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Abstract In this paper,we propose a novel scheme for deterministic controlled remote
state preparation (CRSP) of arbitrary two-qubit states. Suitably chosen partially entan-
gled state is used as the quantumchannel.With proper projectivemeasurements carried
out by the sender and controller, the receiver can reconstruct the target state by means
of appropriate unitary operation. Unit success probability can be achieved for arbi-
trary two-qubit states. Different from some previous CRSP schemes utilizing partially
entangled channels, auxiliary qubit is not required in our scheme. We also show that
the success probability is independent of the parameters of the partially entangled
quantum channel.

Keywords Controlled remote state preparation · Partially entangled quantum
channel · Two-qubit state

1 Introduction

Applying quantummechanics in the realm of computer science and information theory
hasmotivated an emerging research area, quantum computation and quantum informa-
tion [1]. Transmitting a quantum state that carries secret information provides a new
method for quantum information processing beyond the capabilities of its classical
counterparts. A landmark protocol for states transmission is quantum teleportation,
put forward by Bennett et al. [2], allowing the teleportation of an unknown quantum
state via a prior shared Einstein–Podolsky–Rosen (EPR) pair and two bits of classical
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communication. Later, a new protocol referred to as remote state preparation (RSP)
[3–5] was introduced, in which a known state can be remotely prepared using the same
quantum channel as in quantum teleportation but with reduced classical communica-
tion cost. Due to its pronounced advantages in quantum states transmission, RSP has
attracted extensive scientific attention in both theoretical [6–10] and experimental
[11–16] studies.

In conventional RSP protocols, there is one senderwho has the complete knowledge
about the state to be prepared (generally referred to as the target state) and one receiver
who knows nothing about the target state. As amatter of fact, it often appears necessary
to introduce a controller to supervise the completion of a global task in a quantumway.
Wang et al. [17] first put forward a controlled RSP (CRSP) scheme where quantum
key distribution is utilized for remotely preparing a single-qubit state with probability
50%. In the same year, a scheme employing non-maximally entangled GHZ state
was proposed for multiparty-controlled remote preparation of a two-qubit state [18],
whose success probability can reach 50% if and only if the maximally entangled
channel is used. Later, various CRSP schemes for two-qubit states were proposed
via different quantum channels [19–21]. Generally, in CRSP schemes, the optimal
success probability can be achieved when the maximally entangled quantum channel
is used. However, due to the unavoidable interaction between the quantum channel
and its ambient environment, it is challenging to generate and maintain the maximally
entanglement. Taking this into consideration, up to now, tremendous efforts have been
dedicated to the investigation of CRSP via non-maximally entangled channel [22–25].
Very recently,Wang et al. [26] proposed two CRSP protocols using partially entangled
quantum channels. However, the success probability is 25% for arbitrary two-qubit
states.

In order to improve the success probability of CRSP, in this paper, we propose a
novel scheme for CRSP of arbitrary two-qubit states using partially entangled chan-
nel. The sender and the controller carry out proper projective measurements under
elaborate measurement bases, according to their measurement results; the receiver
can reestablish the target state with appropriate unitary operation. Unit success prob-
ability can always be achieved irrespective of the parameters of the quantum channel.
Different from some previous CRSP schemes employing partially entangled channels,
auxiliary resources are not required in our scheme.

This paper is organized as follows. In the next section, we detail the deterministic
CRSP scheme for arbitrary two-qubit states and the corresponding quantum logic
circuit is designed. In Sect. 3, we make a discussion and give a brief summary.

2 CRSP of an arbitrary two-qubit state

Inspired by some ideas in Ref. [26,27], the following four-particle partially entangled
state is utilized throughout this paper,

|QC〉1234 = 1√
2
(|0000〉 + l |1111〉 + k |1101〉)1234. (1)
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Deterministic controlled remote state preparation… 1721

This state is characterized by real parameters l and k satisfying l2 + k2 = 1.
Obviously, when l = 0, |QC〉1234 = 1√

2
(|000〉 + |111〉)124 ⊗ |0〉3, this is a product

state of particle 3 with a maximally entangled GHZ state of particles 1, 2 and 4. When
l = 1, |QC〉1234 = 1√

2
(|0000〉 + |1111〉)1234 is a four-particle maximally entangled

GHZ state. Considering the controller’s power [28], in this paper we are interested in
0 < l < 1 for which |QC〉1234 is partially entangled with the entanglement degree
C124|3 = l quantified by the concurrence [29].

We now turn our attention to detail the deterministic CRSP of an arbitrary two-qubit
pure state. Suppose that under the control of Charlie, the sender Alice intend to help
the remote receiver Bob prepare an arbitrary two-qubit state reads

|χ〉 = a0 |00〉 + a1e
iθ1 |01〉 + a2e

iθ2 |10〉 + a3e
iθ3 |11〉 , (2)

where the real coefficients θ j ∈ [0, 2π ] ( j = 1, 2, 3) and ai ≥ 0 (i = 0, 1, 2, 3)

satisfying the normalization condition
3∑

i=0
(ai )2 = 1. The sender Alice has the

complete knowledge about the target state, including the amplitude information
ai (i = 0, 1, 2, 3) and the phase information θ j ( j = 1, 2, 3). The controller Char-
lie and the receiver Bob know nothing about |χ〉.

To accomplish the task of CRSP, Alice, Bob and Charlie previously share the
quantum channel consisting of two four-particle partially entangled states given by

|QC〉A1A3C1B1 ⊗ |QC〉A2A4C2B2

= 1√
2
(|0000〉 + l1 |1111〉 + k1 |1101〉)A1A3C1B1

⊗ 1√
2
(|0000〉 + l2 |1111〉 + k2 |1101〉)A2A4C2B2 . (3)

Among these eight particles, A1, A2, A3, A4 belong to Alice, Charlie controls particles
C1, C2, Bob is in possession of particles B1, B2.

The necessary projectivemeasurements and unitary operations should be carried out
in sequence, as shown in Fig. 1. Concretely, our protocol begins with Alice performing
a joint projective measurement on her particles A1 and A2 (denoted as PM1

A). Based
on her knowledge about the amplitude information {a0, a1, a2, a3}, Alice chooses a
set of complete orthonormal basis {|ψ1〉 , |ψ2〉 , |ψ3〉 , |ψ4〉}, reads

|ψ1〉 = a0 |00〉 + a1 |01〉 + a2 |10〉 + a3 |11〉 ,

|ψ2〉 = a0 |01〉 − a1 |00〉 + a2 |11〉 − a3 |10〉 ,

|ψ3〉 = a0 |10〉 − a1 |11〉 − a2 |00〉 + a3 |01〉 ,

|ψ4〉 = a0 |11〉 + a1 |10〉 − a2 |01〉 − a3 |00〉 . (4)
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Fig. 1 Schematic quantum circuit for deterministic CRSP of an arbitrary two-qubit state via
|QC〉A1A3C1B1 ⊗ |QC〉A2A4C2B2

According to the measurement postulate of quantum mechanics, the whole quantum
system consisting of eight particles can be expressed as

|QC〉A1A3C1B1 ⊗ |QC〉A2A4C2B2

= 1

2

(|ψ1〉A1A2
⊗ |�1〉A3A4C1C2B1B2 + |ψ2〉A1A2

⊗ |�2〉A3A4C1C2B1B2

+ |ψ3〉A1A2
⊗ |�3〉A3A4C1C2B1B2 + |ψ4〉A1A2

⊗ |�4〉A3A4C1C2B1B2

)
, (5)

where

|�1〉A3A4C1C2B1B2

= a0|00〉A3A4
|00〉C1C2

|00〉B1B2 + a1l2|01〉A3A4
|01〉C1C2

|01〉B1B2
+ a1k2|01〉A3A4

|00〉C1C2
|01〉B1B2 + a2l1|10〉A3A4

|10〉C1C2
|10〉B1B2

+ a3l1l2|11〉A3A4
|11〉C1C2

|11〉B1B2 + a3l1k2|11〉A3A4
|10〉C1C2

|11〉B1B2
+ a2k1|10〉A3A4

|00〉C1C2
|10〉B1B2 + a3l2k1|11〉A3A4

|01〉C1C2
|11〉B1B2

+ a3k1k2|11〉A3A4
|00〉C1C2

|11〉B1B2 , (6)

|�2〉A3A4C1C2B1B2

= −a1|00〉A3A4
|00〉C1C2

|00〉B1B2 + a0l2|01〉A3A4
|01〉C1C2

|01〉B1B2
+ a0k2|01〉A3A4

|00〉C1C2
|01〉B1B2 − a3l1|10〉A3A4

|10〉C1C2
|10〉B1B2

+ a2l1l2|11〉A3A4
|11〉C1C2

|11〉B1B2 + a2l1k2|11〉A3A4
|10〉C1C2

|11〉B1B2
− a3k1|10〉A3A4

|00〉C1C2
|10〉B1B2 + a2l2k1|11〉A3A4

|01〉C1C2
|11〉B1B2

+ a2k1k2|11〉A3A4
|00〉C1C2

|11〉B1B2 , (7)

|�3〉A3A4C1C2B1B2

= −a2|00〉A3A4
|00〉C1C2

|00〉B1B2 + a3l2|01〉A3A4
|01〉C1C2

|01〉B1B2
+ a3k2|01〉A3A4

|00〉C1C2
|01〉B1B2 + a0l1|10〉A3A4

|10〉C1C2
|10〉B1B2

− a1l1l2|11〉A3A4
|11〉C1C2

|11〉B1B2 − a1l1k2|11〉A3A4
|10〉C1C2

|11〉B1B2
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Table 1 Relations between
Alice’s PM1

A results and her
unitary operations

Alice’s PM1
A result (R1

A) unitary operation (UA)

|ψ1〉A1A2 I ⊗ I

|ψ2〉A1A2 I ⊗ σx

|ψ3〉A1A2 σx ⊗ I

|ψ4〉A1A2 σx ⊗ σx

+ a0k1|10〉A3A4
|00〉C1C2

|10〉B1B2 − a1l2k1|11〉A3A4
|01〉C1C2

|11〉B1B2
− a1k1k2|11〉A3A4

|00〉C1C2
|11〉B1B2 , (8)

|�4〉A3A4C1C2B1B2

= −a3|00〉A3A4
|00〉C1C2

|00〉B1B2 − a2l2|01〉A3A4
|01〉C1C2

|01〉B1B2
− a2k2|01〉A3A4

|00〉C1C2
|01〉B1B2 + a1l1|10〉A3A4

|10〉C1C2
|10〉B1B2

+ a0l1l2|11〉A3A4
|11〉C1C2

|11〉B1B2 + a0l1k2|11〉A3A4
|10〉C1C2

|11〉B1B2
+ a1k1|10〉A3A4

|00〉C1C2
|10〉B1B2 + a0l2k1|11〉A3A4

|01〉C1C2
|11〉B1B2

+ a0k1k2|11〉A3A4
|00〉C1C2

|11〉B1B2 . (9)

Alice’s projective measurement PM1
A will project the joint state of particles A3,

A4, C1, C2, B1, B2 onto one of the four possible states {|�1〉 , |�2〉 , |�3〉 , |�4〉} with
equal probability of PR1

A
= 1/4, as shown inEq. (5).After her projectivemeasurement,

Alice informs Bob of her measurement result R1
A via a classical channel, meanwhile,

according to the result R1
A, she selects suitable unitary operations (denoted as UA) to

perform on her particles A3 and A4. Various situations involving Alice’s PM1
A results

and her unitary operations are listed out in Table 1.
Without loss of generality, here we consider the case that Alice’s PM1

A result is
|ψ2〉A1A2

. Correspondingly, she performs the unitary operation UA = I ⊗ σx on her
particles A3 and A4. Afterward, she will perform a projective measurement on A3 and
A4 (denoted as PM2

A) with the following complete orthonormal basis,

|φ1〉 = 1

2

(
|00〉 + e−iθ1 |01〉 + e−iθ2 |10〉 + e−iθ3 |11〉

)
,

|φ2〉 = 1

2

(
|00〉 − e−iθ1 |01〉 + e−iθ2 |10〉 − e−iθ3 |11〉

)
,

|φ3〉 = 1

2

(
|00〉 + e−iθ1 |01〉 − e−iθ2 |10〉 − e−iθ3 |11〉

)
,

|φ4〉 = 1

2

(
|00〉 − e−iθ1 |01〉 − e−iθ2 |10〉 + e−iθ3 |11〉

)
.

(10)

Above operations can be expressed analytically as follows,

|�2〉A3A4C1C2B1B2
UA=I⊗σx−−−−−−−−−−−−−−→

on particles A3 and A4

− a1|01〉A3A4
|00〉C1C2

|00〉B1B2 + a0l2|00〉A3A4
|01〉C1C2

|01〉B1B2
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+ a0k2|00〉A3A4
|00〉C1C2

|01〉B1B2 − a3l1|11〉A3A4
|10〉C1C2

|10〉B1B2
+ a2l1l2|10〉A3A4

|11〉C1C2
|11〉B1B2 + a2l1k2|10〉A3A4

|10〉C1C2
|11〉B1B2

− a3k1|11〉A3A4
|00〉C1C2

|10〉B1B2 + a2l2k1|10〉A3A4
|01〉C1C2

|11〉B1B2
+ a2k1k2|10〉A3A4

|00〉C1C2
|11〉B1B2

= 1

2

(|φ1〉A3A4
⊗ |	1〉C1C2B1B2 + |φ2〉A3A4

⊗ |	2〉C1C2B1B2

+ |φ3〉A3A4
⊗ |	3〉C1C2B1B2 + |φ4〉A3A4

⊗ |	4〉C1C2B1B2

)
, (11)

where

|	1〉C1C2B1B2

= −a1e
iθ1 |00〉C1C2

|00〉B1B2 + l2a0|01〉C1C2
|01〉B1B2

+ k2a0|00〉C1C2
|01〉B1B2 − l1a3e

iθ3 |10〉C1C2
|10〉B1B2

+ l1l2a2e
iθ2 |11〉C1C2

|11〉B1B2 + l1k2a2e
iθ2 |10〉C1C2

|11〉B1B2
− k1a3e

iθ3 |00〉C1C2
|10〉B1B2 + l2k1a2e

iθ2 |01〉C1C2
|11〉B1B2

+ k1k2a2e
iθ2 |00〉C1C2

|11〉B1B2 , (12)

|	2〉C1C2B1B2

= a1e
iθ1 |00〉C1C2

|00〉B1B2 + l2a0|01〉C1C2
|01〉B1B2

+ k2a0|00〉C1C2
|01〉B1B2 + l1a3e

iθ3 |10〉C1C2
|10〉B1B2

+ l1l2a2e
iθ2 |11〉C1C2

|11〉B1B2 + l1k2a2e
iθ2 |10〉C1C2

|11〉B1B2
+ k1a3e

iθ3 |00〉C1C2
|10〉B1B2 + l2k1a2e

iθ2 |01〉C1C2
|11〉B1B2

+ k1k2a2e
iθ2 |00〉C1C2

|11〉B1B2 , (13)

|	3〉C1C2B1B2

= −a1e
iθ1 |00〉C1C2

|00〉B1B2 + l2a0|01〉C1C2
|01〉B1B2

+ k2a0|00〉C1C2
|01〉B1B2 + l1a3e

iθ3 |10〉C1C2
|10〉B1B2

− l1l2a2e
iθ2 |11〉C1C2

|11〉B1B2 − l1k2a2e
iθ2 |10〉C1C2

|11〉B1B2
+ k1a3e

iθ3 |00〉C1C2
|10〉B1B2 − l2k1a2e

iθ2 |01〉C1C2
|11〉B1B2

− k1k2a2e
iθ2 |00〉C1C2

|11〉B1B2 , (14)

|	4〉C1C2B1B2

= a1e
iθ1 |00〉C1C2

|00〉B1B2 + l2a0|01〉C1C2
|01〉B1B2

+ k2a0|00〉C1C2
|01〉B1B2 − l1a3e

iθ3 |10〉C1C2
|10〉B1B2

− l1l2a2e
iθ2 |11〉C1C2

|11〉B1B2 − l1k2a2e
iθ2 |10〉C1C2

|11〉B1B2
− k1a3e

iθ3 |00〉C1C2
|10〉B1B2 − l2k1a2e

iθ2 |01〉C1C2
|11〉B1B2

− k1k2a2e
iθ2 |00〉C1C2

|11〉B1B2 . (15)
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From Eq. (11) it is obvious that after the projective measurement PM2
A, with an equal

conditional probability PR2
A|R1

A
= 1/4, Alice will obtain one of the four possible states

{|φ1〉 , |φ2〉 , |φ3〉 , |φ4〉}A3A4
which she needs to inform Bob via a classical channel.

The deciding role is now played by the controller Charlie, who should carefully
review the felicity condition for the CRSP task. If there are any unfavorable problems,
he decides to stop or postpone the task by doing nothing. Otherwise, if everything is
favorable, he decides to proceed by performing two single-qubit projective measure-
ments on C1 and C2 simultaneously (denoted as PM1

C and PM2
C respectively) under

the following basis,

|ϕ1〉C1
= 1

√
l21 + (1 + k1)2

[
(1 + k1) |0〉C1 + l1|1〉C1

]
,

|ϕ2〉C1
= 1

√
l21 + (1 − k1)2

[
(1 − k1) |0〉C1 − l1|1〉C1

]
, (16)

|ϕ1〉C2
= 1

√
l22 + (1 + k2)2

[
(1 + k2) |0〉C2 + l2|1〉C2

]
,

|ϕ2〉C2
= 1

√
l22 + (1 − k2)2

[
(1 − k2) |0〉C2 − l2|1〉C2

]
. (17)

After finishing the measurement, Charlie informs Bob of his measurement result by
virtue of classical media. Finally, in the light of Alice and Charlie’s measurement
results, Bob’s job is simply to perform an appropriate unitary operation (denoted as
UB) on particles B1 and B2 to reconstruct the target state |χ〉. Various situations are
listed out in Table 2.

As an example, we might as well consider the situation that Alice’s PM2
A result is

|φ2〉A3A4
, based on Eq. (11), the state of particles C1, C2, B1 and B2 evolves as

|	2〉C1C2B1B2

= a1e
iθ1 |00〉C1C2

|00〉B1B2 + l2a0|01〉C1C2
|01〉B1B2

+ k2a0|00〉C1C2
|01〉B1B2 + l1a3e

iθ3 |10〉C1C2
|10〉B1B2

+ l1l2a2e
iθ2 |11〉C1C2

|11〉B1B2 + l1k2a2e
iθ2 |10〉C1C2

|11〉B1B2
+ k1a3e

iθ3 |00〉C1C2
|10〉B1B2 + l2k1a2e

iθ2 |01〉C1C2
|11〉B1B2

+ k1k2a2e
iθ2 |00〉C1C2

|11〉B1B2
PM1

CandPM2
C−−−−−−−−−−−−−−→

on particles C1 and C2

√
p1|ϕ1〉C1

|ϕ1〉C2
⊗

[
a0 |01〉 + a1e

iθ1 |00〉 + a2e
iθ2 |11〉 + a3e

iθ3 |10〉
]

B1B2

−√
p2|ϕ1〉C1

|ϕ2〉C2
⊗

[
a0 |01〉 − a1e

iθ1 |00〉 + a2e
iθ2 |11〉 − a3e

iθ3 |10〉
]

B1B2
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+√
p3|ϕ2〉C1

|ϕ1〉C2
⊗

[
a0 |01〉 + a1e

iθ1 |00〉 − a2e
iθ2 |11〉 − a3e

iθ3 |10〉
]

B1B2

−√
p4|ϕ2〉C1

|ϕ2〉C2
⊗

[
a0 |01〉 − a1e

iθ1 |00〉 − a2e
iθ2 |11〉 + a3e

iθ3 |10〉
]

B1B2
.(18)

where

√
p1 = 1

4

√
l21 + (1 + k1)2

√
l22 + (1 + k2)2,

√
p2 = 1

4

√
l21 + (1 + k1)2

√
l22 + (1 − k2)2,

√
p3 = 1

4

√
l21 + (1 − k1)2

√
l22 + (1 + k2)2,

√
p4 = 1

4

√
l21 + (1 − k1)2

√
l22 + (1 − k2)2. (19)

Note that after Charlie’s PM1
C and PM2

C , the state of particles B1 and B2 is per-
fectly correlated to the target state |χ〉, as expressed in Eq. (18). According to Alice
and Charlie’s measurement results, Bob can easily recover the target state |χ〉 by
appropriate local unitary operations. In our discussion here, Alice’s measurement
results are |ψ2〉A1A2

|φ2〉A3A4
, if Charlie’s measurement results are |ϕ1〉C1

|ϕ1〉C2
with

the conditional probability PR1
C R2

C |R2
AR

1
A

= 1
16

[
l21 + (1 + k1)2

] [
l22 + (1 + k2)2

]
, then

UB = I ⊗ σx is required to perform on particles B1 and B2, the target state |χ〉 can
be readily reestablished, as shown in Table 2.

As a supplement, when it comes to the other three cases corresponding to Alice’s
PM1

A results |ψ1〉A1A2
, |ψ3〉A1A2

and |ψ4〉A1A2
, therewill be a similar analysis process.

For simplicity, we no longer depict them one by one here. According to Table 2, it is
easily found that, for all the possible measurement results of Alice and Charlie, the
receiverBob is always able to reconstruct the target state |χ〉 by performing appropriate
unitary operationUB on particles B1 and B2. Thus, our CRSP scheme is deterministic.
Mathematically, the total success probability reads

Psuc =
∑

R1
A

∑

R2
A

∑

R1
C R2

C

PR1
A
PR2

A|R1
A
PR1

C R2
C |R2

AR
1
A

= 16 × 1

4
× 1

4
× (p1 + p2 + p3 + p4)

= 1. (20)

3 Discussions and conclusions

In summary, we have proposed a deterministic CRSP scheme for arbitrary two-qubit
state via suitably chosen partially entangled state |QC〉, expressed as Eq. (1). Without
introducing auxiliary qubits, the success probability of our scheme is always 100%,
independent of parameters of the quantum channel.

It deserves emphasizing that, although partially entangled quantum channel is uti-
lized, the unit success probability of our scheme is the same as that of some CRSP
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Table 2 Bob’s recovery unitary operatorUB conditioned on Alice’s R1
A , R

2
A and Charlie’s R1

C , R
2
C , where

I is the identity operator and σx , iσy and σz are Pauli matrices

R1
A, R2

A, R1
C , R2

C UB R1
A, R2

A, R1
C , R2

C UB

|ψ1〉 , |φ1〉 , |ϕ1〉 , |ϕ1〉 I ⊗ I |ψ2〉 , |φ1〉 , |ϕ1〉 , |ϕ1〉 I ⊗ iσy

|ψ1〉 , |φ1〉 , |ϕ1〉 , |ϕ2〉 I ⊗ σz |ψ2〉 , |φ1〉 , |ϕ1〉 , |ϕ2〉 I ⊗ σx

|ψ1〉 , |φ1〉 , |ϕ2〉 , |ϕ1〉 σz ⊗ I |ψ2〉 , |φ1〉 , |ϕ2〉 , |ϕ1〉 σz ⊗ iσy

|ψ1〉 , |φ1〉 , |ϕ2〉 , |ϕ2〉 σz ⊗ σz |ψ2〉 , |φ1〉 , |ϕ2〉 , |ϕ2〉 σz ⊗ σx

|ψ1〉 , |φ2〉 , |ϕ1〉 , |ϕ1〉 I ⊗ σz |ψ2〉 , |φ2〉 , |ϕ1〉 , |ϕ1〉 I ⊗ σx

|ψ1〉 , |φ2〉 , |ϕ1〉 , |ϕ2〉 I ⊗ I |ψ2〉 , |φ2〉 , |ϕ1〉 , |ϕ2〉 I ⊗ iσy

|ψ1〉 , |φ2〉 , |ϕ2〉 , |ϕ1〉 σz ⊗ σz |ψ2〉 , |φ2〉 , |ϕ2〉 , |ϕ1〉 σz ⊗ σx

|ψ1〉 , |φ2〉 , |ϕ2〉 , |ϕ2〉 σz ⊗ I |ψ2〉 , |φ2〉 , |ϕ2〉 , |ϕ2〉 σz ⊗ iσy

|ψ1〉 , |φ3〉 , |ϕ1〉 , |ϕ1〉 σz ⊗ I |ψ2〉 , |φ3〉 , |ϕ1〉 , |ϕ1〉 σz ⊗ iσy

|ψ1〉 , |φ3〉 , |ϕ1〉 , |ϕ2〉 σz ⊗ σz |ψ2〉 , |φ3〉 , |ϕ1〉 , |ϕ2〉 σz ⊗ σx

|ψ1〉 , |φ3〉 , |ϕ2〉 , |ϕ1〉 I ⊗ I |ψ2〉 , |φ3〉 , |ϕ2〉 , |ϕ1〉 I ⊗ iσy

|ψ1〉 , |φ3〉 , |ϕ2〉 , |ϕ2〉 I ⊗ σz |ψ2〉 , |φ3〉 , |ϕ2〉 , |ϕ2〉 I ⊗ σx

|ψ1〉 , |φ4〉 , |ϕ1〉 , |ϕ1〉 σz ⊗ σz |ψ2〉 , |φ4〉 , |ϕ1〉 , |ϕ1〉 σz ⊗ σx

|ψ1〉 , |φ4〉 , |ϕ1〉 , |ϕ2〉 σz ⊗ I |ψ2〉 , |φ4〉 , |ϕ1〉 , |ϕ2〉 σz ⊗ iσy

|ψ1〉 , |φ4〉 , |ϕ2〉 , |ϕ1〉 I ⊗ σz |ψ2〉 , |φ4〉 , |ϕ2〉 , |ϕ1〉 I ⊗ σx

|ψ1〉 , |φ4〉 , |ϕ2〉 , |ϕ2〉 I ⊗ I |ψ2〉 , |φ4〉 , |ϕ2〉 , |ϕ2〉 I ⊗ iσy

|ψ3〉 , |φ1〉 , |ϕ1〉 , |ϕ1〉 iσy ⊗ σz |ψ4〉 , |φ1〉 , |ϕ1〉 , |ϕ1〉 iσy ⊗ σx

|ψ3〉 , |φ1〉 , |ϕ1〉 , |ϕ2〉 iσy ⊗ I |ψ4〉 , |φ1〉 , |ϕ1〉 , |ϕ2〉 iσy ⊗ iσy

|ψ3〉 , |φ1〉 , |ϕ2〉 , |ϕ1〉 σx ⊗ σz |ψ4〉 , |φ1〉 , |ϕ2〉 , |ϕ1〉 σx ⊗ σx

|ψ3〉 , |φ1〉 , |ϕ2〉 , |ϕ2〉 σx ⊗ I |ψ4〉 , |φ1〉 , |ϕ2〉 , |ϕ2〉 σx ⊗ iσy

|ψ3〉 , |φ2〉 , |ϕ1〉 , |ϕ1〉 iσy ⊗ I |ψ4〉 , |φ2〉 , |ϕ1〉 , |ϕ1〉 iσy ⊗ iσy

|ψ3〉 , |φ2〉 , |ϕ1〉 , |ϕ2〉 iσy ⊗ σz |ψ4〉 , |φ2〉 , |ϕ1〉 , |ϕ2〉 iσy ⊗ σx

|ψ3〉 , |φ2〉 , |ϕ2〉 , |ϕ1〉 σx ⊗ I |ψ4〉 , |φ2〉 , |ϕ2〉 , |ϕ1〉 σx ⊗ iσy

|ψ3〉 , |φ2〉 , |ϕ2〉 , |ϕ2〉 σx ⊗ σz |ψ4〉 , |φ2〉 , |ϕ2〉 , |ϕ2〉 σx ⊗ σx

|ψ3〉 , |φ3〉 , |ϕ1〉 , |ϕ1〉 σx ⊗ σz |ψ4〉 , |φ3〉 , |ϕ1〉 , |ϕ1〉 σx ⊗ σx

|ψ3〉 , |φ3〉 , |ϕ1〉 , |ϕ2〉 σx ⊗ I |ψ4〉 , |φ3〉 , |ϕ1〉 , |ϕ2〉 σx ⊗ iσy

|ψ3〉 , |φ3〉 , |ϕ2〉 , |ϕ1〉 iσy ⊗ σz |ψ4〉 , |φ3〉 , |ϕ2〉 , |ϕ1〉 iσy ⊗ σx

|ψ3〉 , |φ3〉 , |ϕ2〉 , |ϕ2〉 iσy ⊗ I |ψ4〉 , |φ3〉 , |ϕ2〉 , |ϕ2〉 iσy ⊗ iσy

|ψ3〉 , |φ4〉 , |ϕ1〉 , |ϕ1〉 σx ⊗ I |ψ4〉 , |φ4〉 , |ϕ1〉 , |ϕ1〉 σx ⊗ iσy

|ψ3〉 , |φ4〉 , |ϕ1〉 , |ϕ2〉 σx ⊗ σz |ψ4〉 , |φ4〉 , |ϕ1〉 , |ϕ2〉 σx ⊗ σx

|ψ3〉 , |φ4〉 , |ϕ2〉 , |ϕ1〉 iσy ⊗ I |ψ4〉 , |φ4〉 , |ϕ2〉 , |ϕ1〉 iσy ⊗ iσy

|ψ3〉 , |φ4〉 , |ϕ2〉 , |ϕ2〉 iσy ⊗ σz |ψ4〉 , |φ4〉 , |ϕ2〉 , |ϕ2〉 iσy ⊗ σx

schemes utilizingmaximally entangled channels. In this paper, unit success probability
can always be achieved, independent of the entanglement degree of the quantum chan-
nel. This is due to the fact that partially entangled state |QC〉 is utilized as the quantum
channel. |QC〉 has an interesting character that if the controller performed a projective
measurement under the basis like Eq. (16), no matter what results he obtains, the state
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shared between the sender and the receiver collapsed into a maximally entangled GHZ
state.

Compared with some previous CRSP protocols using partially entangled chan-
nels, our scheme has several notable advantages as follows. (i) The assistance of
auxiliary qubit is not required, whereas in some earlier schemes [18–21], the con-
trollers generally introduce auxiliary qubits to remove the channel’s parameters. (ii)
Our CRSP scheme succeeds with unit probability, irrespective of parameters of the
quantumchannel. This is a higher success probability than that of someCRSPprotocols
[18,20,21,26]. (iii) The proposed scheme can be easily extended to the deterministic
CRSP of arbitrary N-qubit states, N four-particle partially entangled quantum chan-
nels are needed, incidentally the success probability is still 100% by means of the
projective measurements PM1

A, PM2
A, PMC and the unitary operationsUA,UB . This

is superior to the scheme in Ref. [26], where the success probability is merely 1/2N

when it is generalized to prepare arbitrary N-qubit states.
Here, we have to point out that the implementation of our scheme was conditioned

on the cooperation of all participants. The receiver selects his recovery unitary oper-
ation UB according to the sender and the controller’s measurement results. In the
CRSP scheme involving one sender and one receiver, maybe it is considered that the
receiver can take on the controller’s job concurrently. However, when we generalized
our scheme to a CRSP network involving multiple sender-receivers, the controller’s
role is highlighted. The controller equipped with projective measurement units can
function as a central node serving multiple sender-receivers, he sends measurement
results to corresponding receivers, who need only to carry out appropriate local unitary
operations to reconstruct the target stateswithout performingprojectivemeasurements.
Hence, it is not necessary to equip every receiver with projective measurement units,
thereby economizing the overall expenses dramatically. This point might be of impor-
tance to prospective CRSP networks.
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