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Abstract This paper introduces “swiveled Rényi entropies” as an alternative to the
Rényi entropic quantities put forward in Berta et al. (Phys Rev A 91(2):022333, 2015).
What distinguishes the swiveled Rényi entropies from the prior proposal of Berta
et al. is that there is an extra degree of freedom: an optimization over unitary rotations
with respect to particular fixed bases (swivels). A consequence of this extra degree
of freedom is that the swiveled Rényi entropies are ordered, which is an important
property of the Rényi family of entropies. The swiveled Rényi entropies are, however,
generally discontinuous at α = 1 and do not converge to the von Neumann entropy-
based measures in the limit as α → 1, instead bounding them from above and below.
Particular variants reduce to knownRényi entropies, such as the Rényi relative entropy
or the sandwiched Rényi relative entropy, but also lead to ordered Rényi conditional
mutual information and ordered Rényi generalizations of a relative entropy difference.
Refinements of entropy inequalities such as monotonicity of quantum relative entropy
and strong subadditivity follow as a consequence of the aforementioned properties of
the swiveled Rényi entropies. Due to the lack of convergence at α = 1, it is unclear
whether the swiveled Rényi entropies would be useful in one-shot information theory,
so that the present contribution represents partial progress toward this goal.
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1 Introduction

In 1961, Alfred Rényi defined a parametrized family of entropies now bearing his
name, by relaxing one of the axioms that singles out the Shannon entropy [34]. This
led to both the α-Rényi entropy and the α-Rényi divergence, defined respectively for
a parameter α ∈ (0, 1) ∪ (1,∞) and probability distributions p and q as

Hα(p) ≡ 1

1 − α
log

∑

x

[p(x)]α , (1)

Dα(p‖q) ≡ 1

α − 1
log

∑

x

[p(x)]α [q(x)]1−α , (2)

where log denotes the natural logarithm here and throughout the paper. The Shannon
entropy and relative entropy are recovered in the limit as α → 1:

lim
α→1

Hα(p) = H(p) ≡ −
∑

x

p(x) log p(x), (3)

lim
α→1

Dα(p‖q) = D(p‖q) ≡
∑

x

p(x) log
p(x)

q(x)
. (4)

What began largely as a theoretical exploration ended up having many practical rami-
fications, especially in the contexts of information theory and statistics. For example,
it is now well known that the Rényi entropies play a fundamental role in obtaining a
sharpened understanding of the trade-off between communication rate, error probabil-
ity, and number of resources in communication protocols, such as data compression
and channel coding [10,16]. “Smoothing” the Rényi entropies [33] has also led to the
development of “ one-shot” information theory [32,38], with applications to cryptog-
raphy.

Part of what makes the Rényi entropies so useful in applications is their properties:
convergence to the Shannon and relative entropies in the limit as α → 1, monotonicity
in the parameter α, and additivity, in addition to others. The convergence to the Shan-
non and relative entropies ensures that, by taking this limit, one recovers asymptotic
information-theoretic statements, such as the data compression theorem or the channel
capacity theorem, from themore fine-grained statements.Monotonicity in the parame-
ter α ensures that Hα(p) gives more weight to low surprisal events for α > 1 and vice
versa for α < 1, helping to characterize the aforementioned trade-off in information-
theoretic settings. The additivity property implies that the Rényi entropies can simplify
immensely when evaluated for memoryless stochastic processes.

In light of the progress that the Rényi paradigm has brought to information theory,
one is left to wonder if this could happen in more exotic settings, such as quantum
information theory and/or for “multipartite” settings (here by multipartite, we mean
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Swiveled Rényi entropies 1311

three or more parties). This line of thought has led to the development of several non-
commutative generalizations of the Rényi relative entropy in (2), which has in turn
led to a sharpened understanding of several quantum information-theoretic tasks (see
[9,39] and references therein) and refinements of the uncertainty principle [8].As far as
we are aware, the development of the multipartite generalization of the Rényi entropy
in (1) is less explored, with the exception of a recent proposal [6] for a multipartite
quantum generalization.

With the intent of developing either a multipartite classical or quantum generaliza-
tion of (1), one might suggest after a moment’s thought to replace a quantity which
features a linear combination of entropies by one with the same linear combination of
Rényi entropies. However, this approach is objectively unsatisfactory in at least two
regards: Properties of the original information measure are not preserved by doing so,
and one is not guaranteed to have the powerful monotonicity in α property mentioned
above. For example, take the case of the conditional mutual information of a tripartite
density operator ρABC defined as

I (A; B|C)ρ ≡ H(AC)ρ + H(BC)ρ − H(C)ρ − H(ABC)ρ, (5)

where H(F)σ ≡ −Tr{σF log σF } is the quantum entropy of a density operator σ on
system F . One of themost important properties of this quantity is that it is non-negative
(known as strong subadditivity of quantum entropy [22,23]), and as a consequence, it
is monotone non-increasing with respect to any quantum channel applied to the system
A [7] (by symmetry, the same is true for one applied to B). However, if we define a
Rényi generalization of I (A; B|C)ρ as Hα(AC)ρ +Hα(BC)ρ −Hα(C)ρ −Hα(ABC)ρ ,
where Hα(F)σ ≡ [

log Tr{σα
F }] / (1 − α), then explicit counterexamples reveal that

this Rényi generalization can be negative, and monotonicity with respect to quantum
channels need not hold, and neither does monotonicity in α [25].

To remedy these deficiencies, the authors of [6] put forward a general prescription
for producing a Rényi generalization of a quantum information measure, with the
aim of having the properties of the original measure retained while also satisfying
the monotonicity in α property. The work in [6] was only partially successful in this
regard. Continuing with our example of conditional mutual information, consider the
following Rényi generalization [5]:

Iα(A; B|C)ρ ≡ 1

α − 1
log Tr

{
ρα
ABCρ

(1−α)/2
AC ρ

(α−1)/2
C ρ1−α

BC ρ
(α−1)/2
C ρ

(1−α)/2
AC

}
. (6)

For α ∈ [0, 1) ∪ (1, 2], the quantity is non-negative, monotone non-increasing with
respect to quantum channels acting on the B system, converges to I (A; B|C)ρ in the
limit as α → 1, and is conjectured to obey the monotonicity in α property (with some
numerical and analytical evidence in favor established) [5]. However, hitherto a proof
of the monotonicity in α property for Iα(A; B|C)ρ remains lacking. It is also an open
question to determine whether Iα(A; B|C)ρ is monotone non-increasing with respect
to quantum channels acting on the A system—this partially has to do with the fact
that Iα(A; B|C)ρ is not symmetric with respect to exchange of the A and B systems,
unlike the conditional mutual information in (5).
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1312 F. Dupuis, M. M. Wilde

2 Summary of results

In this paper, we modify the recently proposed Rényi generalizations of quantum
information measures from [6] by placing “ swivels” in a given chain of operators.1

As an example of the idea, consider that we can rewrite the quantity in (6) in terms of
the Schatten 2-norm as follows:

Iα(A; B|C)ρ ≡ 2

α − 1
log

∥∥∥ρ
(1−α)/2
BC ρ

(α−1)/2
C ρ

(1−α)/2
AC ρ

α/2
ABC

∥∥∥
2
. (7)

The new idea is to modify this quantity to include swivels as follows:

I ′
α(A; B|C)ρ

≡ 2

α − 1
max

VρAC ∈VρAC ,VρC ∈VρC

log
∥∥∥ρ

(1−α)/2
BC VρCρ

(α−1)/2
C ρ

(1−α)/2
AC VρACρ

α/2
ABC

∥∥∥
2
, (8)

whereVω is the compact set of all unitaries Vω commutingwith theHermitian operator
ω. Thus, the fixed eigenbases of ρC and ρAC act as swivels connecting adjacent
operators in the operator chain above, such that the unitary rotations VρC and VρAC

about these swivels are allowed. Of course, such swivels make no difference when the
density operator ρABC and its marginals commute with each other (the classical case),
or when the C system is trivial, in which case the above quantity reduces to a Rényi
mutual information

I ′
α(A; B)ρ ≡ 2

α − 1
max

VρA∈VρA

log
∥∥∥ρ

(1−α)/2
B ρ

(1−α)/2
A VρAρ

α/2
AB

∥∥∥
2

(9)

= 2

α − 1
log

∥∥∥ρ
(1−α)/2
B ρ

(1−α)/2
A ρ

α/2
AB

∥∥∥
2
. (10)

We mention that we were led to the definition in (8) as a consequence of the develop-
ments in [45], in which similar swivels appeared in refinements of entropy inequalities
such as monotonicity of quantum relative entropy and strong subadditivity.

The quantity in (8) satisfies some of the properties already established for
Iα(A; B|C)ρ in [5], which include nonnegativity forα ∈ [0, 1)∪(1, 2] andmonotonic-
itywith respect to quantum channels acting on the B system.However, the extra degree
of freedom in (8) allows us to prove that this swiveled Rényi conditional mutual infor-
mation is monotone non-decreasing in α for α ∈ [0, 1) ∪ (1, 2].

The swiveled Rényi entropies are in general discontinuous at α = 1 and do not
converge to the vonNeumann entropy-basedmeasures in the limit as α → 1. Thus, the
present paper represents a work in progress toward the general goal of find Rényi gen-
eralizations of quantum information measures that satisfy all of the desired properties
that one would like to have. It thus remains an open question to find Rényi quantities
that meet all desiderata.

1 A “ swivel” is a coupling placed between two objects in a chain in order to allow for them to “ swivel”
about a given axis.
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Swiveled Rényi entropies 1313

The rest of the paper proceeds by developing this idea in detail. We review some
background material in Sect. 3, which includes various quantum Rényi entropies and
the Hadamard three-line theorem, the latter being the essential tool for establishing
monotonicity in α for the swiveled Rényi entropies. We then focus in Sect. 4 on
developing swiveled Rényi generalizations of the quantum relative entropy difference
in (13), given that many different information measures can be written in terms of
this relative entropy difference, including conditional mutual information (see, e.g.,
the discussions in [35,44,45]). Our main contributions are Theorems 2 and 3, which
state that these quantities are monotone non-decreasing in α for particular values. We
then briefly discuss how refinements of entropy inequalities follow as a consequence
of the properties of the swiveled Rényi entropies. Section 5 discusses swiveled Rényi
conditional mutual information and justifies that they possess the properties stated
above. We extend the idea in Sect. 6 to establish swiveled Rényi generalizations of an
arbitrary linear combination of von Neumann entropies with coefficients chosen from
the set {−1, 0, 1}. We finally show how our methods can be used to address an open
question posed in [47]. Section 8 concludes with a summary and some open directions.

3 Preliminaries

3.1 Quantum states and channels

A quantum state is described mathematically by a density operator, which is a positive
semi-definite operator with trace equal to one. A quantum channel is a linear, trace-
preserving, completely positive map. For more background on quantum information
theory, we refer to [27,43]. Our results apply to finite-dimensional Hilbert spaces. For
most developments, we take ρ, σ , and N to be as given in the following definition:

Definition 1 Let ρ be a density operator acting on a finite-dimensional Hilbert space
H, σ be a nonzero positive semi-definite operator acting on H, and N be a quantum
channel, taking operators acting on H to those acting on a finite-dimensional Hilbert
space K.

Sometimeswe needmore restrictions, inwhich casewe takeρ, σ , andN as follows:

Definition 2 Letρ, σ , andN be as given inDefinition 1, with the additional restriction
that ρ and σ are positive definite, andN is such thatN (ρ) andN (σ ) are also positive
definite.

We employ the common convention that functions of Hermitian operators are eval-
uated on their support. In more detail, the support of a Hermitian operator A, written
as supp(A), is defined as the vector space spanned by its eigenvectors whose cor-
responding eigenvalues are nonzero. Let an eigendecomposition of A be given as
A = ∑

i :ai 	=0 ai |i〉〈i | for eigenvectors {|i〉}. Then supp(A) = span{|i〉 : ai 	= 0}. Let
ΠA denote the projection onto the support of A. A function f of an operator A is then
defined as f (A) = ∑

i :ai 	=0 f (ai )|i〉〈i |.
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1314 F. Dupuis, M. M. Wilde

3.2 Entropies and norms

Let ρ, σ , and N be as given in Definition 1. The quantum relative entropy [42] is
defined as

D(ρ‖σ) ≡ Tr
{
ρ

[
log ρ − log σ

]}
, (11)

whenever supp(ρ) ⊆ supp(σ ), and otherwise, it is defined to be equal to +∞. The
quantum relative entropy is monotone non-increasing with respect to quantum chan-
nels [24,41], in the sense that

D(ρ‖σ) ≥ D(N (ρ)‖N (σ )). (12)

Another relevant information measure is the quantum relative entropy difference,
defined as

�(ρ, σ,N ) ≡ D(ρ‖σ) − D(N (ρ)‖N (σ )). (13)

We can use the Schatten norms in order to establish Rényi generalizations of von
Neumann entropies, which are more refined information measures for quantum states
and channels that reduce to the von Neumann quantities in a limit. The Schatten
p-norm of an operator A is defined as

‖A‖p ≡ [
Tr

{|A|p}]1/p , (14)

where p ≥ 1 and |A| ≡ √
A†A (note that we sometimes use the notation ‖A‖p

even for values p ∈ (0, 1) when the quantity on the right-hand side of (14) is not a
norm). From the above definition, we can see that the following equalities hold for
any operators A and B:

Tr
{
B†A†AB

}
= ‖AB‖22 , (15)

∥∥∥B†A†AB
∥∥∥
p

p
= ‖AB‖2p2p . (16)

The quantum Rényi entropy of a state ρ is defined for α ∈ (0, 1) ∪ (1,∞) as

Hα(ρ) ≡ 1

1 − α
log Tr{ρα} = α

1 − α
log ‖ρ‖α , (17)

and reduces to the von Neumann entropy in the limit as α → 1:

lim
α→1

Hα(ρ) = H(ρ). (18)

There are at least two ways to generalize the quantum relative entropy, which we refer
to as the Rényi relative entropy Dα(ρ‖σ) [28] and the sandwiched Rényi relative
entropy D̃α(ρ‖σ) [26,46]. They are defined respectively as follows:

123



Swiveled Rényi entropies 1315

Dα(ρ‖σ) ≡ 1

α − 1
log Tr

{
ρασ 1−α

}
(19)

= 2

α − 1
log

∥∥∥σ (1−α)/2ρα/2
∥∥∥
2
, (20)

D̃α(ρ‖σ) ≡ 1

α − 1
log Tr

{(
σ (1−α)/2αρσ (1−α)/2α

)α}
(21)

= 2α

α − 1
log

∥∥∥σ (1−α)/2αρ1/2
∥∥∥
2α

, (22)

if α ∈ (0, 1) or if α ∈ (1,∞) and supp(ρ) ⊆ supp(σ ). If α ∈ (1,∞) and supp(ρ) �

supp(σ ), then they are defined to be equal to +∞. The rewritings in (20) and (22)
are helpful for our developments in this paper and follow from (15)–(16) and the
following:

Tr
{
ρασ 1−α

}
= Tr

{
ρα/2σ (1−α)/2σ (1−α)/2ρα/2

}
, (23)

Tr
{(

σ (1−α)/2αρσ (1−α)/2α
α

)α}
=

∥∥∥σ (1−α)/2αρσ (1−α)/2α
∥∥∥

α

α
(24)

=
∥∥∥ρ1/2σ (1−α)/αρ1/2

∥∥∥
α

α
. (25)

Both Rényi generalizations reduce to the quantum relative entropy in the limit as
α → 1 [26,28,46]:

lim
α→1

Dα(ρ‖σ) = lim
α→1

D̃α(ρ‖σ) = D(ρ‖σ). (26)

The Rényi relative entropy is monotone non-increasing with respect to quantum chan-
nels when α ∈ [0, 1) ∪ (1, 2] [28]:

Dα(ρ‖σ) ≥ Dα(N (ρ)‖N (σ )), (27)

and the sandwiched Rényi relative entropy possesses a similar monotonicity property
when α ∈ [1/2, 1) ∪ (1,∞) [2,18]:

D̃α(ρ‖σ) ≥ D̃α(N (ρ)‖N (σ )). (28)

By picking particular values of the Rényi parameter α, the quantities above take on
special forms and have meaning in operational contexts, being known as the zero-
relative entropy [11], the collision relative entropy [14], the min-relative entropy [15],
and the max-relative entropy [11], respectively:

D0(ρ‖σ) = − log Tr
{
ρ0σ

}
, (29)

D2(ρ‖σ) = log
∥∥∥ρσ−1/2

∥∥∥
2
, (30)

D̃1/2(ρ‖σ) = − log F(ρ, σ ), (31)
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Dmax(ρ‖σ) = lim
α→∞ D̃α(ρ‖σ) = log

∥∥∥σ−1/2ρσ−1/2
∥∥∥∞

= log
∥∥∥σ−1/2ρ1/2

∥∥∥
2

∞ , (32)

where F(ρ, σ ) ≡ ∥∥√
ρ
√

σ
∥∥2
1 is the quantum fidelity [40].

3.3 Hadamard three-line theorem

One of the most important technical tools for proving our main result is the operator
version of the Hadamard three-line theorem given in [2], in particular, the very slight
modification stated in [13]. We note that the theorem below is a variant of the Riesz–
Thorin operator interpolation theorem (see, e.g., [3,31]).

Theorem 1 Let S ≡ {z ∈ C : 0 ≤ Re {z} ≤ 1}, and let L(H) be the space of bounded
linear operators acting on a Hilbert space H. Let G : S → L(H) be a bounded
map that is holomorphic on the interior of S and continuous on the boundary.2 Let
θ ∈ (0, 1) and define pθ by

1

pθ

= 1 − θ

p0
+ θ

p1
, (33)

where p0, p1 ∈ [1,∞]. For k = 0, 1 define

Mk = sup
t∈R

‖G (k + i t)‖pk . (34)

Then
‖G (θ)‖pθ

≤ M1−θ
0 Mθ

1 . (35)

3.4 Rényi generalizations of the quantum relative entropy difference

Let ρ, σ , andN be as given in Definition 1. In [35], two Rényi generalizations of the
relative entropy difference in (13) were defined as follows:

�α(ρ, σ,N ) ≡ 1

α−1
log Tr

{
ρασ (1−α)/2N †

(
[N (σ )](α−1)/2 [N (ρ)]1−α [N (σ )](α−1)/2

)
σ (1−α)/2

}
,

�̃α(ρ, σ,N ) ≡ 1

α′ log
∥∥∥ρ1/2σ−α′/2N †

(
[N (σ )]α

′/2 [N (ρ)]−α′
[N (σ )]α

′/2) σ−α′/2ρ1/2
∥∥∥
α

, (36)

where α′ ≡ (α − 1) /α. Let U be an isometric extension of N , so that

N (·) = TrE
{
U (·)U †

}
. (37)

We can write the adjoint N † in terms of this isometric extension as follows:

N †(·) = U † ((·) ⊗ IE )U. (38)

2 A map G : S → L(H) is holomorphic (continuous, bounded) if the corresponding functions to matrix
entries are holomorphic (continuous, bounded).
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This then allows us to write the definitions above in a simpler form:

�α(ρ, σ,N ) = 2

α − 1
log

∥∥∥
(
[N (ρ)](1−α)/2 [N (σ )](α−1)/2 ⊗ IE

)
Uσ (1−α)/2ρα/2

∥∥∥
2
,

(39)

�̃α(ρ, σ,N ) = 2

α′ log
∥∥∥
(
[N (ρ)]−α′/2 [N (σ )]α

′/2 ⊗ IE
)
Uσ−α′/2ρ1/2

∥∥∥
2α

. (40)

It is known that the following limits hold for ρ, σ , andN taken as in Definition 2 [35]:

lim
α→1

�α(ρ, σ,N ) = lim
α→1

�̃α(ρ, σ,N ) = �(ρ, σ,N ). (41)

The fact that these limits hold for ρ, σ , and N taken as in Definition 1 and subject
to supp(ρ) ⊆ supp(σ ) follows from [45] and the development in “Appendix 1”. [12]
proved that for α ∈ [0, 1) ∪ (1, 2],

�α(ρ, σ,N ) ≥ 0, (42)

and for α ∈ [1/2, 1) ∪ (1,∞]:

�̃α(ρ, σ,N ) ≥ 0, (43)

whenρ,σ , andN are taken as inDefinition 2. The latter inequalitywas refined recently
in [45] for α ∈ (1/2, 1] and for ρ, σ , and N taken as in Definition 1 and subject to
supp(ρ) ⊆ supp(σ ). It remains an open question to determinewhether these quantities
are non-decreasing in α for any non-trivial range of α (note that [35] argued that they
are non-decreasing in α in a neighborhood of α = 1).

4 Swiveled Rényi generalizations of the quantum relative entropy
difference

In the spirit of the discussion in Sect. 2, we consider different definitions of
�α(ρ, σ,N ) and �̃α(ρ, σ,N ) in order to allow for unitary rotations about swivels,
i.e., an optimization over unitaries of the form VN (σ ) and Vσ :

Definition 3 Let ρ, σ , and N be as given in Definition 1. We define swiveled Rényi
generalizations of the quantum relative entropy difference in (13) as follows:

�′
α(ρ, σ,N ) ≡ 2

α − 1
max

Vσ ,VN (σ )

log
∥∥∥
(
[N (ρ)](1−α)/2 VN (σ ) [N (σ )](α−1)/2 ⊗ IE

)
Uσ (1−α)/2Vσ ρα/2

∥∥∥
2
,

(44)
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1318 F. Dupuis, M. M. Wilde

�̃′
α(ρ, σ,N ) ≡ 2

α′ max
Vσ ,VN (σ )

log
∥∥∥
(
[N (ρ)]−α′/2 VN (σ ) [N (σ )]α

′/2 ⊗ IE
)
Uσ−α′/2Vσ ρ1/2

∥∥∥
2α

,

(45)

where α′ = (α − 1) /α and the optimizations are over the compact sets of unitaries
Vσ and VN (σ ) commuting with σ and N (σ ), respectively.

This slight extra degree of freedom allows us to establish that �′
α and �̃′

α are
monotone non-decreasing in α for particular values (see Theorems 2 and 3).

4.1 Reduction to Rényi relative entropy

Observe that by choosing N = Tr, we find that �′
α reduces to the Rényi relative

entropy whenever supp(ρ) ⊆ supp(σ ):

�′
α(ρ, σ,Tr) = 2

α − 1
log

∥∥∥σ (1−α)/2ρα/2
∥∥∥
2
+ log Tr {σ } (46)

= Dα(ρ‖σ) + log Tr {σ } , (47)

and �̃′
α to the sandwiched Rényi relative entropy whenever supp(ρ) ⊆ supp(σ ):

�̃′
α (ρ, σ,Tr) ≡ 2

α′ log
∥∥∥σ−α′/2ρ1/2

∥∥∥
2α

+ log Tr {σ } (48)

= D̃α(ρ‖σ) + log Tr {σ } , (49)

just as
�(ρ, σ,Tr) = D(ρ‖σ) + log Tr {σ } . (50)

4.2 Behavior around α = 1

Here we discuss the behavior of �′
α and �̃′

α around α = 1, with the result being that
these quantities are generally discontinuous at α = 1:

Proposition 1 Let ρ, σ , and N be as given in Definition 2. Then

lim
α↗1

�′
α(ρ, σ,N ) = lim

α↗1
�̃′

α(ρ, σ,N ) = min
VN (σ ),Vσ

f (1, VN (σ ), Vσ ), (51)

lim
α↘1

�′
α(ρ, σ,N ) = lim

α↘1
�̃′

α(ρ, σ,N ) = max
VN (σ ),Vσ

f (1, VN (σ ), Vσ ), (52)

where
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f (1, VN (σ ), Vσ ) ≡ Tr
{
ρ

[
log ρ − log σ

]}

−Tr
{
N

([
Vσ ρV †

σ

]) [
log

[
V †
N (σ )

N (ρ)VN (σ )

]
− log [N (σ )]

]}
. (53)

As a consequence, we have that

min
VN (σ ),Vσ

f (1, VN (σ ), Vσ ) ≤ f (1, I, I ) = �(ρ, σ,N ) ≤ max
VN (σ ),Vσ

f (1, VN (σ ), Vσ ),

(54)
and there is generally a discontinuity at α = 1.

Proof Let A ⊆ [0, 2], which we will choose shortly. Define the function f : A ×
VN (σ ) × Vσ → R as

f (α, VN (σ ), Vσ ) ≡ 2

α − 1

log
∥∥∥
(
[N (ρ)](1−α)/2 VN (σ ) [N (σ )](α−1)/2 ⊗ IE

)
Uσ (1−α)/2Vσ ρα/2

∥∥∥
2
, (55)

whenever α 	= 1, and f (1, VN (σ ), Vσ ) as in (53). One can check that

lim
α→1

f (α, VN (σ ), Vσ ) = f (1, VN (σ ), Vσ ), (56)

for example by performing Taylor expansions to calculate the limit (see “Appendix 3”
for details of this calculation). The function f is then continuous in α, Vσ , and VN (σ ).
Furthermore, it fulfills the conditions of Lemma 1 in “Appendix 2” if we choose
A = [1, M] for any M ∈ (1, 2] and T = VN (σ ) × Vσ . Hence, we get that

�′
α(ρ, σ,N ) = max

VN (σ ),Vσ

f (α, VN (σ ), Vσ ) (57)

is continuous on α ∈ [1, M] and thus

lim
α↘1

�′
α(ρ, σ,N ) = max

VN (σ ),Vσ

f (1, VN (σ ), Vσ ). (58)

Repeating the same argument with A = [0, 1] yields that

�′
α(ρ, σ,N ) = min

VN (σ ),Vσ

f (α, VN (σ ), Vσ ) (59)

is continuous on [0, 1] and thus

lim
α↗1

�′
α(ρ, σ,N ) = min

VN (σ ),Vσ

f (1, VN (σ ), Vσ ). (60)

Given that �(ρ, σ,N ) = f (1, I, I ), we can conclude the following inequality:

min
VN (σ ),Vσ

f (1, VN (σ ), Vσ ) ≤ �(ρ, σ,N ) ≤ max
VN (σ ),Vσ

f (1, VN (σ ), Vσ ) (61)

123



1320 F. Dupuis, M. M. Wilde

The arguments for the quantity �̃′
α(ρ, σ,N ) are similar, so we just sketch them

briefly. Define the function

g(α, VN (σ ), Vσ ) ≡ 2α

α − 1

log
∥∥∥
(
[N (ρ)](1−α)/2α VN (σ ) [N (σ )](α−1)/2α ⊗ IE

)
Uσ (1−α)/2αVσ ρ1/2

∥∥∥
2α

,

(62)

for α 	= 1 and set g(1, VN (σ ), Vσ ) = f (1, VN (σ ), Vσ ). One can then compute (again
via Taylor expansions, e.g.) that

lim
α→1

g(α, VN (σ ), Vσ ) = g(1, VN (σ ), Vσ ). (63)

The rest of the argument proceeds as above, which leads to the other equalities in
(51)–(52).

4.3 Monotonicity in the Rényi parameter

This section contains our main result, that both �′
α and �̃′

α are monotone non-
decreasing with respect to α for particular values.

Theorem 2 Let ρ, σ , andN be as given in Definition 1. The swiveled Rényi quantity
�′

α(ρ, σ,N ) is monotone non-decreasing with respect to α ∈ [0, 1) ∪ (1, 2], in the
sense that for 0 ≤ α ≤ γ ≤ 2, α 	= 1, and γ 	= 1

�′
α(ρ, σ,N ) ≤ �′

γ (ρ, σ,N ). (64)

Proof The main tool for our proof is Theorem 1. We break the proof of inequality in
(64) into several cases. We first consider 1 < α < γ ≤ 2. For some WN (σ ) ∈ VN (σ )

and Wσ ∈ Vσ , pick

G (z) = [N (ρ)]−z(γ−1)/2 WN (σ ) [N (σ )]z(γ−1)/2Uσ−z(γ−1)/2Wσ ρ(1+z(γ−1))/2,

(65)

p0 = 2, (66)

p1 = 2, (67)

θ = α − 1

γ − 1
∈ (0, 1) , (68)

which fixes pθ = 2. Then
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M0 = sup
t∈R

‖G (i t)‖2 (69)

= sup
t∈R

∥∥∥[N (ρ)]−i t(γ−1)/2 WN (σ ) [N (σ )]i t(γ−1)/2

Uσ−i t(γ−1)/2Wσ ρ(1+i t(γ−1))/2
∥∥∥
2

(70)

=
∥∥∥ρ1/2

∥∥∥
2

= 1, (71)

M1 = sup
t∈R

‖G (1 + i t)‖2 (72)

= sup
t∈R

∥∥∥[N (ρ)]−
(1+i t)

2 (γ−1) WN (σ ) [N (σ )]
(1+i t)

2 (γ−1)

Uσ− (1+i t)
2 (γ−1)Wσ ρ

(1+(1+i t)(γ−1))
2

∥∥∥
2

(73)

≤ max
VN (σ ),Vσ

∥∥∥[N (ρ)](1−γ )/2 VN (σ ) [N (σ )](γ−1)/2Uσ (1−γ )/2Vσ ργ/2
∥∥∥
2

(74)

= exp

{
γ − 1

2
�′

γ (ρ, σ,N )

}
, (75)

‖G (θ)‖2 =
∥∥∥[N (ρ)](1−α)/2 WN (σ ) [N (σ )](α−1)/2Uσ (1−α)/2Wσ ρα/2

∥∥∥
2
. (76)

We then apply Theorem 1 to find that the following inequality holds for all WN (σ ) ∈
VN (σ ) and Wσ ∈ Vσ :

∥∥∥[N (ρ)](1−α)/2 WN (σ ) [N (σ )](α−1)/2Uσ (1−α)/2Wσ ρα/2
∥∥∥
2

≤
[
exp

{
γ − 1

2
�′

γ (ρ, σ,N )

}] α−1
γ−1

. (77)

As a consequence, we can take the maximum over all WN (σ ) ∈ VN (σ ) and Wσ ∈ Vσ

and apply the definition in (44) to establish that

exp

{
α − 1

2
�′

α(ρ, σ,N )

}
≤

[
exp

{
γ − 1

2
�′

γ (ρ, σ,N )

}] α−1
γ−1

. (78)

We finally apply a logarithm to arrive at the conclusion that (64) holds for all 1 < α <

γ ≤ 2.
To get the monotonicity for the range 0 ≤ α < γ < 1, we exchange α and γ

in (65)–(68) and apply the same reasoning as in (69)–(77) to arrive at the following
inequality:

exp

{
γ − 1

2
�′

γ (ρ, σ,N )

}
≤

[
exp

{
α − 1

2
�′

α(ρ, σ,N )

}] γ−1
α−1

. (79)
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Taking a negative logarithm and noting that 0 ≤ α < γ < 1 then gives (64) for this
range.

We are now left with proving the case α ∈ [0, 1) and γ ∈ (1, 2] the dual
parameter of α, such that α + γ = 2. Notice that α − 1 = − (γ − 1). Let
f (z, γ ) = (1 − 2z) (γ − 1). We pick

G (z) = [N (ρ)]− f (z,γ )/2 [N (σ )] f (z,γ )/2Uσ− f (z,γ )/2ρ(1+ f (z,γ ))/2, (80)

p0 = 2, (81)

p1 = 2, (82)

θ = 1/2, (83)

so that pθ = 2. Consider that f (θ, γ ) = 0, so that

‖G (θ)‖2 =
∥∥∥[N (ρ)]− f (θ,γ )/2 [N (σ )] f (θ,γ )/2Uσ− f (θ,γ )/2ρ(1+ f (θ,γ ))/2

∥∥∥
2

(84)

=
∥∥∥Uρ1/2

∥∥∥
2

=
∥∥∥ρ1/2

∥∥∥
2

= 1. (85)

We then find that

M0 = sup
t∈R

‖G (i t)‖2 (86)

= sup
t∈R

∥∥∥[N (ρ)]−(1−2i t)(γ−1)/2 [N (σ )](1−2i t)(γ−1)/2

Uσ−(1−2i t)(γ−1)/2ρ(1+(1−2i t)(γ−1))/2
∥∥∥
2

(87)

≤ max
VN (σ ),Vσ

∥∥∥[N (ρ)](1−γ )/2 VN (σ ) [N (σ )](γ−1)/2Uσ (1−γ )/2Vσ ργ/2
∥∥∥
2

(88)

= exp

{
γ − 1

2
�′

γ (ρ, σ,N )

}
. (89)

Consider that

f (1+i t, γ )= (1−2 (1+ i t)) (γ − 1) = − (1 + 2i t) (γ − 1) = (1 + 2i t) (α − 1) .

(90)
Thus, similarly, we have

M1 = sup
t∈R

‖G (1 + i t)‖2 (91)

= sup
t∈R

∥∥∥[N (ρ)]−(1+2i t)(α−1)/2 [N (σ )](1+2i t)(α−1)/2

Uσ−(1+2i t)(α−1)/2ρ(1+(1+2i t)(α−1))/2
∥∥∥
2

(92)
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≤ max
VN (σ ),Vσ

∥∥∥[N (ρ)](1−α)/2 VN (σ ) [N (σ )](α−1)/2Uσ (1−α)/2Vσ ρα/2
∥∥∥
2

(93)

= exp

{
α − 1

2
�′

α(ρ, σ,N )

}
. (94)

Applying Theorem 1 gives

1 ≤ exp

{
γ − 1

4
�′

γ (ρ, σ,N )

}
exp

{
α − 1

4
�′

α(ρ, σ,N )

}
(95)

= exp

{
γ − 1

4
�′

γ (ρ, σ,N )

}
exp

{− (γ − 1)

4
�′

α(ρ, σ,N )

}
, (96)

which implies (64) for α ∈ [0, 1) and γ = 2 − α. Putting the three cases together
along with Proposition 1 gives the inequality in (64) for 0 ≤ α ≤ γ ≤ 2, α 	= 1, and
γ 	= 1.

Theorem 3 Let ρ, σ , andN be as given in Definition 1. The swiveled Rényi quantity
�̃′

α(ρ, σ,N ) is monotone non-decreasing with respect to α ∈ [1/2, 1) ∪ (1,∞], in
the sense that for 1/2 ≤ α ≤ γ ≤ ∞, α 	= 1, and γ 	= 1

�̃′
α(ρ, σ,N ) ≤ �̃′

γ (ρ, σ,N ). (97)

Proof We handle the inequality in (97) in a similar way as in the previous proof. First,
suppose that 1 < α < γ . Let α′ = (α − 1) /α and γ ′ = (γ − 1) /γ , and note that
α′, γ ′ > 0 for the choices given. For some WN (σ ) ∈ VN (σ ) and Wσ ∈ Vσ , pick

G (z) = [N (ρ)]−zγ ′/2 WN (σ ) [N (σ )]zγ
′/2Uσ−zγ ′/2Wσ ρ1/2, (98)

p0 = 2, (99)

p1 = 2γ, (100)

θ = α′

γ ′ ∈ (0, 1) , (101)

which fixes pθ = 2α. Then we find the following expression for M0

M0 = sup
t∈R

‖G (i t)‖2 (102)

= sup
t∈R

∥∥∥[N (ρ)]−i tγ ′/2 WN (σ ) [N (σ )]i tγ
′/2Uσ−i tγ ′/2Wσ ρ1/2

∥∥∥
2

(103)

=
∥∥∥ρ1/2

∥∥∥
2

= 1, (104)

and the following ones for M1 and ‖G (θ)‖2α:
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M1 = sup
t∈R

‖G (1 + i t)‖2γ (105)

= sup
t∈R

∥∥∥[N (ρ)]−(1+i t)γ ′/2 WN (σ ) [N (σ )](1+i t)γ ′/2

Uσ−(1+i t)γ ′/2Wσ ρ1/2
∥∥∥
2γ

(106)

≤ max
VN (σ ),Vσ

∥∥∥[N (ρ)]−γ ′/2 VN (σ ) [N (σ )]γ
′/2Uσ−γ ′/2Vσ ρ1/2

∥∥∥
2γ

(107)

= exp

{
γ ′

2
�̃′

γ (ρ, σ,N )

}
, (108)

‖G (θ)‖2α =
∥∥∥[N (ρ)]−α′/2 WN (σ ) [N (σ )]α

′/2Uσ−α′/2Wσ ρ1/2
∥∥∥
2α

. (109)

Applying Theorem 1, we find that the following inequality holds for all WN (σ ) ∈
VN (σ ) and Wσ ∈ Vσ :

∥∥∥[N (ρ)]−α′/2 WN (σ ) [N (σ )]α
′/2Uσ−α′/2Wσ ρ1/2

∥∥∥
2α

≤
[
exp

{
γ ′

2
�̃′

γ (ρ, σ,N )

}] α′
γ ′

.

(110)
We can then take a maximum over all WN (σ ) ∈ VN (σ ) and Wσ ∈ Vσ and apply the
definition in (45) to establish that

exp

{
α′

2
�̃′

α(ρ, σ,N )

}
≤

[
exp

{
γ ′

2
�̃′

γ (ρ, σ,N )

}] α′
γ ′

. (111)

The inequality in (97) then follows for 1 < α < γ after taking a logarithm.
To get the monotonicity for the range 1/2 ≤ α < γ < 1, we exchange α and γ in

(98)–(101) and apply the same reasoning as in (102)–(110) to arrive at the following
inequality:

exp

{
γ ′

2
�̃′

γ (ρ, σ,N )

}
≤

[
exp

{
α′

2
�̃′

α(ρ, σ,N )

}] γ ′
α′

. (112)

Taking a negative logarithm and noting that 1/2 ≤ α < γ < 1, so that α′, γ ′ ∈
[−1, 0), then gives (97) for this range.

We are now left with proving the case α ∈ [1/2, 1) and γ ∈ (1,∞] the dual
parameter of α: such that 1/α + 1/γ = 2. Notice that α′ = −γ ′ and we have that
γ ′ > 0. We pick

G (z) = [N (ρ)]−(1−2z)α′/2 [N (σ )](1−2z)α′/2Uσ−(1−2z)α′/2ρ1/2, (113)

p0 = 2α, (114)

p1 = 2γ, (115)

θ = 1/2, (116)
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so that pθ = 2. Consider that

‖G (θ)‖2 =
∥∥∥[N (ρ)]−(1−2θ)α′/2 [N (σ )](1−2θ)α′/2Uσ−(1−2θ)α′/2ρ1/2

∥∥∥
2

(117)

=
∥∥∥Uρ1/2

∥∥∥
2

=
∥∥∥ρ1/2

∥∥∥
2

= 1. (118)

We then find that

M0 = sup
t∈R

‖G (i t)‖2α (119)

= sup
t∈R

∥∥∥[N (ρ)]−(1−2i t)α′/2 [N (σ )](1−2i t)α′/2Uσ−(1−2i t)α′/2ρ1/2
∥∥∥
2α

(120)

≤ max
VN (σ ),Vσ

∥∥∥[N (ρ)]−α′/2 VN (σ ) [N (σ )]α
′/2Uσ−α′/2Vσ ρ1/2

∥∥∥
2α

(121)

= exp

{
α′

2
�̃′

α(ρ, σ,N )

}
. (122)

Consider that

(1 − 2 (1 + i t)) α′ = − (1 + 2i t) α′ = (1 + 2i t) γ ′. (123)

Thus, similarly, we have

M1 = sup
t∈R

‖G (1 + i t)‖2γ (124)

= sup
t∈R

∥∥∥[N (ρ)]−(1+2i t)γ ′/2 [N (σ )](1+2i t)γ ′/2Uσ−(1+2i t)γ ′/2ρ1/2
∥∥∥
2γ

(125)

≤ max
VN (σ ),Vσ

∥∥∥[N (ρ)]−γ ′/2 VN (σ ) [N (σ )]γ
′/2Uσ−γ ′/2Vσ ρ1/2

∥∥∥
2γ

(126)

= exp

{
γ ′

2
�̃′

γ (ρ, σ,N )

}
. (127)

Applying Theorem 1 gives

1 ≤ exp

{
α′

4
�̃′

α(ρ, σ,N )

}
exp

{
γ ′

4
�̃′

γ (ρ, σ,N )

}
(128)

= exp

{
−γ ′

4
�̃′

α(ρ, σ,N )

}
exp

{
γ ′

4
�̃′

γ (ρ, σ,N )

}
, (129)

which implies (97) for α ∈ [1/2, 1) and 1/γ = 2 − 1/α. Putting the three cases
together along with Proposition 1 gives the inequality in (97) for 1/2 ≤ α ≤ γ ≤ ∞,
α 	= 1, and γ 	= 1.
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4.4 Bounds for the quantum relative entropy difference

A recent work [45] established refinements of the monotonicity of quantum relative
entropy, strong subadditivity, and other entropy inequalities. In this section, we point
out that these results follow as a consequence of the properties of the swiveled Rényi
entropies and along the way establish two new refinements of these entropy inequali-
ties.

We begin with a brief background. Let Pσ,N denote the Petz recovery map [29,30]
(see also [1]):

Pσ,N (·) ≡ σ 1/2N †
(
[N (σ )]−1/2 (·) [N (σ )]−1/2

)
σ 1/2, (130)

and let RV,W
σ,N denote the swiveled Petz recovery map

RV,W
σ,N (·) ≡ (

Wσ ◦ Pσ,N ◦ VN (σ )

)
(·), (131)

where the partial isometric map VN (σ ) is defined by

VN (σ )(·) = VN (σ )(·)V †
N (σ )

, (132)

and similarly forWσ , so that VN (σ ) (N (σ )) = N (σ ) andWσ (σ ) = σ . Observe then
that

RV,W
σ,N (N (σ )) = σ. (133)

Consider that particular values of α for �′
α(ρ, σ,N ) and �̃′

α(ρ, σ,N ) lead to the
following quantities, which can be interpreted as a (pseudo-) distance from the state
ρ to the state N (ρ) after a recovery channel RV,W

σ,N is applied:

�′
0(ρ, σ,N ) = min

VN (σ ),Wσ

D0

(
ρ

∥∥∥RV,W
σ,N (N (ρ))

)
, (134)

�̃′
1/2(ρ, σ,N ) = − log max

VN (σ ),Wσ

F
(
ρ,RV,W

σ,N (N (ρ))
)

. (135)

These observations combined with the monotonicity from Theorems 2 and 3 and the
facts that D0(ρ‖RV,W

σ,N (N (ρ))) ≥ 0 and − logmaxVN (σ ),Wσ F(ρ,RV,W
σ,N (N (ρ))) ≥

0 allow us to conclude the following:

Corollary 1 Let ρ, σ , andN be as given in Definition 1. The swiveled Rényi quantity
�′

α(ρ, σ,N ) is non-negative for α ∈ [0, 1) ∪ (1, 2] and �̃′
α(ρ, σ,N ) is non-negative

for α ∈ [1/2, 1) ∪ (1,∞].
In order to establish the upper bounds in this section, we need to take ρ, σ , andN

as given in the following definition:
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Definition 4 Let ρSE ′ be a positive definite density operator and let σSE ′ be a positive
definite operator, each acting on a finite-dimensional tensor-product Hilbert space
HS ⊗ HE ′ . Let N be a quantum channel given as follows:

N (θSE ′) = TrE
{
USE ′→BEθSE ′U †

SE ′→BE

}
, (136)

where USE ′→BE is a unitary operator taking HS ⊗ HE ′ to an isomorphic finite-
dimensional tensor-product Hilbert space HB ⊗ HE , such that N (ρ) and N (σ ) are
each positive definite and act onHB .

If ρ, σ , and N are taken as in Definition 4, then the following relations hold

�′
2(ρ, σ,N ) = max

VN (σ ),Wσ

D2

(
ρ

∥∥∥RV,W
σ,N (N (ρ))

)
, (137)

�̃′∞(ρ, σ,N ) = max
VN (σ ),Wσ

Dmax

(
ρ

∥∥∥RV,W
σ,N (N (ρ))

)
. (138)

The main contribution of the recent work [45] was to show that the relative entropy
difference�(ρ, σ,N ) in (13) can be bounded from below by (135). In the case that ρ,
σ , andN are taken as in Definition 4, then�(ρ, σ,N ) can be bounded from above by
(138). We find here that these results are an immediate corollary of Proposition 1 and
Theorem2, andwe also obtain twonewbounds on�(ρ, σ,N ) in terms of�0(ρ, σ,N )

and �2(ρ, σ,N ):

Corollary 2 Let ρ, σ , and N be as given in Definition 1 and such that supp(ρ) ⊆
supp(σ ). Then the following inequalities hold

− log max
VN (σ ),Wσ

F
(
ρ,RV,W

σ,N (N (ρ))
)

≤ D(ρ‖σ) − D (N (ρ)‖N (σ )) , (139)

min
VN (σ ),Wσ

D0

(
ρ

∥∥∥RV,W
σ,N (N (ρ))

)
≤ D(ρ‖σ) − D (N (ρ)‖N (σ )) . (140)

If ρ, σ , and N are as given in Definition 4, then the following inequalities hold

D(ρ‖σ) − D (N (ρ)‖N (σ )) ≤ max
VN (σ ),Wσ

Dmax

(
ρ

∥∥∥RV,W
σ,N (N (ρ))

)
, (141)

D(ρ‖σ) − D (N (ρ)‖N (σ )) ≤ max
VN (σ ),Wσ

D2

(
ρ

∥∥∥RV,W
σ,N (N (ρ))

)
. (142)

As discussed in [45] (see also [4,35]), Corollary 2 can be viewed as providing a
physically meaningful refinement of the monotonicity of quantum relative entropy in
(12). The bound

− log max
VN (σ ),Wσ

F
(
ρ,RV,W

σ,N (N (ρ))
)

≤ D(ρ‖σ) − D (N (ρ)‖N (σ )) (143)
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shows that if the decrease in relative entropy is small after the channel N acts, then
it is possible to perform the recovery map RV,W

σ,N such that σ is recovered perfectly
from N (σ ), while the recovery of ρ from N (ρ) has a performance limited by the
bound above. This result has far reaching implications in quantum information theory
as discussed in [45] (see also [4,35]).

Wemention here that it is also possible to obtain bounds of the form from [45], with
a single “ time” variable t ∈ R. The method of proof is similar to that for Theorem 4
in [45], so we give it in “Appendix 2”. The formal statement is as follows:

Theorem 4 Let ρ, σ , and N be as given in Definition 1 and such that supp(ρ) ⊆
supp(σ ). Then the following inequalities hold

inf
t∈R

D0

(
ρ

∥∥∥Rt
σ,N (N (ρ))

)
≤ D(ρ‖σ) − D (N (ρ)‖N (σ )) , (144)

where Rt
σ,N is the following rotated Petz recovery map:

Rt
σ,N (·) ≡ (

Uσ,t ◦ Pσ,N ◦ UN (σ ),−t
)
(·) , (145)

Pσ,N is the Petz recovery map defined in (130), and Uσ,t and UN (σ ),−t are partial
isometric maps defined from

Uω,t (·) ≡ ωi t (·) ω−i t , (146)

with ω a positive semi-definite operator. If ρ, σ , and N are as given in Definition 4,
then

D(ρ‖σ) − D (N (ρ)‖N (σ )) ≤ sup
t∈R

D2

(
ρ ‖Rt

σ,N (N (ρ))
)

. (147)

Remark 1 Note that it is possible to establish “universal” versions of the above
inequalities, by employing Hirschman’s improvement [19] of the Hadamard three-
line theorem, as done in [20].

5 Swiveled Rényi conditional mutual information

In this section, we show how swiveled Rényi conditional mutual information are
special cases of the quantities defined in the previous section. Furthermore, they satisfy
some of the properties that one would expect to hold for a Rényi generalization of
the conditional mutual information. However, they generally do not converge to the
conditional mutual information in the limit as α → 1.

Let ρABC be a density operator. Following from the observation [21] that

I (A; B|C)ρ = �(ρ, σ,N ), (148)

for the choices
ρ = ρABC , σ = ρAC ⊗ IB, N = TrA, (149)
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wedefine theRényi conditionalmutual information to be a special case of�′
α(ρ, σ,N )

and �̃′
α(ρ, σ,N ). That is, by setting

I ′
α(A; B|C)ρ = �′

α(ρABC , ρAC ⊗ IB,TrA), (150)

Ĩ ′
α(A; B|C)ρ = �̃′

α(ρABC , ρAC ⊗ IB,TrA), (151)

we obtain the swiveled Rényi conditional mutual information stated in the following
definition:

Definition 5 The swiveled Rényi conditional mutual information are defined for a
density operator ρABC and α ∈ (0, 1) ∪ (1,∞) as follows:

I ′
α(A; B|C)ρ ≡ 2

α − 1
max

VρAC ,VρC

log
∥∥∥ρ

(1−α)/2
BC VρCρ

(α−1)/2
C ρ

(1−α)/2
AC VρACρ

α/2
ABC

∥∥∥
2
,

(152)

Ĩ ′
α(A; B|C)ρ ≡ 2

α′ max
VρAC ,VρC

log
∥∥∥ρ

−α′/2
BC VρCρ

α′/2
C ρ

−α′/2
AC VρACρ

1/2
ABC

∥∥∥
2α

, (153)

where α′ = (α − 1) /α.

We can now easily show that the Rényi conditional mutual information as defined
above satisfy several natural properties, with the exception of convergence to the von
Neumann conditional mutual information.

The following is a consequence of (150 )–(151) and Proposition 1:

Corollary 3 Let ρABC be a positive definite density operator. Then

lim
α↗1

I ′
α(A; B|C)ρ = lim

α↗1
Ĩ ′
α(A; B|C)ρ (154)

≤ I (A; B|C)ρ (155)

≤ lim
α↘1

I ′
α(A; B|C)ρ (156)

= lim
α↘1

Ĩ ′
α(A; B|C)ρ. (157)

They are monotone non-decreasing with respect to the parameter α, which follows
from (150)–(151) and Theorems 2 and 3:

Corollary 4 Let ρABC be a density operator. The swiveled Rényi conditional mutual
information I ′

α(A; B|C)ρ and Ĩ ′
α(A; B|C)ρ aremonotone non-decreasingwith respect

to the Rényi parameter for particular values. For 0 ≤ α ≤ γ ≤ 2, α 	= 1, and γ 	= 1,
we have that

I ′
α(A; B|C)ρ ≤ I ′

γ (A; B|C)ρ, (158)

and for 1/2 ≤ α ≤ γ ≤ ∞, α 	= 1, and γ 	= 1,

Ĩ ′
α(A; B|C)ρ ≤ Ĩ ′

γ (A; B|C)ρ. (159)
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They are monotone non-increasing with respect to a quantum channel acting on the
B system, which follows by invoking [5, Lemmas 13 and 23]:

Corollary 5 Let ρABC be a positive definite density operator, and let NB→B′ be a
quantum channel such that

σAB′C ≡ NB→B′(ρABC ) (160)

is a positive definite density operator. Then for all α ∈ [0, 1) ∪ (1, 2], the following
inequality holds

I ′
α(A; B|C)ρ ≥ I ′

α(A; B ′|C)σ , (161)

and for all α ∈ [1/2, 1) ∪ (1,∞], the following inequality holds

Ĩ ′
α(A; B|C)ρ ≥ Ĩ ′

α(A; B ′|C)σ . (162)

Corollary 4, Proposition 1, and (150)–(151) then imply the following refinements
of the strong subaddivity of quantum entropy, two of which were already determined
in [45]:

Corollary 6 Let ρABC be a density operator. Then the following inequalities hold

− log

[
max

WρC ,VρAC

F
(
ρABC ,RV,W

C→AC (ρBC )
)]

≤ I (A; B|C)ρ, (163)

min
WρC ,VρAC

D0

(
ρABC

∥∥∥RV,W
C→AC (ρBC )

)
≤ I (A; B|C)ρ, (164)

where RV,W
C→AC is the following swiveled Petz recovery map:

RV,W
C→AC (·) ≡ (

VρAC ◦ PC→AC ◦ WρC

)
(·), (165)

the Petz recovery map PC→AC is defined as

PC→AC (·) ≡ PρAC ,TrA(·) = ρ
1/2
AC ρ

−1/2
C (·)ρ−1/2

C ρ
1/2
AC , (166)

and the partial isometric maps VρAC and WρC are defined as in (132). If ρABC is a
positive definite density operator, then the following inequalities hold

I (A; B|C)ρ ≤ max
WρC ,VρAC

Dmax

(
ρABC

∥∥∥RV,W
C→AC (ρBC )

)
, (167)

I (A; B|C)ρ ≤ max
WρC ,VρAC

D2

(
ρABC

∥∥∥RV,W
C→AC (ρBC )

)
. (168)

Note that remainder terms for strong subadditivity were put forward in [17,36]
before the recent developments in [45].
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6 Swiveled Rényi quantum information measures

We now discuss how to extend the approach given here and in [6] in order to construct
swiveledRényi generalizations of any quantum informationmeasurewhich consists of
a linear combination of von Neumann entropies with coefficients chosen from the set
{−1, 0, 1}.We repeat some of the discussions from [6] in order to illustrate themethod.

Let ρA1...Al be a density operator on l systems and set A ≡ {A1, . . . , Al}. Sup-
pose that we would like to establish a Rényi generalization of the following linear
combination of entropies:

L
(
ρA1...Al

) ≡
∑

S∈P≥1(A)

aSH(S)ρ, (169)

where P≥1 (A) is the power set of A (excluding the empty set), such that the sum
runs over all subsets of the systems A1, . . . , Al . Furthermore, each coefficient aS ∈
{−1, 0, 1} and corresponds to a subset S. In the case that aA is nonzero, without loss
of generality, we can set aA = −1 (otherwise, factor out −1 to make this the case).
Then, we can rewrite the quantity in (169) in terms of the relative entropy as follows:

D

(
ρA1...Al

∥∥∥∥∥exp
{

∑

S∈P ′
aS log ρS

})
, (170)

where P ′ = P≥1 (A) \ {A1, . . . , Al}. On the other hand, if aA = 0, i.e., if all the
marginal entropies in the sum are on a number of systems that is strictly smaller
than the number of systems over which the state ρ is defined (as is the case with
H(AB)+H(BC)+H(AC), for example), we can take a purification of the original state
and call this purification the state ρA1...Al . This state is now a pure state on a number
of systems strictly larger than the number of systems involved in all the marginal
entropies. We then add the entropy H(A1 . . . Al)ρ = 0 to the sum of entropies and
apply the above recipe (so we resolve the issue with this example by purifying to a
system R, setting the sum formula to be H(ABCR)+H(AB)+H(BC)+H(AC), and
proceedingwith the above recipe). In the case that the resulting density operatorρA1 ...Al
is not positive definite,we canmix itwith themaximallymixed stateπA1...Al as follows:

(1 − ε) ρA1...Al + επA1...Al , (171)

where ε ∈ (0, 1). The resulting density operator is then ε-distinguishable from the
original one by any quantum measurement performed on the systems A1 . . . Al .

We thendefine the following swiveledRényi entropies,whichgeneralize L
(
ρA1...Al

)

from (169):

L ′
α

(
ρA1...Al

) ≡ 2

α − 1
max{
VρS

}
S

log

∥∥∥∥∥

[
∏

S∈P ′
ρ

−aS(α−1)/2
S VρS

]
ρ

α/2
A1...Al

∥∥∥∥∥
2

, (172)

L̃ ′
α

(
ρA1...Al

) ≡ 2

α′ max{
VρS

}
S

log

∥∥∥∥∥

[
∏

S∈P ′
ρ

−aSα′/2
S VρS

]
ρ
1/2
A1...Al

∥∥∥∥∥
2α

, (173)
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where α′ = (α − 1) /α. The ordering of the marginal density operators in the product
is in general arbitrary, but could be important for some applications (consider, e.g.,
that the choices in Definition 5 lead to the inequalities in Corollary 6, which have a
physical interpretation in terms of recovery).

By the same methods as given throughout this paper, we can establish several
properties of these quantities. It follows from the generalized Lie–Trotter product
formula [37] and the method given in the proof of Proposition 1 that

lim
α↗1

L ′
α

(
ρA1...Al

) = lim
α↗1

L̃ ′
α

(
ρA1...Al

)
(174)

≤ L
(
ρA1...Al

)
(175)

≤ lim
α↘1

L ′
α

(
ρA1...Al

)
(176)

= lim
α↘1

L̃ ′
α

(
ρA1...Al

)
. (177)

From the same method as given in the proof of Theorems 2 and 3, for 0 ≤ α ≤ γ ≤ 2,
α 	= 1, and γ 	= 1, we can conclude that

L ′
α

(
ρA1...Al

) ≤ L ′
γ

(
ρA1...Al

)
, (178)

and for 1/2 ≤ α ≤ γ ≤ ∞, α 	= 1, and γ 	= 1,

L̃ ′
α

(
ρA1...Al

) ≤ L̃ ′
γ

(
ρA1...Al

)
. (179)

The inequalities above then lead to the following bounds for L
(
ρA1...Al

)
:

L ′
0

(
ρA1...Al

) ≤ L
(
ρA1...Al

) ≤ L ′
2

(
ρA1...Al

)
, (180)

L̃ ′
1/2

(
ρA1...Al

) ≤ L
(
ρA1...Al

) ≤ L̃ ′∞
(
ρA1...Al

)
, (181)

which in some cases might have physical interpretations in terms of swiveled Petz
recovery channels (see [45, Sections 5.6 and 5.7] for some examples).

7 Monotonicity of trace quantities

Ref. [47] posed an open question regarding whether the following quantity

Tr

{[
ρ

(1−α)/2
AC ρ

(α−1)/2
C ρ1−α

BC ρ
(α−1)/2
C ρ

(1−α)/2
AC

]1/(1−α)
}

(182)

is monotone in α and never exceeds one. The recent work [12] addressed this open
question, first by generalizing it and then proving that

Tr

{[
σ (1−α)/2N †

(
N (σ )(α−1)/2N (ρ)1−αN (σ )(α−1)/2

)
σ (1−α)/2

]1/(1−α)
}

≤ 1,

(183)
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for α ∈ (0, 1) and ρ, σ , and N as given in Definition 1. The same work established
that this bound holds for α ∈ (1, 2) if ρ, σ , and N are as given in Definition 1. One
recovers the quantity in (182) by picking ρ = ρABC , σ = ρAC ⊗ IB , and N = TrA
in (183). It is not known whether the quantity in (183) is monotone with respect to α.

Here, we address this latter question by again taking our approach of allowing for
a unitary swivel. Consider that we can rewrite the left-hand side of (183) as follows
for α ∈ (0, 1):

∥∥∥
[
N (ρ)(1−α)/2N (σ )(α−1)/2 ⊗ IE

]
Uσ (1−α)/2

∥∥∥
2/(1−α)

2/(1−α)
, (184)

where U is an isometric extension of the channel N . So we instead consider the
following quantity, which has an optimization over a unitary swivel:

max
VN (σ )

∥∥∥
[
N (ρ)(1−α)/2VN (σ )N (σ )(α−1)/2 ⊗ IE

]
Uσ (1−α)/2

∥∥∥
2/(1−α)

2/(1−α)
. (185)

To simplify the notation, consider that the above quantity for α ∈ [0, 1) is the same
as the following one for p ∈ [2,∞):

max
VN (σ )

∥∥∥
[
N (ρ)1/pVN (σ )N (σ )−1/p ⊗ IE

]
Uσ 1/p

∥∥∥
p

p
. (186)

We can now state our contribution to the open question:

Proposition 2 The quantity in (186) is monotone non-increasing on the interval p ∈
[2,∞) and has a maximum value of one at p = 2 if supp(ρ) ⊆ supp(σ ).

Proof This ends up being another application of the Hadamard three-line theorem,
using techniques similar to what we have used previously. For q ∈ [2,∞), q < p,
and VN (σ ) a fixed unitary commuting with N (σ ), pick

G (z) = [
N (ρ)z/qVN (σ )N (σ )−z/q ⊗ IE

]
Uσ z/q , (187)

p0 = ∞, (188)

p1 = q, (189)

θ = q/p, (190)

which implies that pθ = p. Applying Theorem 1 gives

‖G (θ)‖p ≤
[
sup
t∈R

‖G (i t)‖∞
]1−θ [

sup
t∈R

‖G (1 + i t)‖q
]θ

. (191)

So we evaluate these terms to find

‖G (θ)‖p = ∥∥[
N (ρ)θ/qVN (σ )N (σ )−θ/q ⊗ IE

]
Uσθ/q

∥∥
p (192)

=
∥∥∥
[
N (ρ)1/pVN (σ )N (σ )−1/p ⊗ IE

]
Uσ 1/p

∥∥∥
p
, (193)
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sup
t∈R

‖G (i t)‖∞ = sup
t∈R

∥∥∥
[
N (ρ)i t/qVN (σ )N (σ )−i t/q ⊗ IE

]
Uσ i t/q

∥∥∥∞ (194)

≤ 1, (195)

sup
t∈R

‖G (1 + i t)‖q = sup
t∈R

∥∥∥
[
N (ρ)(1+i t)/qVN (σ )N (σ )−(1+i t)/q ⊗ IE

]
Uσ (1+i t)/q

∥∥∥
q

(196)

= sup
t∈R

∥∥∥
[
N (ρ)1/qVN (σ )N (σ )−i t/qN (σ )−1/q ⊗ IE

]
Uσ 1/q

∥∥∥
q

(197)

≤ max
WN (σ )

∥∥∥
[
N (ρ)1/qWN (σ )N (σ )−1/q ⊗ IE

]
Uσ 1/q

∥∥∥
q
. (198)

Putting everything together, we find that for 2 ≤ q < p, the following inequality
holds

max
VN (σ )

∥∥∥
[
N (ρ)1/pVN (σ )N (σ )−1/p ⊗ IE

]
Uσ 1/p

∥∥∥
p

p

≤ max
WN (σ )

∥∥∥
[
N (ρ)1/qWN (σ )N (σ )−1/q ⊗ IE

]
Uσ 1/q

∥∥∥
q

q
, (199)

since the inequality from (191) holds for all VN (σ ). This establishes the first statement
in the proposition.

For the second statement, consider evaluating (186) at p = 2 for any choice of
VN (σ ):

∥∥∥
[
N (ρ)1/2VN (σ )N (σ )−1/2 ⊗ IE

]
Uσ 1/2

∥∥∥
2

2

= Tr
{
σ 1/2U †

[
N (σ )−1/2V †

N (σ )
N (ρ)VN (σ )N (σ )−1/2 ⊗ IE

]
Uσ 1/2

}
(200)

= Tr
{
σ 1/2N †

[
N (σ )−1/2V †

N (σ )
N (ρ)VN (σ )N (σ )−1/2

]
σ 1/2

}
(201)

= Tr
{
N (σ )N (σ )−1/2V †

N (σ )
N (ρ)VN (σ )N (σ )−1/2

}
(202)

= Tr
{
ΠN (σ )V

†
N (σ )

N (ρ)VN (σ )

}
(203)

= Tr
{
ΠN (σ )N (ρ)

}
(204)

= 1. (205)

Corollary 7 Let ρABC be a density operator. Then the following quantity is monotone
non-increasing for α ∈ [0, 1) and takes a maximum value of one at α = 0:

max
VρC

Tr

{(
ρ

(1−α)/2
AC VρCρ

(α−1)/2
C ρ1−α

BC ρ
(α−1)/2
C V †

ρC
ρ

(1−α)/2
AC

)1/(1−α)
}

. (206)

If ρABC is a positive definite, then the same quantity is monotone non-decreasing for
α ∈ (1, 2] and takes a maximum value of one at α = 2.
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Proof Thefirst statement follows by applying Proposition 2 for the choicesρ = ρABC ,
σ = ρAC ⊗ IB , and N = TrA. The second statement follows because

(
ρ

(1−α)/2
AC VρCρ

(α−1)/2
C ρ1−α

BC ρ
(α−1)/2
C V †

ρC
ρ

(1−α)/2
AC

)1/(1−α)

=
(
ρ

(1−β)/2
AC VρCρ

(β−1)/2
C ρ

1−β
BC ρ

(β−1)/2
C V †

ρC
ρ

(1−β)/2
AC

)1/(1−β)

, (207)

for β = 2 − α ∈ (0, 1) and then we apply the first statement.

8 Conclusion

Themain contribution of this paper is a general method, the “ swiveled Rényi entropic”
approach, for constructing α-Rényi generalizations of a quantum informationmeasure
that are monotone non-decreasing in the parameter α. The swiveled Rényi entropies
are discontinuous at α = 1 and do not converge to von Neumann entropy-based
quantities in the limit as α → 1. We suspect that the swiveled Rényi entropies might
be helpful in understanding refinements of quantum information-processing tasks, but
this remains unclear due to the lack of convergence at α = 1. At the very least, the
technique recovers the recent refinements [45] of fundamental entropy inequalities
such as monotonicity of quantum relative entropy [24,41] and strong subadditivity
[22,23], in addition to providing new refinements for these entropy inequalities.

The most important open question going forward from here is to determine Rényi
entropies which satisfy all of the desiderata that one would have for Rényi generaliza-
tions of quantum information measures. We find it curious that with the proposal in
[6], one can prove convergence to a von Neumann entropy-based quantity in the limit
as α → 1, but we are still unable to establish monotonicity in α. However, with the
swiveled Rényi entropies proposed here, the situation is reversed.

One might also consider developing chain rules for the swiveled Rényi entropies,
along the lines established in [13], but it is unclear how useful this would be in practice,
given that the quantities do not generally converge at α = 1.
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Appendix 1: Limit as α → 1

Definition 6 Let ρ, σ , andN be as given in Definition 1. For α ∈ (0, 1) ∪ (1,∞), let

�α(ρ, σ,N ) = 1

α − 1
log Qα(ρ, σ,N ), (208)
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where

Qα(ρ, σ,N ) ≡
∥∥∥
(
N (ρ)(1−α)/2N (σ )(α−1)/2 ⊗ IE

)
Uσ (1−α)/2ρα/2

∥∥∥
2

2
. (209)

Theorem 5 Let ρ, σ , and N be as given in Definition 1 and such that supp(ρ) ⊆
supp(σ ). The following limit holds

lim
α→1

�α(ρ, σ,N ) = D(ρ‖σ) − D (N (ρ)‖N (σ )) . (210)

Proof Let Πω denote the projection onto the support of ω. From the condition
supp(ρ) ⊆ supp(σ ), it follows that supp (N (ρ)) ⊆ supp (N (σ )) [32, Appendix B.4].
We can then conclude that

Πσ Πρ = Πρ, ΠN (ρ)ΠN (σ ) = ΠN (ρ). (211)

We also know that supp
(
UρU †

) ⊆ supp (N (ρ) ⊗ IE ) [32, Appendix B.4], so that

(
ΠN (ρ) ⊗ IE

)
ΠUρU† = ΠUρU† . (212)

When α = 1, we find from the above facts that

Q1(ρ, σ,N ) =
∥∥∥
(
ΠN (ρ)ΠN (σ ) ⊗ IE

)
UΠσ ρ1/2

∥∥∥
2

2
(213)

=
∥∥∥
(
ΠN (ρ) ⊗ IE

)
UΠρρ1/2

∥∥∥
2

2
(214)

=
∥∥∥
(
ΠN (ρ) ⊗ IE

)
ΠUρU†Uρ1/2

∥∥∥
2

2
(215)

=
∥∥∥ΠUρU†Uρ1/2

∥∥∥
2

2
(216)

=
∥∥∥ρ1/2

∥∥∥
2

2
(217)

= 1. (218)

So from the definition of the derivative, this means that

lim
α→1

�α(ρ, σ,N ) = lim
α→1

log Qα(ρ, σ,N ) − log Q1(ρ, σ,N )

α − 1
(219)

= d

dα

[
log Qα(ρ, σ,N )

]∣∣∣∣
α=1

(220)

= 1

Q1(ρ, σ,N )

d

dα
[Qα(ρ, σ,N )]

∣∣∣∣
α=1

(221)

= d

dα
[Qα(ρ, σ,N )]

∣∣∣∣
α=1

. (222)
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Let α′ ≡ α − 1. Consider that

Qα(ρ, σ,N ) = Tr
{
ρασ−α′/2N †

(
N (σ )α

′/2N (ρ)−α′N (σ )α
′/2

)
σ−α′/2

}
. (223)

Now we calculate d
dα

Qα(ρ, σ,N ):

d

dα
Tr

{
ρασ−α′/2N †

(
N (σ )α

′/2N (ρ)−α′N (σ )α
′/2

)
σ−α′/2

}

= Tr

{[
d

dα
ρα

]
σ−α′/2N †

(
N (σ )α

′/2N (ρ)−α′N (σ )α
′/2

)
σ−α′/2

}

+ Tr

{
ρα

[
d

dα
σ−α′/2

]
N †

(
N (σ )α

′/2N (ρ)−α′N (σ )α
′/2

)
σ−α′/2

}

+ Tr

{
ρασ−α′/2N †

([
d

dα
N (σ )α

′/2
]
N (ρ)−α′N (σ )α

′/2
)

σ−α′/2
}

+ Tr

{
ρασ−α′/2N †

(
N (σ )α

′/2
[
d

dα
N (ρ)−α′

]
N (σ )α

′/2
)

σ−α′/2
}

+ Tr

{
ρασ−α′/2N †

(
N (σ )α

′/2N (ρ)−α′
[
d

dα
N (σ )α

′/2
])

σ−α′/2
}

+ Tr

{
ρασ−α′/2N †

(
N (σ )α

′/2N (ρ)−α′N (σ )α
′/2

) [
d

dα
σ−α′/2

]}
(224)

=
[
Tr

{
ρα

[
log ρ

]
σ−α′/2N †

(
N (σ )α

′/2N (ρ)−α′N (σ )α
′/2

)
σ−α′/2

}

− 1

2
Tr

{
ρ

[
log σ

]
σ−α′/2N †

(
N (σ )α

′/2N (ρ)−α′N (σ )α
′/2

)
σ−α′/2

}

+ 1

2
Tr

{
ρσ−α′/2N †

([
logN (σ )

]
N (σ )α

′/2N (ρ)−α′N (σ )α
′/2

)
σ−α′/2

}

− Tr
{
ρσ−α′/2N †

(
N (σ )α

′/2 [
logN (ρ)

]
N (ρ)−α′N (σ )α

′/2
)

σ−α′/2
}

+ 1

2
Tr

{
ρσ−α′/2N †

(
N (σ )α

′/2N (ρ)−α′N (σ )α
′/2 [

logN (σ )
])

σ−α′/2
}

− 1

2
Tr

{
ρσ−α′/2N †

(
N (σ )α

′/2N (ρ)−α′N (σ )α
′/2

)
σ−α′/2 [

log σ
]} ]

.

(225)

Taking the limit as α → 1 gives

d

dα
Qα(ρ, σ,N )

∣∣∣∣
α=1

= Tr
{
ρ

[
log ρ

]
ΠσN † (

ΠN (σ )ΠN (ρ)ΠN (σ )

)
Πσ

}

− 1

2
Tr

{
ρ

[
log σ

]
ΠσN † (

ΠN (σ )ΠN (ρ)ΠN (σ )

)
Πσ

}

+ 1

2
Tr

{
ρΠσN † ([

logN (σ )
]
ΠN (σ )ΠN (ρ)ΠN (σ )

)
Πσ

}
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− Tr
{
ρΠσN † (

ΠN (σ )

[
logN (ρ)

]
ΠN (ρ)ΠN (σ )

)
Πσ

}

+ 1

2
Tr

{
ρΠσN † (

ΠN (σ )ΠN (ρ)ΠN (σ )

[
logN (σ )

])
Πσ

}

− 1

2
Tr

{
ρΠσN † (

ΠN (σ )ΠN (ρ)ΠN (σ )

) [
log σ

]
Πσ

}
.

(226)

We now simplify the first four terms and note that the last two areHermitian conjugates
of the second and third:

Tr
{
ρ

[
log ρ

]
ΠσN † (

ΠN (σ )ΠN (ρ)ΠN (σ )

)
Πσ

}
= Tr

{
ρ

[
log ρ

]
N † (

ΠN (ρ)

)}

= Tr
{
N

(
ρ

[
log ρ

])
ΠN (ρ)

} = Tr
{
Uρ

[
log ρ

]
U † (

ΠN (ρ) ⊗ IE
)}

= Tr
{
ΠUρU†Uρ

[
log ρ

]
U † (

ΠN (ρ) ⊗ IE
)} = Tr

{
ΠUρU†Uρ

[
log ρ

]
U †

}

= Tr
{
ρ

[
log ρ

]}
, (227)

Tr
{
ρ

[
log σ

]
ΠσN † (

ΠN (σ )ΠN (ρ)ΠN (σ )

)
Πσ

}
= Tr

{
ρ

[
log σ

]
N † (

ΠN (ρ)

)}

= Tr
{
N

(
ρ

[
log σ

]) (
ΠN (ρ)

)} = Tr
{
Uρ

[
log σ

]
U † (

ΠN (ρ) ⊗ IE
)}

= Tr
{
ΠUρU†UρU †U

[
log σ

]
U † (

ΠN (ρ) ⊗ IE
)} = Tr

{
UρU †U

[
log σ

]
U †

}

= Tr
{
ρ

[
log σ

]}
, (228)

Tr
{
ρΠσN † ([

logN (σ )
]
ΠN (σ )ΠN (ρ)ΠN (σ )

)
Πσ

}

= Tr
{
ρN † ([

logN (σ )
]
ΠN (ρ)

)}

= Tr
{
N (ρ)

[
logN (σ )

]
ΠN (ρ)

} = Tr
{
N (ρ)

[
logN (σ )

]}
, (229)

Tr
{
ρΠσN † (

ΠN (σ )

[
logN (ρ)

]
ΠN (ρ)ΠN (σ )

)
Πσ

}

= Tr
{
ρN † ([

logN (ρ)
]
ΠN (ρ)

)}

= Tr
{
N (ρ)

([
logN (ρ)

]
ΠN (ρ)

)} = Tr
{
N (ρ)

[
logN (ρ)

]}
. (230)

This then implies that the following equality holds

d

dα
Qα(ρ, σ,N )

∣∣∣∣
α=1

= Tr
{
ρ

[
log ρ

]} − Tr
{
ρ

[
log σ

]}

+Tr
{
N (ρ)

[
logN (σ )

]} − Tr
{
N (ρ)

[
logN (ρ)

]}
. (231)

Putting together (222) and (231), we can then conclude the statement of the theorem.
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Appendix 2: Auxiliary lemmas and proofs

Lemma 1 Let A and T be compact metric spaces, and let f : A × T → R be a
continuous function. Then, g, h : A → R, defined as g(α) = maxt∈T f (α, t) and
h(α) = mint∈T f (α, t) are continuous.

Proof By the Heine–Cantor theorem, f is uniformly continuous. Hence, for every
ε > 0, there exists a δ > 0 such that

∣∣ f (α, t) − f (α′, t ′)
∣∣ < ε whenever DA(α, α′) <

δ and DT (t, t ′) < δ, where DA and DT are the distance functions on A and T
respectively. Now, given α ∈ A, let t be such that g(α) = f (α, t). Then, for any
α′ ∈ A with DA(α, α′) < δ we have that

g(α) = f (α, t) < f (α′, t) + ε � max
t ′∈T

f (α′, t ′) + ε = g(α′) + ε.

By symmetry, we then have that
∣∣g(α) − g(α′)

∣∣ < ε, which proves the continuity of
g. A similar argument establishes the continuity of h. ��
Proof of Theorem 4 Let ρ, σ , and N be as given in Definition 4. Let

G (z) =
(
N (ρ)−z/2N (σ )z/2 ⊗ IE

)
Uσ−z/2ρ(1+z)/2. (232)

In the equation
1

pθ

= θ

p0
+ 1 − θ

p1
, (233)

choose p0 = 2 and p1 = 2, so that pθ = 2. Recalling that

Mk = sup
t∈R

‖G (k + i t)‖pk , (234)

for k = 0, 1, we find that
‖G (θ)‖pθ

≤ M1−θ
0 Mθ

1 . (235)

For our choices, we find that

M0 = sup
t∈R

‖G (i t)‖2 (236)

= sup
t∈R

∥∥∥
(
N (ρ)−i t/2N (σ )i t/2 ⊗ IE

)
Uσ−i t/2ρ(1+i t)/2

∥∥∥
2

(237)

=
∥∥∥ρ1/2

∥∥∥
2

= 1, (238)

M1 = sup
t∈R

‖G (1 + i t)‖2 (239)

= sup
t∈R

∥∥∥
(
N (ρ)−(1+i t)/2N (σ )(1+i t)/2 ⊗ IE

)
Uσ−(1+i t)/2ρ(1+(1+i t))/2

∥∥∥
2

(240)

= sup
t∈R

∥∥∥
(
N (ρ)−1/2N (σ )i t/2N (σ )1/2 ⊗ IE

)
Uσ−1/2σ−i t/2ρ

∥∥∥
2

(241)
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=
[
exp sup

t∈R
D2

(
ρ‖ (

Uσ,−t ◦ Pσ,N ◦ UN (σ ),t
)
(N (ρ))

)]1/2
. (242)

Applying the three-line theorem gives

∥∥∥
(
N (ρ)−θ/2N (σ )θ/2 ⊗ IE

)
Uσ−θ/2ρ(1+θ)/2

∥∥∥
2

≤
[
exp sup

t∈R
D2

(
ρ‖ (

Uσ,−t ◦ Pσ,N ◦ UN (σ ),t
)
(N (ρ))

)]θ/2

, (243)

and after a logarithm gives

2

θ
log

∥∥∥
(
N (ρ)−θ/2N (σ )θ/2 ⊗ IE

)
Uσ−θ/2ρ(1+θ)/2

∥∥∥
2

≤ sup
t∈R

D2
(
ρ‖ (

Uσ,−t ◦ Pσ,N ◦ UN (σ ),t
)
(N (ρ))

)
. (244)

Take the limit as θ ↘ 0 to get

D(ρ‖σ) − D (N (ρ)‖N (σ )) ≤ sup
t∈R

D2
(
ρ‖ (

Uσ,−t ◦ Pσ,N ◦ UN (σ ),t
)
(N (ρ))

)
.

(245)
Now we prove the other inequality. Let ρ, σ , andN be as given in Definition 1 and

such that supp(ρ) ⊆ supp(σ ). Take

G (z) =
(
N (ρ)z/2N (σ )−z/2 ⊗ IE

)
Uσ z/2ρ(1−z)/2. (246)

Then M0 = 1 again and

M1 = sup
t∈R

‖G (1 + i t)‖2 (247)

= sup
t∈R

∥∥∥
(
N (ρ)(1+i t)/2N (σ )−(1+i t)/2 ⊗ IE

)
Uσ (1+i t)/2ρ(1−(1+i t))/2

∥∥∥
2

(248)

= sup
t∈R

∥∥∥
(
N (ρ)1/2N (σ )−i t/2N (σ )−1/2 ⊗ IE

)
Uσ 1/2σ i t/2ρ0

∥∥∥
2

(249)

= exp

{
− inf

t∈R
D0

(
ρ‖ (

Uσ,−t ◦ Pσ,N ◦ UN (σ ),t
)
(N (ρ))

)}1/2

. (250)

Applying the three-line theorem gives

∥∥∥
(
N (ρ)θ/2N (σ )−θ/2 ⊗ IE

)
Uσθ/2ρ(1−θ)/2

∥∥∥
2

≤
[
exp

{
− inf

t∈R
D0

(
ρ‖ (

Uσ,−t ◦ Pσ,N ◦ UN (σ ),t
)
(N (ρ))

)}]θ/2

, (251)
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which after taking a logarithm gives

2

−θ
log

∥∥∥
(
N (ρ)θ/2N (σ )−θ/2 ⊗ IE

)
Uσθ/2ρ(1−θ)/2

∥∥∥
2

≥ inf
t∈R

D0
(
ρ‖ (

Uσ,−t ◦ Pσ,N ◦ UN (σ ),t
)
(N (ρ))

)
. (252)

Take the limit as θ ↘ 0 to get

D(ρ‖σ) − D (N (ρ)‖N (σ )) ≥ inf
t∈R

D0
(
ρ‖ (

Uσ,−t ◦ Pσ,N ◦ UN (σ ),t
)
(N (ρ))

)
.

(253)
��

Appendix 3: Taylor expansions

Here we show the following limit:

lim
α→1

f
(
α, VN (σ ), Vσ

) = f
(
1, VN (σ ), Vσ

)
, (254)

where f
(
α, VN (σ ), Vσ

)
is defined as

f
(
α, VN (σ ), Vσ

) = 1

α − 1

log
∥∥∥
(
[N (ρ)](1−α)/2 VN (σ ) [N (σ )](α−1)/2 ⊗ IE

)
Uσ (1−α)/2Vσ ρα/2

∥∥∥
2

2
(255)

and f
(
1, VN (σ ), Vσ

)
in (53). From the fact that

log
∥∥∥
(
[N (ρ)](1−α)/2 VN (σ ) [N (σ )](α−1)/2 ⊗ IE

)
Uσ (1−α)/2Vσ ρα/2

∥∥∥
2

2

∣∣∣∣
α=1

= 0,

(256)
we know (from the definition of derivative) that limα→1 f

(
α, VN (σ ), Vσ

)
is equal to

d

dα
log

∥∥∥
(
[N (ρ)](1−α)/2 VN (σ ) [N (σ )](α−1)/2 ⊗ IE

)
Uσ (1−α)/2Vσ ρα/2

∥∥∥
2

2

∣∣∣∣
α=1

= d

dα

∥∥∥
(
[N (ρ)](1−α)/2 VN (σ ) [N (σ )](α−1)/2 ⊗ IE

)
Uσ (1−α)/2Vσ ρα/2

∥∥∥
2

2

∣∣∣∣
α=1

.

(257)

Weevaluate the latter derivative by employingTaylor expansions. Substituteα = 1+γ ,
so that the quantity inside the derivative operation is equal to

∥∥∥
(
[N (ρ)]−γ /2 VN (σ ) [N (σ )]γ /2 ⊗ IE

)
Uσ−γ /2Vσ ρ(1+γ )/2

∥∥∥
2

2
, (258)
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which we can rewrite as

∥∥∥∥

([
V †
N (σ )

N (ρ)VN (σ )

]−γ /2
[N (σ )]γ /2 ⊗ IE

)
Uσ−γ /2

[
Vσ ρV †

σ

](1+γ )/2
∥∥∥∥
2

2
,

(259)
due to the unitary invariance of the norm. Now we use that

[
Vσ ρV †

σ

](1+γ )/2 =
[
Vσ ρV †

σ

]1/2+ γ

2

[
Vσ ρV †

σ

]1/2
log

[
Vσ ρV †

σ

]
+O

(
γ 2

)
,

(260)

σ−γ /2 = I − γ

2
log σ + O

(
γ 2

)
, (261)

[N (σ )]γ /2 = I + γ

2
log [N (σ )] + O

(
γ 2

)
, (262)

[
V †
N (σ )

N (ρ) VN (σ )

]−γ /2 = I − γ

2
log

[
V †
N (σ )

N (ρ)VN (σ )

]
+ O

(
γ 2

)
. (263)

The above implies that

[
V †
N (σ )

N (ρ) VN (σ )

]−γ /2
[N (σ )]γ /2Uσ−γ /2

[
Vσ ρV †

σ

](1+γ )/2

=
(
I − γ

2
log

[
V †
N (σ )

N (ρ)VN (σ )

]) (
I + γ

2
log [N (σ )]

)

×U
(
I− γ

2
log σ

) ([
Vσ ρV †

σ

]1/2+ γ

2

[
Vσ ρV †

σ

]1/2
log

[
Vσ ρV †

σ

])
+O

(
γ 2

)
.

(264)

By working out the right-hand side above and neglecting terms of second order in γ

and higher, we find that

[
V †
N (σ )

N (ρ) VN (σ )

]−γ /2
[N (σ )]γ /2Uσ−γ /2

[
Vσ ρV †

σ

](1+γ )/2

= U
[
Vσ ρV †

σ

]1/2 − γ

2
log

[
V †
N (σ )

N (ρ) VN (σ )

]
U

[
Vσ ρV †

σ

]1/2

+γ

2
log [N (σ )]U

[
Vσ ρV †

σ

]1/2

−γ

2
U

[
log σ

] [
Vσ ρV †

σ

]1/2 + γ

2
U

[
Vσ ρV †

σ

]1/2
log

[
Vσ ρV †

σ

]
+ O

(
γ 2

)
.

(265)

The Hermitian conjugate is

[
Vσ ρV †

σ

]1/2
U † − γ

2

[
Vσ ρV †

σ

]1/2
U † log

[
V †
N (σ )

N (ρ)VN (σ )

]

+γ

2

[
Vσ ρV †

σ

]1/2
U † log [N (σ )]
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−γ

2

[
Vσ ρV †

σ

]1/2 [
log σ

]
U † + γ

2

[
log

[
Vσ ρV †

σ

]] [
Vσ ρV †

σ

]1/2
U † + O

(
γ 2

)
.

(266)

Combining (265)with its Hermitian conjugate and neglecting higher order terms gives

[
Vσ ρV †

σ

]
− γ

[
Vσ ρV †

σ

]1/2
N †

(
log

[
V †
N (σ )

N (ρ)VN (σ )

]) [
Vσ ρV †

σ

]1/2

+γ
[
Vσ ρV †

σ

]1/2
N † (log [N (σ )])

[
Vσ ρV †

σ

]1/2−γ
[
Vσ ρV †

σ

]1/2 [
log σ

] [
Vσ ρV †

σ

]1/2

+γ

2

[
Vσ ρV †

σ

]
log

[
Vσ ρV †

σ

]
+ γ

2

(
log

[
Vσ ρV †

σ

]) [
Vσ ρV †

σ

]
+ O

(
γ 2

)
. (267)

Taking a trace gives

Tr {ρ} − γTr
{[

Vσ ρV †
σ

]
N †

(
log

[
V †
N (σ )

N (ρ)VN (σ )

])}

+γTr
{[

Vσ ρV †
σ

]
N † (log [N (σ )])

}
− γTr

{
ρ

[
log σ

]}

+γTr {ρ log ρ} + O
(
γ 2

)
. (268)

We can now finally use the above development to conclude that

d

dα

∥∥∥
(
[N (ρ)](1−α)/2 VN (σ ) [N (σ )](α−1)/2 ⊗ IE

)
Uσ (1−α)/2Vσ ρα/2

∥∥∥
2

2

∣∣∣∣
α=1

= d

dγ

∥∥∥∥

([
V †
N (σ )

N (ρ)VN (σ )

]−γ /2
[N (σ )]γ /2 ⊗ IE

)
Uσ−γ /2

[
Vσ ρV †

σ

](1+γ )/2
∥∥∥∥
2

2

∣∣∣∣∣
γ=0

(269)

= Tr
{
ρ

[
log ρ − log σ

]}

− Tr
{
N

([
Vσ ρV †

σ

]) [
log

[
V †
N (σ )

N (ρ)VN (σ )

]
− log [N (σ )]

]}
(270)

= f (1, VN (σ ), Vσ ). (271)

A similar development with Taylor expansions leads to the conclusion that (63) holds. However,
here one should employ the method outlined in the proof of [46, Proposition11].
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