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Abstract A quantum secret sharing scheme with adversary structure is proposed.
In the proposed scheme, the secret is a d-dimensional quantum state. The dealer can
distribute the private keys according to the adversary structure and encode the quantum
state through the d-dimensional Pauli unitary operation. The legitimate participants
perform the unitary operations on the encrypted quantum state according to their
private keys and recover the original quantum state. Compared to the existing QSS
schemes, our scheme can be more efficient when only the adversary structure is given.

Keywords Quantum secret sharing · Adversary structure · d-Dimensional ·
Quantum cryptography

1 Introduction

Since Shamir [1] proposed the first scheme of secret sharing (SS), SS has become a
very important topic of cryptography. SS can split the secret information into several
parts and distribute them to different participants. Then only the legitimate partici-
pants can recover the secret. Quantum secret sharing (QSS) is the combination of SS
and quantum scenario. In QSS, the secret (classical information or quantum state) is
distributed, transmitted, and recovered through quantum operation, so its security is
based on the fundamental principle of quantum physics. Because of the fascinating
features different from the classical secret sharing, QSS is attracting more and more
interest.
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The first QSS scheme was proposed by Hillery et al. [2] in 1999. After that, many
kinds of QSS schemes have been proposed [2–29]. The threshold structure is a very
important property of QSS. In the existing schemes, most of them are (n, n) structure,
that is, the secret can be recovered when all the participants cooperate together, but
any part of the participants cannot recover the secret. Some QSS schemes [26,27] are
(t, n) structure, that is, any t out of n participants can recover the secret. Compared to
the (n, n) structure, the (t, n) structure is more flexible in practice, because that even
if some participants are absent the secret can still be recovered. The (n, n) structure
can be seen as the special case of the (t, n) structure when t = n. Besides the (n, n)
and the (t, n) structures, some other QSS schemes are based on the access structure
[10,28,29]. In the scheme with access structure, there are some qualified subsets in
the participants, and only the qualified subsets can recover the secret. Each qualified
subset may have different number of participants, and a participant can belong to
several qualified subsets. In practice, the participants may have different rights. For
example, the key of a bank safe is shared by some tellers and some managers. The
rights of the teller and the manager are different. For this scenario, we cannot design
the secret sharing scheme inwhich any t out of n participants can recover the secret. So
the (t, n) structure is not suitable here. However, we can get all the qualified subsets of
the participants according to the application requirement, and use the access structure
to design this scheme. Therefore, the access structure is more practical than the (t, n)
structure, and the (t, n) structure is the special case of the access structure when every
qualified subset has t participants.

Sometimes what we can obtain easily is not the access structure, but the adversary
structure [30]. The adversary structure is the family of subsets that each cannot recover
the secret. The reason of being called adversary structure is that, the secret is safe even
if the participants in such subset are all broken by the adversary. For example, a
network of secret sharing is composed of many computers, in which some computers
have the similar hardware, some computers have the similar operating systems, and
some computers have the similar firewalls. The similar properties may lead these
computers to be attacked at the same time. So we should try to separate the similar
computers into different qualified subsets, that is, put the similar computers into an
unqualified subset. In this scenario, we can see that the adversary structure can be
obtained directly according to the similarities of computers, but the access structure
cannot be obtained easily. We may first convert the adversary structure to the access
structure and then adopt themethod of access structure to design this scheme.Butwhen
the number of the participants is big, the conversion will be complicated. Moreover,
an easy adversary structure may generate a complex access structure, and lead the
scheme to be inapplicable.

For the above problem, we will propose a QSS scheme with adversary structure
in this paper. Our idea is inspired by Zhou’s [31] classical secret sharing scheme.
Zhou’s scheme can only realize the (t, n) structure, but our scheme can realize the
adversary structure. The secret of our scheme is a d-dimensional quantum state. By
using a novel algorithm, the dealer can distribute the private keys according to the
adversary structure. The dealer encodes the quantum state through the d-dimensional
Pauli unitary operation. The legitimate participants perform the unitary operations on
the encrypted quantum state according to their private keys, and recover the original
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quantum state. Compared to the existing QSS schemes, the main contribution of our
scheme is that the quantum state can be shared according to the adversary structure
directly.

The rest of this paper is organized as follows. In Sect. 2, the correlative preliminar-
ies are introduced. Section 3 explicates the design method of the proposed scheme.
Section 4 gives a simple example. Section 5 compares our scheme to some of the
existing schemes. Section 6 analyzes the security. Finally, in Sect. 7, the conclusion
of this paper is given.

2 Preliminaries

2.1 d-Dimensional quantum state and Pauli operation

In d-dimensional Hilbert space, an unknown quantum state can be described as fol-
lows.

|Ψ 〉 =
d−1∑

j=0

c j | j〉

where c j ( j = 0, 1, . . . , d−1) are the complex amplitudes, and satisfy
∑d−1

j=0 |c j |2=1.
In d-dimensional Hilbert space, the generalized Pauli operation is described as

follows.

Uα,β =
d−1∑

j=0

ω jα| j〉〈 j + β|

where ω = e
2π i
d , α, β ∈ {0, 1, . . . , d − 1}, and the symbol “+” means the adder

modulo d.

2.2 Access structure and adversary structure

We assume that Q is a set including n participants. A qualified subset of Q is that
whose participants can recover the original secret. The family of all the qualified
subsets is denoted as Γ , which is called the access structure. If P ∈ Γ and for all
P ′ ⊂ P, P ′ /∈ Γ , then P is termed a minimal qualified subset. The family of all the
minimal qualified subsets forms the minimal access structure and is denoted by Γ0.

An unqualified subset of Q is that whose participants cannot recover the original
secret. The family of all the unqualified subsets is denoted as Ω , which is called the
adversary structure. If P ∈ Ω and for all P ⊂ P ′, P ′ /∈ Ω , then P is termed a
maximal unqualified subset. The family of all the maximal unqualified subsets forms
the maximal adversary structure and is denoted by Ω0.
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3 The proposed scheme

In our scheme, the secret is an unknown d-dimensional quantum state |Ψ 〉 =∑d−1
j=0 c j | j〉. The dealer Alice wants to share |Ψ 〉 among n participants Q =

{Bob1,Bob2, . . . ,Bobn}. Ω0 = {F1, F2, . . . , Fm} is the maximal adversary structure
of Q, and Fi (i = 1, 2, . . .,m) is the maximal unqualified subset. The requirement is
that the participants in each Fi cannot recover the quantum state |Ψ 〉, but any qualified
subset (Fi plus another participant) can recover the quantum state |Ψ 〉.

3.1 Distribution of private keys

(1) Alice randomly generates m different pairs (αi , βi ), i = 1, 2, . . . ,m, where
αi , βi ∈ {0, 1, . . . , d − 1}. Then she generates n same sets Hi = {(α1, β1, 1),
(α2, β2, 2), . . . , (αm, βm,m)}, i = 1, 2, . . . n.

(2) Alice do the following operations:
for (i = 1; i ≤ m; i + +)
{
L = the number of the participants in Fi .
for ( j = 1; j ≤ L; j + +)
{

r = the subscript label of NO. j participant in Fi . (NO. j participant in Fi
is Bobr .)

Delete the array (αi , βi , i) in the set Hr .
}

}
(3) Sends Hi (i = 1, 2, . . . , n) to the participant Bobi through quantum secure direct

communication such as the methods in Refs. [32,33]. Hi is the private key of
Bobi .

The above step (2) is used to delete the array (αi , βi , i) of every participant in subset
Fi . For example, if F2 = {Bob1,Bob3,Bob4}, then the participants Bob1,Bob3 and
Bob4 will not have the array (α2, β2, 2).

3.2 Sharing of d-dimensional quantum state

After the distribution of private keys, Alice can share a d-dimensional quantum state
among any qualified subset. We assume the qualified subset is R. Alice does the
following steps.

(1) Alice randomly generates a d-dimensional quantum state |Ψ 〉 = ∑d−1
j=0 c j | j〉,

where
∑d−1

j=0 |c j |2 = 1.

(2) Alice performs the unitary operation UA,B = ∑d−1
j=0 ω j A| j〉〈 j + B| on |Ψ 〉,

where A = d − (α1 + α2 + · · · + αm), B = d − (β1 + β2 + · · · + βm), and the
symbol “+” means the adder modulo d. Then the state |Ψ 〉 becomes |Ψ ′〉.
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(3) Alice prepares some decoy particles which are random in the computational
Z -basis and X -basis. The Z -basis and X -basis have the following forms:

Z = {| j〉, j = 0, 1, . . . , d − 1}, X = {|J j 〉, j = 0, 1, . . . , d − 1}, where |J j 〉

= 1√
d

d−1∑

k=0

ωk j |k〉.

(4) Alice inserts |Ψ ′〉 into the decoy particles. She keeps a record of the insertion
position and the initial states of the decoy particles and then sends these particles
to the first participant of the qualified subset R.

(5) After confirming that the first participant of R has received the particles, Alice
publicly announces the positions and basis of the decoy particles and asks this
participant to measure these particles in the Z -basis or X -basis according to their
basis. The participant publishes his measurement results. Alice can compute the
error rate through comparing the measurement results and the initial states. If
the error rate exceeds the threshold value, Alice asks the participant to abort the
process and starts a new one. Otherwise, they continue the protocol.

(6) For every array (αi , βi , i) in his private key, the first participant of R performs the
unitary operation Uαi ,βi = ∑d−1

j=0 ω jαi | j〉〈 j + βi | on |Ψ ′〉. Then the state |Ψ ′〉
becomes |Ψ ′

1〉. The first participant publishes the “i” of every array (αi , βi , i) he
used, to show the other participants what array has been used by him.

(7) The first participant of R prepares some decoy particles in the computational
Z -basis and X -basis, and inserts |Ψ ′

1〉 into the decoy particles. He sends these
particles to the second participant of R. Similarly, the security of their channel
is checked through the decoy particles. For every array (αi , βi , i) in the pri-
vate key of the second participant, if (αi , βi ) has not been used by the first
participant, the second participant performs the unitary operation Uαi ,βi =∑d−1

j=0 ω jαi | j〉〈 j + βi | on |Ψ ′
1〉. Then the state |Ψ ′

1〉 becomes |Ψ ′
2〉.This process

is continued until the last participant of the qualified subset R.
(8) After the last participant of R performed the unitary operations on the quantum

state, the quantum state will become the original state |Ψ 〉.

4 Example

In order to explain our scheme more clearly, we will give an example in the following.
We assume the dealer Alice wants to share her quantum state |Ψ 〉 = ∑d−1

j=0 c j | j〉
among five participants {Bob1,Bob2,Bob3,Bob4,Bob5}. There are three maximal
unqualified subset F1 = {Bob1,Bob2}, F2 = {Bob2,Bob5}, F3 = {Bob3,Bob4} in
the participants.

First, Alice randomly generates three different pairs (α1, β1), (α2, β2), (α3, β3),
where αi , βi ∈ {0, 1, . . . , d − 1}, i ∈ {1, 2, 3}. Then she generates five same sets
Hi = {(α1, β1, 1), (α2, β2, 2), (α3, β3, 3)}, i = 1, 2, . . . , 5. Alice performs the oper-
ation of step (2) in Sect. 3.1, the five sets become H1 = {(α2, β2, 2), (α3, β3, 3)},
H2 = {(α3, β3, 3)}, H3 = {(α1, β1, 1), (α2, β2, 2)}, H4 = {(α1, β1, 1), (α2, β2, 2)},
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H5 = {(α1, β1, 1), (α3, β3, 3)}. Hi (i = 1, 2, . . . , n) is sent to the participant Bobi as
his private key.

Alice performs the unitary operationUA,B = ∑d−1
j=0 ω j A| j〉〈 j + B| on |Ψ 〉, where

A = d − (α1 + α2 + α3), B = d − (β1 + β2 + β3). Alice sends the quantum
state to a qualified subset, and we assume this qualified subset is {Bob4,Bob5}. The
private key of Bob4 is H4 = {(α1, β1, 1), (α2, β2, 2)}, and the private key of Bob5 is
H5 = {(α1, β1, 1), (α3, β3, 3)}.We can see that this qualified subset have all the three
pairs (α1, β1), (α2, β2), (α3, β3). {Bob4,Bob5} use the pairs in their private keys to
perform the unitary operations [step (6–8) in Sect. 3.2], and each different pair is only
be used one time. Then the unitary operations of {Bob4,Bob5}will make the quantum
state become the original state |Ψ 〉.

5 Comparisons

As described in Sect. 1, the (n, n) structure cannot be used in the threshold scenario,
and the (t, n) structure cannot be used when the participants are not equal. So the
access structure and the adversary structure are more practical.

In a scenario that the adversary structure is easy to be obtained, we can
adopt our scheme directly or convert the adversary structure to the access struc-
ture, and then adopt the scheme of access structure. But when the number of
the participants is big, the conversion will be complicated, and an easy adver-
sary structure may generate a complex access structure. We use the example
in Sect. 4 to compare our scheme and the other schemes. In this example,
there are five participants: {Bob1,Bob2,Bob3,Bob4,Bob5}, and three maximal
unqualified subsets: {Bob1,Bob2}, {Bob2,Bob5} and {Bob3,Bob4}. Obviously, the
schemes of (n, n) structure and (t, n) structure cannot be used here. If we use
the scheme of access structure, we will get seven minimal qualified subsets:
{Bob1,Bob3}, {Bob1,Bob4}, {Bob1,Bob5}, {Bob2,Bob3}, {Bob2,Bob4}, {Bob3,
Bob5} and {Bob4,Bob5}. The dealer must distribute the keys for these seven min-
imal qualified subsets, which is much more than the maximal unqualified subsets. So
it is not efficient to use the scheme of access structure in this scenario. In this example,
the number of the participants is not big. As mentioned above, if the number of the
participants is big, the conversion between access structure and adversary structure
may be very complicated, the obtained minimal qualified subsets may be much more
than themaximal unqualified subsets, and then our schemewill bemuchmore efficient
than the scheme of access structure.

6 Security and proof

6.1 Confidentiality

We assume that Q = {Bob1,Bob2, . . . ,Bobn} is the set of the n participants, Ω0 =
{F1, F2, . . ., Fm} is the maximal adversary structure of Q, and Fi (i = 1, 2, . . .,m) is
the maximal unqualified subset.
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Theorem 1 After the distribution in Sect. 3.1, for any subset X ⊆ Q, if X does not
have the array (αi , βi , i), i ∈ {1, 2, . . . ,m}, then X ⊆ Fi .

Proof We adopt apagoge. We first assume that X does not have the array (αi , βi , i)
but X 
⊂ Fi .

If X 
⊂ Fi , then X at least includes one participant Bob j who is not in Fi , that is,
Bob j ∈ X and Bob j /∈ Fi . According to the distribution of keys [Step (2) in Sect. 3.1],
only the participants in Fi do not have the array (αi , βi , i), but other participants all
have (αi , βi , i). Because Bob j /∈ Fi ,Bob j must have (αi , βi , i); because Bob j ∈ X ,
the subset X must have (αi , βi , i) too.

However, we have assumed that X does not have (αi , βi , i) in the beginning, so this
conclusion violates the above premise. We can get that the assumption is not correct,
and Theorem 1 is proved. ��
Lemma 1 A random unqualified subset F cannot get all the m array (αi , βi , i),
i = 1, 2, . . . ,m;

Proof We adopt apagoge. We first assume that an unqualified subset F can get all the
m array (αi , βi , i), i = 1, 2, . . . ,m.

If F can get all the m array (αi , βi , i), i = 1, 2, . . . ,m, according to Theorem 1,
we can get that F 
⊂ Fi , i = 1, 2, . . .,m.

We know that F is an unqualified subset, so we can get that F ⊆ Fj , j ∈
{1, 2, . . . ,m}, where Fj is a maximal unqualified subset.

So far, we have got two contrary conclusions. So the assumption is not correct, and
Lemma 1 is proved. ��
Lemma 2 A random qualified subset R must have all the m array (αi , βi , i), i =
1, 2, . . .,m.

Proof We adopt apagoge. We first assume that a qualified subset R does not have the
array (α j , β j , j), j ∈ {1, 2, . . . ,m}.

If R does not have the array (α j , β j , j), according to Theorem 1, we can know that
R ⊆ Fj . We also know that Fj is the maximal unqualified subset, so R must be an
unqualified subset.

But in the beginning,we have assumed that R is a qualified subset. So the conclusion
violates the premise, and the assumption is not correct. Lemma 2 is proved. ��
Theorem 2 If an unitary operation Uα,β = ∑d−1

j=0 ω jα| j〉〈 j + β| is performed on

a d-dimensional quantum state |Ψ 〉 = ∑d−1
j=0 c j | j〉, then the quantum state |Ψ 〉

will become a new state |Ψ ′〉 = ∑d−1
j=0 ω jαc j | j + β〉, where ω = e

2π i
d , α, β ∈

{0, 1, . . . , d − 1}, and the symbol “+” means the adder modulo d.

Proof |Ψ 〉 = ∑d−1
j=0 c j | j〉 = c0|0〉 + c1|1〉 + · · · + cd−1|d − 1〉

Uα,β =
d−1∑

j=0

ω jα| j〉〈 j + β|

= ω0·α|0〉〈β| + ω1·α|1〉〈1 + β| + ω2·α|2〉〈2
+β| + · · · + ω(d−1)·α|d − 1〉〈d − 1 + β|
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Therefore

Uα,β |Ψ 〉 = ω0·αc0|β〉 + ω1·αc1|1 + β〉 + · · · + ω(d−1)·αcd−1|d − 1 + β〉

=
d−1∑

j=0

ω jαc j | j + β〉

��
Lemma 3 A random qualified subset R can recover the original state |Ψ 〉; a random
unqualified subset F cannot recover the original state |Ψ 〉.
Proof From Lemma 2, we know that a qualified subset R must have all the array
(αi , βi , i), i = 1, 2, . . .,m. In the recovery, according to the published label “i” [step
(6) in Sect. 3.2], each different pair (αi , βi ), i ∈ {1, 2, . . . ,m} will only be used one
time in the unitary operations. Therefore, every pair (αi , βi ), i ∈ {1, 2, . . . ,m}will be
used one time in the unitary operations. According to Theorem 2, the recovered state
will become |Ψ ′

m〉 = ∑d−1
j=0 ω j (A+α1+α2+···+αm )c j 〈 j + B + β1 + β2 + · · · + βm |

after the last participant of R performed the unitary operation, where the symbol
“+” means the adder modulo d. We know that A = d − (α1 + α2 + · · · + αm), B =
d − (β1 + β2 + · · · + βm) [step (2) in Sect. 3.2]. So |Ψ ′

m〉 = ∑d−1
j=0 c j 〈 j | = |Ψ 〉, and

the original state is recovered.
From Lemma 1, we know that an unqualified subset F cannot get all the m array

(αi , βi , i), i = 1, 2, . . . ,m. Then in the recovery, some pair will be absent in the
unitary operations. We know that Alice performs the unitary operation UA,B =∑d−1

j=0 ω j A| j〉〈 j + B| to encode the original quantum state |Ψ 〉 into |Ψ ′〉, where
A = d − (α1 + α2 + · · · + αm), B = d − (β1 + β2 + · · · + βm). The absence
of any pair will lead that |Ψ ′〉 cannot be decoded. So an unqualified subset cannot
recover the original state |Ψ 〉 from the encrypted quantum state. ��

6.2 Security of particles transmission

Since the security of particles transmission in our scheme is based on the decoy
particles, two well-known attacks: the intercept-and-resend attack and the entangle-
and-measure attack will be analyzed in the following.

(1) intercept-and-resend
We assume that an eavesdropper called Eve intercepts the transmitted particles and

resends other forged particles in hope to pass the check. We know that the transmitted
particles are composed of a useful particle and some decoy particles. Each decoy
particle is randomly chosen from the Z -basis or X -basis, and the useful particle is
randomly inserted into the decoy particles. Eve cannot know the position, basis and
value of each decoy particle. So the attackmay cause some errors to the decoy particles.
For one decoy particle, the error rate caused by the eavesdropping is d−1

2d . Then for l
decoy particles, the eavesdropping will be detected with the probability 1 − ( d+1

2d )l .
When l is large enough, the probability will converge to 1.

(2) entangle-and-measure
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Eve uses a unitary operationUE to entangle an ancillary particle on the transmitted
particle and then measures the ancillary particle to steal secret information. Assume
that the ancillary particle is |E〉. If the decoy particle is in the Z -basis, the effect of
the unitary operation UE performed on the decoy particle can be shown as follows.

UE |0〉|E〉 = a00|0〉|e00〉 + a01|1〉|e01〉 + · · · + a0(d−1)|d − 1〉|e0(d−1)〉
UE |1〉|E〉 = a10|0〉|e10〉 + a11|1〉|e11〉 + · · · + a1(d−1)|d − 1〉|e1(d−1)〉
. . .

UE |d − 1〉|E〉 = a(d−1)0|0〉|e(d−1)0〉 + a(d−1)1|1〉|e(d−1)1〉
+ · · · + a(d−1)(d−1)|d − 1〉|e(d−1)(d−1)〉

where |ei j 〉 (i, j ∈ {0, 1, . . . , d−1}) are the states determined by the unitary operation
UE , and

|a00|2 + |a01|2 + · · · + |a0(d−1)|2 = 1

|a10|2 + |a11|2 + · · · + |a1(d−1)|2 = 1

. . .

|a(d−1)0|2 + |a(d−1)1|2 + · · · + |a(d−1)(d−1)|2 = 1

In order to avoid the eavesdropping check, Eve has to set:

a01 = a02 = · · · = a0(d−1) = 0

a10 = a12 = · · · = a1(d−1) = 0

. . .

a(d−1)0 = a(d−1)1 = · · · = a(d−1)(d−2) = 0

Therefore, the effect of UE performed on the decoy particle can be simplified as
follows.

UE |0〉|E〉 = a0|0〉|e0〉
UE |1〉|E〉 = a1|1〉|e1〉
. . .

UE |d − 1〉|E〉 = ad−1|d − 1〉|ed−1〉

where a0 = a00; a1 = a11; . . . ; ad−1 = a(d−1)(d−1) and e0 = e00; e1 = e11;
. . . ; ed−1 = e(d−1)(d−1).

If the decoy particle is in the X -basis, the effect of the unitary operation UE per-
formed on the decoy particle can be shown as follows.
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UE |J j 〉|E〉 = UE

(
1√
d

d−1∑

k=0

ωk j |k〉
)

|E〉

= 1√
d

d−1∑

k=0

ωk jUE |k〉|E〉 = 1√
d

d−1∑

k=0

ωk j ak |k〉|ek〉

where j ∈ {0, 1, . . . , d − 1}.
We know that | j〉 = 1√

d

∑d−1
k=0 ω−k j |Jk〉, so

UE |J j 〉|E〉 = 1√
d

d−1∑

k=0

ωk j ak |ek〉
(

1√
d

d−1∑

i=0

ω−ik |Ji 〉
)

= 1

d

(
|J0〉

d−1∑

k=0

ωk( j−0)ak |ek〉

+ |J1〉
d−1∑

k=0

ωk( j−1)ak |ek〉 + · · · + |Jd−1〉
d−1∑

k=0

ωk( j−(d−1))ak |ek〉
)

In order to avoid the eavesdropping check, Eve has to set
∑d−1

k=0 ωk( j−i)ak |ek〉 = 0,
where i ∈ {0, 1, . . . , d − 1} and i 
= j . Then for any j ∈ {0, 1, . . . , d − 1}, we can
get d − 1 equations. According to these d-1 equations, we can obtain that a0|e0〉 =
a1|e1〉 = · · · = ad−1|ed−1〉. Therefore, no matter what the state of the useful particle
is, Eve will get the same information from the ancillary particle and cannot steal secret
information. So the entangle-and-measure attack is unsuccessful.

6.3 Participant attack

If a QSS scheme is secure for a dishonest participant, then it is secure for any outside
eavesdropper. In fact, the participant attack has broken many QSS schemes [34–37].
We now analyze the security of our scheme for a dishonest participant. A dishonest
participant can intercept other participant’s particles and resend forged particles [34],
or entangle ancillary particles on the intercepted particles and steal the secret infor-
mation through measuring the ancillary particles [35–37]. However, the transmitted
particles in our scheme are protected by the decoy particles, which are random in the
Z -basis or X -basis and will be disturbed if the transmitted particles are eavesdropped.
From the above analysis of “intercept-and-resend attack” and “entangle-and-measure
attack”, we can know that whether the outside eavesdropper or the dishonest partici-
pant will be prevented from measuring the transmitted particles or ancillary particles
because of the decoy particles. Therefore, the dishonest participant cannot steal the
secret information from the transmitted particles, and our scheme can resist the par-
ticipant attack.
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6.4 Noisy quantum channel

In a noisy quantum channel, the eavesdropper may use the noise to hide his attack.
According to the existing results [38–42], the error rate of one qubit caused by the
noise is about from 2 to 8.9%. If the error rate caused by the eavesdropper is smaller
than this value, the eavesdropper will be able to hide his attack into the noise. But in
our scheme, the error rate of one qubit caused by the eavesdropper is d−1

2d (d ≥ 2),
which is larger than the error rate caused by the noise. Therefore, the eavesdropper
cannot hide his attack into the noise.

In a noisy quantum channel, some transmitted particles may be lost. Our protocol
needs to make some modifications to resolve this problem [15,23]. The receiver must
inform the sender of the received particles and the lost particles. If the useful particle
is lost, the protocol should be terminated and be repeated from the beginning. If
some decoy particles are lost, the receiver uses the rest decoy particles to check the
eavesdropping. The lost decoy particles become useless, and no useful information
can be extracted from these particles.

7 Conclusion

When only the adversary structure is given, the existing QSS schemes with (n, n)
structure, (t, n) structure and access structure cannot be used directly. For this require-
ment, this paper proposed a QSS scheme with adversary structure. By using a novel
algorithm, the proposed scheme can share a d-dimensional quantum state according
to the adversary structure.

We proved the confidentiality of our scheme and showed that our scheme is secure
against the intercept-and-resend attack, the entangle-and-measure attack, the partici-
pant attack and the noisy quantum channel.
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