stable value
oscillatorily with a damping of revival amplitude in the non-Markovian regime. The
revival phenomenon is due to the non-Markovian dynamics of single qubit result-
ing form the feedback effect of environment with memory [52,53]. Furthermore, the
detuning between the qubit frequency and the cavity center frequency is useful to
prolong the decay of the average fidelity no matter whether the quantum channel is
affected by Markovian environment or non-Markovian environment. We have also
found that the average fidelity can achieve preserving the nearly ideal value of one for
a long time if the detuning and the non-Markovian conditions are satisfied simultane-
ously in suitable physical systems. Our results might strengthen the understandings of
the RSP process and could stimulate the further studies on quantum communication
protocols in actual noisy environments.
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