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Abstract We consider a position-dependent coined quantum walk on Z and assume
that the coin operator C (x) satisfies

IC(x) — Coll < cilx]™'7¢, x €2\ {0}

with positive ¢; and € and Cy € U(2). We show that the Heisenberg operator x () of
the position operator converges to the asymptotic velocity operator 04 so that

: L X() .
S- ll_l)rgo exp (157) = II,(U) + exp(i§v4)[Tac(U)

provided that U has no singular continuous spectrum. Here IT,(U) (resp., [T, (U)) is
the orthogonal projection onto the direct sum of all eigenspaces (resp., the subspace
of absolute continuity) of U. We also prove that for the random variable X; denoting
the position of a quantum walker at time ¢t € N, X;/¢ converges in law to a random
variable V with the probability distribution

my = I (U)Woll*80 + | Eg, () ac (U)o,

where Wy is the initial state, §o the Dirac measure at zero, and Ej N the spectral measure
Of ﬁ+ .
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104 A. Suzuki

1 Introduction

The weak limit theorems for discrete time quantum walks have been studied in various
models (for reviews, see [7,12]). In his papers [5,6], Konno first proved the weak limit
theorem for a position-independent quantum walk on Z. Grimmett et al. [4] simplified
the proof and extended the result to higher dimensions. For position-dependent quna-
tum walks on Z, the weak limit theorems were obtained by Konno et al. [9], Endo and
Konno [2], and Endo et al. [3].

We consider a position-dependent quantum walk on Z given by a unitary evolution
operator U':

UW)(x)=Px+ DV +D+Q0x - H¥(x—1), xeZ,

where W is a state vector in the Hilbert space H = 02(Z; C?) of states and

_ [alx) b(x) (0 O
P(x)_( 0 0 ) QW) = (c(x) d(x))'

Let C(x) = P(x) + Q(x) € U(2) and S be a shift operator such that U = SC.
Suppose that there exists a unitary matrix Co = Py + Qo € U(2) such that

IC(x) — Coll < cilx|™'7¢, x eZ\ {0} (1.1)

with positive ¢; and € independent of x. Here || M|| stands for the operator norm
of a matrix M € M>(C). A typical example is the quantum walks with one defect
[1,8,9,13], which clearly satisfies (1.1). We note that the condition (1.1) allows not
only finite but also infinite defects, whereas the models introduced in [2,3] do not
satisfy (1.1). The unitary operator Uy = SCy also defines an evolution of a position-
independent quantum walk on Z and satisfies

OoV)(x) = PpW(x + 1)+ Q¥ (x — 1), xeZ

with Cop = Pp+ Qo. Let X be the position operator defined by (x W) (x) = xW(x), x €
Z.and Xo(t) = Uy 3 U/ the Heisenberg operator of X at time 1 € N with the evolution
Up. In Grimmett et al. [4] essentially proved that the operator x((t)/t weakly converges
to the asymptotic velocity operator 7y so that

w- tl_l)rgo exp (igi()(t)) = exp (isﬁo) , £eR (1.2)

Let X t(o) be the random variable denoting the position of a quantum walker at time
t € N with the evolution operator Uy. Then, the characteristic function of X t(o) /tis
given by
E(eiSXt(O)/l) _ <\Ijo’ei§)€0(t)/tqjo>’ é_— e R,

@ Springer



Asymptotic velocity of a position-dependent quantum walk 105

where W is the initial state of the quantum walker. Hence, (1.2) means that the random
variable X ,(0) /t converges in law to a random variable Vj, which represents the linear
spreading of the quantum walk: X ,(O) ~ tVp.

In this paper, we derive the asymptotic velocity 04 for the Heisenberg operator
X(t) = UT'XU" with the evolution U of the position-dependent quantum walk. The
decaying condition (1.1) implies that U — U is a trace class operator and allows us
to prove the existence and completeness of the wave operator

Wi =s- lim U™ UfMa(Up)
—00

using a discrete analogue of the Kato—Rosenblum Theorem (see [11] for details),
where I, (Up) is the orthogonal projection onto the subspace of absolute continuity
of Uy. We also prove that

Xo(1)
t

s- lim exp (iE ) =exp (i§0p), £€R
11— 00

under a reasonable condition, which is essentially the same as that of [4]. Furthermore,
we assume that U has no singular continuous spectrum. Then, we prove that

s- lim exp (z’s@) = (V) + exp(i& ) Mae (U), (1.3)

where I, (U) is the orthogonal projection onto the direct sum of all eigenspaces of U
and 0y = W, 0o W7. We believe that the absence of a singular continuous spectrum can
be checked with a concrete example such as the one-defect model. As a consequence
of (1.3), we have the following weak limit theorem. Let X; be the random variable
denoting the position of a quantum walker at time ¢ € N with the evolution operator
U and the initial state Wy. We prove that X, /¢ converges in law to a random variable
V with a probability distribution

py = M) Woll*80 + [ Es, () Mac(U)Wol I,
where & is the Dirac measure at zero and Ej, the spectral measure of v
The remainder of this paper is organized as follows. In Sect. 2, we present the
precise definition of the model and our results. Section 3 is devoted to the proof of

the existence and completeness of the wave operator. In Sect. 4, we construct the
asymptotic velocity.

2 Definition of the model

Let H = £2(Z; C?) be the Hilbert space of the square summable functions W : Z —
C?. We define a shift operator S and a coin operator C on H as follows. For a vector
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106 A. Suzuki

w©® .
v = (\y(l)) € H, SV is given by

o
(SW)(x) = (\I' (x + 1)), xeZ.

v —1)
Let {C(x)}ycz C U(2) be a family of unitary matrices with
e = (i )
CV is given by
(C¥)(x) =Cx)¥(x), xelZ.
We define an evolution operator as U = SC. U satisfies
UVx)=Px+DH¥x+DH+0x—-D¥(x—-1), xeZ

with

_ [(a) b(x) (0 O
P(x)_( 0 0 ) QW) = (c(x) d(x))'

For a matrix M € M(2,C), we use ||M|| to denote the operator norm in C2:
M| = SUD|x | o =1 [|Mx||c2. We suppose that:

ag bo

(A.1) There exists a unitary matrix Co = (
co do

) € U(2) such that

IC(x) — Coll < c1lx|™'7¢, x € Z\ {0}

with some positive ¢ and € independent of x.
We denote by 7 the set of trace class operators.
Lemma 2.1 Let U satisfy (A.1) and set Uy = SC¢. Then, U — Uy € 9.
Proof LetT = U — Up and T (x) = C(x) — Cp. Then,
T*T = (C — Co)*(C — Cp) 2.1
is the multiplication operator by the matrix-valued function 7 (x)*T (x). Let #; (x)

(i = 1, 2) be the eigenvalues of the Hermitian matrix 7' (x)*7T (x) € M (2, C) and take
an orthonormal basis (ONB) {t; (x)};=1 2 of corresponding eigenvectors for all x € Z.
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Asymptotic velocity of a position-dependent quantum walk 107

We use |€)(n| to denote the operator on H defined by |&)(n|¥ = (1, V)&. Then, we
have

T*T = D D 6070 (Tl 22)

i=12xeZ
where {7; } is the ONB given by
7ix(y) =0yTi(x), y€Z.

Since T*(x)T (x) > 0, we have 7;(x) > 0. By (A.1), we know that

max £;(x) < cf|x| 727
=1,

Hence, we have

Tr|T] = Z Z ()2 < 20 Z lx|717¢ < oo,

xeZi=1.2 x€Z
which means that 7 € .7]. Since .7] is anideal, U — Uy = ST € 7. O

Example 2.1 (one-defect model) Let Co, C(’) € U (2) be unitary matrices with Coy #
C;, and set

’ _
Clx) = Cypo x=0
Co, x #0.

U = SC satisfies (A.1), because C(x) — Cop =0if x # 0.

Example 2.2 Let Cop € U(2) be a unitary matrix and {C(x)} C U(2) a family of
unitary matrices. Assume that

max |(C(x) — Co)ij| < c1lx|7'7¢, x € Z\ {0},
L]

where M;; denotes the ij-component of a matrix M. Then, U = SC satisfies (A.1),
because all norms on a finite-dimensional vector space are equivalent.

We prove the following theorem in Sect. 3 using a discrete analogue of the Kato—
Rosenblum theorem.

Theorem 2.1 Let U and Uy be as above and assume that (A.1) holds. Then,
Wi =s- lim U_’U(’)HaC(Uo)
11— 00
exists and is complete.
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108 A. Suzuki

In what follows, we introduce the asymptotic velocity 0y, obtained first in [4], of
the quantum walk with the evolution Uy as follows. Let

eik

~ 0
Do (k) = ( ] e_,.k) Co. k0.2,

Since Uo(k) e U(2), ﬁo(k) is represented as

Uotk) = D~ nik)uj (k) uj (k).

i=1,2

where A (k) is an eigenvalue of 00(k) a}nd uj(k) is the corresponding eigenvector
with [luj(k)|| = 1. The function k > ¢'* is analytic, and so is Aj(k). We need the
following assumption on u j (k):

(A.2) The functions k — u j(k) are continuously differentiable in k with

sup
ke[0,27)

d
L] <o
Let K be the Hilbert space of square integrable functions f:[0,27) — C2 with

norm
B 2 dk . 5
1/l = (/0 I >||Cz)

Let Fo:H — K be the discrete Fourier transform given by

1/2

(FW) (k) = Ze—““x\p(x), U e H.

x€Z

O (k)
D (k)
velocity 0y is the self-adjoint operator defined by

We also use W (k) = ( ) to denote the Fourier transform of W. The asymptotic

. ®  dk ix; (k)
=7 ([ 3 (e w2
.2m 27 S\ Aj(K)
The position operator X is a self-adjoint operator defined by
W) (x) =x¥(x), x€Z
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Asymptotic velocity of a position-dependent quantum walk 109

with domain

DR) = [\y cH ‘ SRR, < oo] .
X€EL
Let £0(1) = U, ' XU, be the Heisenberg operator of £ for the evolution Uy.

Theorem 2.2 Let Uy and Xy be as above. Suppose that (A.2) holds. Then,

Xo(t)

s- tinoloexp (ié ) =exp(i&vg), & €R. 2.3)

Proof By [10, TheoremVIII.21], (2.3) holds if and only if

1—>00

(Fo® T i
s-hm( ; —z) =(@y—z) , z€C\R,
which is proved in Sect. 4.1. O

Example 2.3 (1) Let Cy = ((1) (1)) Then, Uo(k) has eigenvalues 1 and —1, which

are independent of k. By definition, 99 = 0. Hence, the random variable X t(0) /t
converges in law to a random variable V() with a probability distribution .

(i) LetCo = ((1) _01) Uo(k) has eigenvalues e’* and —e~'¥. Hence, 9 has eigenval-

ues —1 and 1. The random variable X Z(O)/ ¢ converges in law to a random variable
Vo with a probability distribution || W@ |25_; + || w1 25;.

(ii1) Let Cp be the Hadamard matrix. The eigenvalues of 00 (k) are given by A (k) =
(=D w(k) + isink)/~/2 (j = 1,2), where w(k) = +/1 + cos? k. Hence, 0y

has no eigenvalue. The corresponding eigenvectors

) = w(k) + (—=1)/ cosk ek
uik) = 2w (k) ((—l)fw(k) —cosk)

form an ONB of C? and satisfy (A.2). The random variable X t(o) /t converges in
law to a random variable Vy with a probability distribution || E, ()W |2, where
Ej, is the spectral measure of 0. Let us consider the Hadmard walk starting from

) (lal> + B> = 1) and

o

the origin. Let the initial state Wy satisfy W, (0) = ( 8

W(x) =0if x £ 0. Then,
d||E;, (v) ||2 =1 —cqpv)f (U' —1 )dv
Vo 0 o, B K s \/— s
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110 A. Suzuki

where ¢y g = la> = |BI> + ap +apB,
V1 —72
(1 —v2)/r2 — 2

is the Konno function, and /4 is the indicator function of a set A. For more details,
the reader can consult [4,7].

fr;r) =

I(—r,r) )

Let () = U~'XU be the Heisenberg operator of X and define the asymptotic
velocity 04 for the evolution U by

Dy = Wi W,

We need the following assumption:
(A.3) The singular continuous spectrum of U is empty.

We are now in a psition to state our main result, which is proved in Sect. 4.2.

Theorem 2.3 Let x(t) and 04 be as above. Suppose that (A.1)—(A.3) hold. Then,

s—tl_i)rgoexp (ié@) =I1,(U) + exp (i$6+) IM,.(U), &eR.

Let X; be the random variable denoting the position of the walker at time ¢ € N with
the initial state Wo. We use IT,(U) to denote the orthogonal projection onto the direct
sum of all eigenspaces of U and E 4 to denote the spectral projection of a self-adjoint
operator A.

Corollary 2.4 Let X, be as above. Suppose that (A.1)—(A.3) hold. Then, X;/t con-
verges in law to a random variable V with a probability distribution

ny = T (U)Wol|*80 + | Eg, () Tac (U)o,

where 8 is the Dirac measure at zero.

Proof From Theorem 2.1, s-lim;_, oo Uy’ "U My (U) exists and is equal to Wi. Then,
W4 is unitary from RanWji = Ranll,.(Up) to RanW, = RanIl,.(U). Since, by
Lemma 4.1, Uy is strongly commuting with 0y, we know, from the intertwining prop-
erty U Wy = W, Uy, that U is also strongly commuting with 9. Hence, 9 is strongly
commuting with I, (U) and e/8%+ [, (U) = Mo (U)e's'+. Hence, by Theorem 2.3,
exp(i&X (1) /)Wy converges strongly to IT,(U)Wo + €50+ T, (U)W and

lim E(e$X1/T) = (Wy, T, (U)W + €5+ Mo (U)Wo) = [ TT,(U)Wo|?

—>00

oo oo
+ / 'S0 d| Eg, (0) o (U)Wol|* = / ¢S duy (v),

—00 —00

which proves the corollary. O
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Example 2.4 Let Cy be the Hadmard matrix and C (x) satisfy (A.1). As seen in Exam-
ple 2.3 (iii), (A.2) is satisfied and the spectrum of Uj is purely absolutely continuous.

Let W, € H satisfy W, (0) = (2) (> + |81 = 1) and W (x) = 0if x # 0. By

Example 2.3,

1
d|Eg, (V) Tac(U)W4 Wi |? = d|| Egy )4 ]I = (1 — ca,pv) fx (v; ﬁ) dv.

Let W) € RanHE(Uo) be a unit vector and take the initial state Wp as Wo = C1W¥p +
CWo vy (1C)17 + |C2|2 = 1). Suppose that U = SC satisfies (A.3). By Corollary
2.4, X;/t converges in law to V with a probability distribution py and

v (dv) = |C*80(dv) + |C2*(1 — cq.pv) f (v; %) dv.

3 Wave operator

To prove Theorem 2.1, we use the following general proposition:

Proposition 3.1 Let U and Uy be unitary operators on a Hilbert space H and suppose
that U — Uy € 9. The following limit exists:

W+ =s- lim UﬁlU(t)nac(UO)
t—00

Proof of Theorem 2.1 Since, by Lemma 2.1, U — Uy € .7}, the wave operator W
exists. If we interchange the roles of U and Uy, then the proposition says that the
limit s-lim;— o0 Uy "UT,(U) also exists, which implies that W is complete. This
completes the proof. O

In the remainder of this section, we suppose that U — Uy € .77 and prove Proposition
3.1. This is done by a discrete analogue of [11, Theorem 6.2]. We use H,c and Hp to
denote the subspaces of absolute continuity and the direct sum of all eigenspaces of
Up. Let Ey be the spectral measure of Uy with Eo([0, 27)) = I. Let

Hac.o =¥ € Hae | d|E§VY I = Gy (W)’dr and Gy € L> N L™},

where L? = L%([0, 27)) and L*® = L*([0, 27)). Although the following lemma
may be well known, we give proofs for completeness.

Lemma 3.1 Hyc o is dense in Hyc.

Proof For all ¥ € My, there exists a positive function F € L' such that
d|Eo(\) ¥ ||> = F(L)dx. Let B, = F~1([0,n]), and let xp, be the characteristic
function of B,. We set G, = ~/F xp, and ¥, = Eo(B,)¥. Then, G, € L>N L™ and
IEo(B)Yn > = [5 Gn()>dA. Hence, ¥, € #c 0 and ¥ = lim, .. This completes
the proof. O
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112 A. Suzuki

Lemma 3.2 Let ¢ € H and € Hyc 0. Then,

> g Usw)|” < 2 g1* sup Gy (1)°.

teZ

Proof Let ¥ € Hae0 and £ = L*([0, 27), G%b()\)dk). Let Hy be the self-adjoint

operator defined by (&, Hon) = fozn A{(E, Eo(AM)n) (E,n € H). Let % :L — H be an
injection defined by % f = f(Ho)y (f € L£). Then 1 = v and Z '™ = Ul
(t € N). We use IT to denote the orthogonal projection onto UL. Let ¢ € H and
F =%~ 'T1¢ € L. Then, we have

2 —
(@, Ubyr) =/0 P EFMNGy (W) = 21 FG, (1)

Hence, by Parseval’s identity, we obtain

2
> e Upw)I1? =2n/0 |F(MGy (W) 2d

teZ
2r
<2m squw(,\)Z/ |F () >Gy (h)2d
A 0

< 27 sup Gy (W2 Mg,

This completes the proof. O
Let W, = U™'U;.

Lemma 3.3 Lett,s € N(s #t). Then, s-1im,_, oo(W; — W)Uy, (Up) = 0.

Proof Fort,s € N (t > s), we have W, = Z,t(:hL](Wk — Wi—1) + W, and Wy —

Wi = U_k(—T)U(])‘_l, where T = U — Uy € 7. Since 7] is an ideal, we know
that

t
W, —Wy= > UR-nU;'eA.
k=s+1

In particular, W; — W is compact. Let Hy be the self-adjoint operator defined in the
proof of Lemma 3.2. Since w- lim,_, o0 /" 0T, (Hy) = 0, we have

s- lim (W, — W)Uy Te(Up) = s- lim (W, — Wy)e' 0T, (Hp) = 0.
r—00 =00
This completes the proof. O

@ Springer



Asymptotic velocity of a position-dependent quantum walk

113

Proof of Proposition 3.1 By Lemma 3.1, it suffices to prove that, for ¢ €
[(W; — W)yl - 0, 1,5 — oo.

Because

Hac,O,

(W, — W |12 = (0, W (W, — Wy — (i, WE(W, — W),

we need only to prove that
(Y, W (W, — Woyr) > 0, 1,5 — oo.
By direct calculation, we have, for r > 1,

W (W, — W) — Uy Wi (W, — Wy)U§
= Uy WrW, UL — Wi W,
r—1
= > (Ut wrw Ut - ugtwrwug)
k=0

Since

Uo_k_lwt*WS‘U(])(Jrl _ UO_kWt*WYU(I){ — Uo—k—t—l (TUZ—S _ UI—ST) U8+k9

we obtain
WEW, — W) = Uy " WH(W;, — W)Uy

— Z Uofkftfl (TUt—s —_yt=s T) U(§+k.
Since, by Lemma 3.3, s-1im, _, o Uy W (W; — W)U ¢ = 0, we have

o
Wt*(Wt _ Wy)w — ZUO—k—t—l (Tul—s _ U[—ST) U(;"rkw
k=0
= Zis(UoT)U'"™ — (UoU'™)T)y,

where

o
Zis(A) = D Uy AUST.
k=0
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By Lemma 3.4 below, we know that

(W, WEW, — WOy | < (¥, Zi s (UeT)U' ™))
+ (¥, Z s (UpU'™)T)¢r)| = 0, t,5 — oo.

This completes the proof. O

Lemma3.4 Let Y € 9 and {Q(t,s)} be a family of bounded operators with
sup, ; 1Q(z, 5)|| < 00. Then, for all Y € Hac 0,

(1) limy 500 §1ﬂ, Z: s (Y Q(t, S))lﬁg =0;
(2) limy 500 (¥, Z,s(Q(t, 5)Y)Y) = 0.

Proof LetY = Z;’lil An| ¥ ) (¢, | be the canonical expansion of the compact operator
Y.Since Y € .7, Zn An < 00. Then, by the Cauchy—Schwartz inequality, we have

(V. Zes Y Q@ DY) < DD

n=1 k=0
< L(t,9)'* x L, )",

(U6 v ) (0, 0 ) UG )|

where

(v Ui+ )[

CED IS

n=1 k=0

h.s) = iix (0w 96, viv)["

n=1 k=0

9

By Lemma 3.2, we have

(1, s) < 27 sup Gy (W) sup [ Q(t, )| D~y < 00,
A t,s "

where we have used the fact that ¢,, is a normalized vector. Let uy = Z;’;l Al (W,
U(l)‘ 1//) |2. Then, similar to the above, we observe that {uy} € £'(Z). Hence, we have

o0
11—1>Igo L = zl—l>nolo Z e = 0.
k=t
This proves (i). The same proof works for (ii). O
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4 Asymptotic velocity
4.1 Proof of Theorem 2.2

Let

Ho = U{\IfeHl\IJ(x)zo, x| > m}.

m=0

We use D to denote a subspace of vectors W € H whose Fourier transform U s
differentiable in k with

sup < 00.

kel0,27)

4w
dk

Note that Hy is a core for £, and so is D. Let D = .Z£.%~!. Then, by direct

calculation, we know that (D\if)(k) =1 ad;\fl(k) for W € D. We prove the following
theorem:

Theorem 4.1 Suppose that (A.2) holds. Then,

. (fo(o )‘1_ L
s- lim —z =@Wo—z), zeC\R. 4.1

t—00 t

Proof Forall W € ‘H and e > 0, there exists a vector W, € D such that |W — W || <e.
Because, by the second resolvent identity,

R —1
’("Ot(’) —z) W (5o — 2w

¢ xo(t -1 .

< A
[Tmz| t
2¢ 1 R z%o(t)) . —1

< — | {vo — vo —2) e,
lImz| © [Imz] ‘( 0= =)o —2) e

it suffices to prove that

lim H (ﬁo - ’eot(t)) (o — z)—lxyH =0, UeD.

—>00

Note that

® ix. (k) -
S -1 _ -1 2 J _ . .
Co-27 =& /[0,27r) o T 2( Aj (k) Z) O | 7
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Since A (k) is analytic and |2 j (k)| = 1, we observe from (A.2) that (9 — 2)~ ! leaves
D invariant. Hence, we only need to prove that

xo (1
lim H(ﬁo—xot())\puzo, veD.

t—00
By direct calculation, we have

(- 7)

2

2
27 i (k) . . D A o
= dk / k), W (k)yu (k) — U (k)™ =U (k) ¥ (k
/O j_zllz(kj(k))“tl() (k))u j (k) (k) ; (k) W (k)
5 2
T dk Ao . d A
=/0 o DIRECIAC) ’(z@w,-(k),w(k»uj(k))
j=172
By the definition of D and (A.2), we know that
d -
sup (1—(uj(k), \D(k))uj(k)) < 0.
kel0,27) I \ dk
Hence, we have
|(0-252) ¥] = 0
which completes the proof. O

4.2 Proof of Theorem 2.3
The proof falls naturally into two parts:

Theorem 4.2 Let U be a unitary operator on H. X(t) = U'XU" satisfies
X (1
5- lim exp (ig&) My(U) = M,(U), & €R.
t—00 t

Theorem 4.3 Let U = SC and Uy = SCy satisfy (A.1) and (A.2). Then,

s- lim exp (lf@) Mac(U) = exp(i§0)Mac(U), & € R.
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Proof of Theorem 2.3 By (A.3), we have
. L X(1) . Ei0)
s- lim exp [ i§ —— ) = s- lim exp | i§ — ) (IIp(U) + I (U))
t—00 t t—00 t
=TI1,(U) + exp(i& 04 ) My (V).
This prove the theorem. O

It remains to prove Theorems 4.2 and 4.3.

Proof of Theorem 4.2 Let H,(U) be the direct sum of all eigenspaces of U. It suffices
to prove that, for ¥ € H,(U),

s- tl;rrog exp (zéﬁ) v =y

Let A, be the eigenvalues of U and take an ONB {n,}7° ; of H,, such that Un, =
Antin. We have T, (U) = >, |na)(nal. Let € > 0. For sufficiently large N, ¥y =

SN (0, W)n, satisfies |W — Wy || < e. Then,

exp (1"§Q) 4

By direct calculation, we have

exp (zsﬁ) Yy — Uy

<2e¢+

exp (ié@) Yy — Wy

[ e

N

t . x
le,,mn, W) (exp (zs;) ~ 1) T

n=

N N
<> . W) H (exp (ié’f) - 1) n
n=1

Since lim, o0 |1 — 51| = 0, [1 — 51| < 2and 3" |7, ()32 = lIma I < o0,
we have

i on(7) )

which, combined with (4.2), completes the proof. O

4.2)

2
= lim Z|e'fx/’ 1Pl ()72 =0,

Lemma 4.1 [Uy, exp(i&0p)] = 0.
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Proof By direct calculation, we have

[Uo, exp(i&io)] = s- lim [Uo, exp (ig xot(f))}

=s- ll_l)rglo Uy [exp (i%‘iot([)) — exp (ZEM)] =0.

Proof of Theorem 4.3 By (A.1) and (A.2), Theorems 2.1 and 2.2 hold. Then, W, is a
unitary operator from H,.(Up) to Hae(U). Hence, we have

exp(i&0)Mye(U) = Wiexp(i&00) W) My (U).
By direct calculation, we observe that
L x() s
1(t) :=exp JST Mac(U) — exp(i§v4) e (U)

.. Xo(1)

= W,exp (15

3
= le(t),
j=I

) W[*Hac(U) - WJreXP(iSﬁO)W.T_Hac(U)

where

XOI(”) (W — W) e (U).

.. Xo(1)

L) =W (GXP (IE ) - eXp(iEﬁo)) Wil (U),
I3(t) = (Wi — W) exp(i&00) WiTlac (V).

11 (t) = Wiexp (ié

Because W, and exp(i&X((t)/t) are uniformly bounded, we know from Theorems 2.1
and 2.2 that s-lim;_, oo 11 (¢) = s-lim;_, 5 I» () = 0. Hence, we have

1(t) = (W; — Wy) exp(i& o) W TTac(U) + o(1)
=W, =Wy Hac(UO)exp(iéﬁO)Winac(U)
+ (Wi — W5) [exp(i& Do), Mac(Uo)IWi Mac(U) + o(1),

where we have used the fact that RanW} = H,.(Up). Since, by Lemma 4.1,

[exp(i& Do), [T, (Up)] = 0, we obtain from Theorem 2.1, that s-lim; I (#) = 0.
This completes the proof. O
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