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Abstract We consider a position-dependent coined quantum walk on Z and assume
that the coin operator C(x) satisfies

‖C(x) − C0‖ ≤ c1|x |−1−ε, x ∈ Z \ {0}

with positive c1 and ε and C0 ∈ U (2). We show that the Heisenberg operator x̂(t) of
the position operator converges to the asymptotic velocity operator v̂+ so that

s- lim
t→∞ exp

(
iξ

x̂(t)

t

)
= �p(U ) + exp(iξ v̂+)�ac(U )

provided that U has no singular continuous spectrum. Here �p(U ) (resp., �ac(U )) is
the orthogonal projection onto the direct sum of all eigenspaces (resp., the subspace
of absolute continuity) of U . We also prove that for the random variable Xt denoting
the position of a quantum walker at time t ∈ N, Xt/t converges in law to a random
variable V with the probability distribution

μV = ‖�p(U )�0‖2δ0 + ‖Ev̂+(·)�ac(U )�0‖2,

where�0 is the initial state, δ0 the Diracmeasure at zero, and Ev̂+ the spectral measure
of v̂+.
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104 A. Suzuki

1 Introduction

The weak limit theorems for discrete time quantumwalks have been studied in various
models (for reviews, see [7,12]). In his papers [5,6], Konno first proved the weak limit
theorem for a position-independent quantum walk on Z. Grimmett et al. [4] simplified
the proof and extended the result to higher dimensions. For position-dependent quna-
tum walks on Z, the weak limit theorems were obtained by Konno et al. [9], Endo and
Konno [2], and Endo et al. [3].

We consider a position-dependent quantum walk on Z given by a unitary evolution
operator U :

(U�)(x) = P(x + 1)�(x + 1) + Q(x − 1)�(x − 1), x ∈ Z,

where � is a state vector in the Hilbert space H = �2(Z; C
2) of states and

P(x) =
(

a(x) b(x)

0 0

)
, Q(x) =

(
0 0

c(x) d(x)

)
.

Let C(x) = P(x) + Q(x) ∈ U (2) and S be a shift operator such that U = SC .
Suppose that there exists a unitary matrix C0 = P0 + Q0 ∈ U (2) such that

‖C(x) − C0‖ ≤ c1|x |−1−ε, x ∈ Z \ {0} (1.1)

with positive c1 and ε independent of x . Here ‖M‖ stands for the operator norm
of a matrix M ∈ M2(C). A typical example is the quantum walks with one defect
[1,8,9,13], which clearly satisfies (1.1). We note that the condition (1.1) allows not
only finite but also infinite defects, whereas the models introduced in [2,3] do not
satisfy (1.1). The unitary operator U0 = SC0 also defines an evolution of a position-
independent quantum walk on Z and satisfies

(U0�)(x) = P0�(x + 1) + Q0�(x − 1), x ∈ Z

withC0 = P0+Q0. Let x̂ be the position operator definedby (x̂�)(x) = x�(x), x ∈
Z. and x̂0(t) = U−t

0 x̂U t
0 the Heisenberg operator of x̂ at time t ∈ N with the evolution

U0. InGrimmett et al. [4] essentially proved that the operator x̂0(t)/t weakly converges
to the asymptotic velocity operator v̂0 so that

w- lim
t→∞ exp

(
iξ

x̂0(t)

t

)
= exp

(
iξ v̂0

)
, ξ ∈ R. (1.2)

Let X (0)
t be the random variable denoting the position of a quantum walker at time

t ∈ N with the evolution operator U0. Then, the characteristic function of X (0)
t /t is

given by

E

(
eiξ X (0)

t /t
)

=
〈
�0, eiξ x̂0(t)/t�0

〉
, ξ ∈ R,
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Asymptotic velocity of a position-dependent quantum walk 105

where�0 is the initial state of the quantumwalker. Hence, (1.2) means that the random
variable X (0)

t /t converges in law to a random variable V0, which represents the linear
spreading of the quantum walk: X (0)

t ∼ tV0.
In this paper, we derive the asymptotic velocity v̂+ for the Heisenberg operator

x̂(t) = U−t x̂U t with the evolution U of the position-dependent quantum walk. The
decaying condition (1.1) implies that U − U0 is a trace class operator and allows us
to prove the existence and completeness of the wave operator

W+ = s- lim
t→∞ U−tU t

0�ac(U0)

using a discrete analogue of the Kato–Rosenblum Theorem (see [11] for details),
where �ac(U0) is the orthogonal projection onto the subspace of absolute continuity
of U0. We also prove that

s- lim
t→∞ exp

(
iξ

x̂0(t)

t

)
= exp

(
iξ v̂0

)
, ξ ∈ R

under a reasonable condition, which is essentially the same as that of [4]. Furthermore,
we assume that U has no singular continuous spectrum. Then, we prove that

s- lim
t→∞ exp

(
iξ

x̂(t)

t

)
= �p(U ) + exp(iξ v̂+)�ac(U ), (1.3)

where �p(U ) is the orthogonal projection onto the direct sum of all eigenspaces of U
and v̂+ = W+v̂0W ∗+.Webelieve that the absence of a singular continuous spectrumcan
be checked with a concrete example such as the one-defect model. As a consequence
of (1.3), we have the following weak limit theorem. Let Xt be the random variable
denoting the position of a quantum walker at time t ∈ N with the evolution operator
U and the initial state �0. We prove that Xt/t converges in law to a random variable
V with a probability distribution

μV = ‖�p(U )�0‖2δ0 + ‖Ev̂+(·)�ac(U )�0‖2,

where δ0 is the Dirac measure at zero and Ev̂+ the spectral measure of v̂+.
The remainder of this paper is organized as follows. In Sect. 2, we present the

precise definition of the model and our results. Section 3 is devoted to the proof of
the existence and completeness of the wave operator. In Sect. 4, we construct the
asymptotic velocity.

2 Definition of the model

Let H = �2(Z; C
2) be the Hilbert space of the square summable functions � : Z →

C
2. We define a shift operator S and a coin operator C on H as follows. For a vector
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106 A. Suzuki

� =
(

�(0)

�(1)

)
∈ H, S� is given by

(S�)(x) =
(

�(0)(x + 1)
�(1)(x − 1)

)
, x ∈ Z.

Let {C(x)}x∈Z ⊂ U (2) be a family of unitary matrices with

C(x) =
(

a(x) b(x)

c(x) d(x)

)
.

C� is given by

(C�)(x) = C(x)�(x), x ∈ Z.

We define an evolution operator as U = SC . U satisfies

(U�)(x) = P(x + 1)�(x + 1) + Q(x − 1)�(x − 1), x ∈ Z

with

P(x) =
(

a(x) b(x)

0 0

)
, Q(x) =

(
0 0

c(x) d(x)

)
.

For a matrix M ∈ M(2, C), we use ‖M‖ to denote the operator norm in C
2:

‖M‖ = sup‖x‖
C2=1 ‖Mx‖C2 . We suppose that:

(A.1) There exists a unitary matrix C0 =
(

a0 b0
c0 d0

)
∈ U (2) such that

‖C(x) − C0‖ ≤ c1|x |−1−ε, x ∈ Z \ {0}

with some positive c1 and ε independent of x .

We denote by T1 the set of trace class operators.

Lemma 2.1 Let U satisfy (A.1) and set U0 = SC0. Then, U − U0 ∈ T1.

Proof Let T = U − U0 and T (x) = C(x) − C0. Then,

T ∗T = (C − C0)
∗(C − C0) (2.1)

is the multiplication operator by the matrix-valued function T (x)∗T (x). Let ti (x)

(i = 1, 2) be the eigenvalues of the Hermitian matrix T (x)∗T (x) ∈ M(2, C) and take
an orthonormal basis (ONB) {τi (x)}i=1,2 of corresponding eigenvectors for all x ∈ Z.
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Asymptotic velocity of a position-dependent quantum walk 107

We use |ξ 〉〈η| to denote the operator on H defined by |ξ 〉〈η|� = 〈η,�〉ξ . Then, we
have

T ∗T =
∑

i=1,2

∑
x∈Z

ti (x)|τi,x 〉〈τi,x |, (2.2)

where {τi,x } is the ONB given by

τi,x (y) = δxyτi (x), y ∈ Z.

Since T ∗(x)T (x) ≥ 0, we have ti (x) ≥ 0. By (A.1), we know that

max
i=1,2

ti (x) ≤ c21|x |−2−2ε .

Hence, we have

Tr|T | =
∑
x∈Z

∑
i=1,2

ti (x)1/2 ≤ 2c1
∑
x∈Z

|x |−1−ε < ∞,

which means that T ∈ T1. Since T1 is an ideal, U − U0 = ST ∈ T1. 
�
Example 2.1 (one-defect model) Let C0, C ′

0 ∈ U (2) be unitary matrices with C0 �=
C ′
0 and set

C(x) =
{

C ′
0, x = 0

C0, x �= 0.

U = SC satisfies (A.1), because C(x) − C0 = 0 if x �= 0.

Example 2.2 Let C0 ∈ U (2) be a unitary matrix and {C(x)} ⊂ U (2) a family of
unitary matrices. Assume that

max
i, j

|(C(x) − C0)i j | ≤ c1|x |−1−ε, x ∈ Z \ {0},

where Mi j denotes the i j-component of a matrix M . Then, U = SC satisfies (A.1),
because all norms on a finite-dimensional vector space are equivalent.

We prove the following theorem in Sect. 3 using a discrete analogue of the Kato–
Rosenblum theorem.

Theorem 2.1 Let U and U0 be as above and assume that (A.1) holds. Then,

W+ = s- lim
t→∞ U−tU t

0�ac(U0)

exists and is complete.
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108 A. Suzuki

In what follows, we introduce the asymptotic velocity v̂0, obtained first in [4], of
the quantum walk with the evolution U0 as follows. Let

Û0(k) =
(

eik 0
0 e−ik

)
C0, k ∈ [0, 2π).

Since Û0(k) ∈ U (2), Û0(k) is represented as

Û0(k) =
∑

i=1,2

λi (k)|u j (k)〉〈u j (k)|,

where λ j (k) is an eigenvalue of Û0(k) and u j (k) is the corresponding eigenvector
with ‖u j (k)‖ = 1. The function k �→ eik is analytic, and so is λ j (k). We need the
following assumption on u j (k):

(A.2) The functions k �→ u j (k) are continuously differentiable in k with

sup
k∈[0,2π)

∥∥∥∥ d

dk
u j (k)

∥∥∥∥
C2

< ∞.

Let K be the Hilbert space of square integrable functions f :[0, 2π) → C
2 with

norm

‖ f ‖K =
(∫ 2π

0

dk

2π
‖ f (k)‖2

C2

)1/2

.

Let F0:H → K be the discrete Fourier transform given by

(F�)(k) =
∑
x∈Z

e−ik·x�(x), � ∈ H.

We also use �̂(k) =
(

�̂(0)(k)

�̂(1)(k)

)
to denote the Fourier transform of�. The asymptotic

velocity v̂0 is the self-adjoint operator defined by

v̂0 = F−1

⎛
⎝∫ ⊕

[0,2π)

dk

2π

∑
j=1,2

(
iλ′

j (k)

λ j (k)

)
|u j (k)〉〈u j (k)|

⎞
⎠F

The position operator x̂ is a self-adjoint operator defined by

(x̂�)(x) = x�(x), x ∈ Z
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Asymptotic velocity of a position-dependent quantum walk 109

with domain

D(x̂) =
{

� ∈ H
∣∣∣ ∑

x∈Z
|x |2‖�(x)‖2

C2 < ∞
}

.

Let x̂0(t) = U−t
0 x̂U t

0 be the Heisenberg operator of x̂ for the evolution U0.

Theorem 2.2 Let v̂0 and x̂0 be as above. Suppose that (A.2) holds. Then,

s- lim
t→∞ exp

(
iξ

x̂0(t)

t

)
= exp(iξ v̂0), ξ ∈ R. (2.3)

Proof By [10, TheoremVIII.21], (2.3) holds if and only if

s- lim
t→∞

(
x̂0(t)

t
− z

)−1

= (v̂0 − z)−1, z ∈ C \ R,

which is proved in Sect. 4.1. 
�

Example 2.3 (i) Let C0 =
(
0 1
1 0

)
. Then, Û0(k) has eigenvalues 1 and −1, which

are independent of k. By definition, v̂0 = 0. Hence, the random variable X (0)
t /t

converges in law to a random variable V0 with a probability distribution δ0.

(ii) LetC0 =
(
1 0
0 −1

)
. Û0(k) has eigenvalues eik and−e−ik . Hence, v̂0 has eigenval-

ues−1 and 1. The random variable X (0)
t /t converges in law to a random variable

V0 with a probability distribution ‖�(0)‖2δ−1 + ‖�(1)‖2δ1.
(iii) Let C0 be the Hadamard matrix. The eigenvalues of Û0(k) are given by λ j (k) =

((−1) jw(k) + i sin k)/
√
2 ( j = 1, 2), where w(k) = √

1 + cos2 k. Hence, v̂0
has no eigenvalue. The corresponding eigenvectors

u j (k) =
√

w(k) + (−1) j cos k

2w(k)

(
eik

(−1) jw(k) − cos k

)

form an ONB of C
2 and satisfy (A.2). The random variable X (0)

t /t converges in
law to a random variable V0 with a probability distribution ‖Ev̂0(·)�0‖2, where
Ev̂0 is the spectral measure of v̂0. Let us consider the Hadmard walk starting from

the origin. Let the initial state �0 satisfy �0(0) =
(

α

β

)
(|α|2 + |β|2 = 1) and

�(x) = 0 if x �= 0. Then,

d‖Ev̂0(v)�0‖2 = (1 − cα,βv) fK

(
v; 1√

2

)
dv,

123



110 A. Suzuki

where cα,β = |α|2 − |β|2 + αβ̄ + ᾱβ,

fK (v; r) =
√
1 − r2

π(1 − v2)
√

r2 − v2
I(−r,r)(v)

is the Konno function, and IA is the indicator function of a set A. For more details,
the reader can consult [4,7].

Let x̂(t) = U−t x̂U be the Heisenberg operator of x̂ and define the asymptotic
velocity v̂+ for the evolution U by

v̂+ = W+v̂0W ∗+.

We need the following assumption:

(A.3) The singular continuous spectrum of U is empty.

We are now in a psition to state our main result, which is proved in Sect. 4.2.

Theorem 2.3 Let x̂(t) and v̂+ be as above. Suppose that (A.1)–(A.3) hold. Then,

s- lim
t→∞ exp

(
iξ

x̂(t)

t

)
= �p(U ) + exp

(
iξ v̂+

)
�ac(U ), ξ ∈ R.

Let Xt be the random variable denoting the position of the walker at time t ∈ Nwith
the initial state �0. We use �p(U ) to denote the orthogonal projection onto the direct
sum of all eigenspaces of U and E A to denote the spectral projection of a self-adjoint
operator A.

Corollary 2.4 Let Xt be as above. Suppose that (A.1)–(A.3) hold. Then, Xt/t con-
verges in law to a random variable V with a probability distribution

μV = ‖�p(U )�0‖2δ0 + ‖Ev̂+(·)�ac(U )�0‖2,

where δ0 is the Dirac measure at zero.

Proof From Theorem 2.1, s- limt→∞ U−t
0 U t �ac(U ) exists and is equal to W ∗+. Then,

W+ is unitary from RanW ∗+ = Ran�ac(U0) to RanW+ = Ran�ac(U ). Since, by
Lemma 4.1, U0 is strongly commuting with v̂0, we know, from the intertwining prop-
ertyU W+ = W+U0, thatU is also strongly commutingwith v̂+. Hence, v̂+ is strongly
commuting with �ac(U ) and eiξ v̂+�ac(U ) = �ac(U )eiξ v̂+ . Hence, by Theorem 2.3,
exp(iξ x̂(t)/t)�0 converges strongly to �p(U )�0 + eiξ v̂+�ac(U )�0 and

lim
t→∞ E(eiξ Xt /t ) = 〈�0,�p(U )�0 + eiξ v̂+�ac(U )�0〉 = ‖�p(U )�0‖2

+
∫ ∞

−∞
eiξvd‖Ev̂+(v)�ac(U )�0‖2 =

∫ ∞

−∞
eiξvdμV (v),

which proves the corollary. 
�
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Asymptotic velocity of a position-dependent quantum walk 111

Example 2.4 Let C0 be the Hadmard matrix and C(x) satisfy (A.1). As seen in Exam-
ple 2.3 (iii), (A.2) is satisfied and the spectrum of U0 is purely absolutely continuous.

Let �+ ∈ H satisfy �+(0) =
(

α

β

)
(|α|2 + |β|2 = 1) and �+(x) = 0 if x �= 0. By

Example 2.3,

d‖Ev̂+(v)�ac(U )W+�+‖2 = d‖Ev̂0(v)�+‖2 = (1 − cα,βv) fK

(
v; 1√

2

)
dv.

Let �p ∈ Ran�p(U0) be a unit vector and take the initial state �0 as �0 = C1�p +
C2W+�+ (|C1|2 + |C2|2 = 1). Suppose that U = SC satisfies (A.3). By Corollary
2.4, Xt/t converges in law to V with a probability distribution μV and

μV (dv) = |C1|2δ0(dv) + |C2|2(1 − cα,βv) fK

(
v; 1√

2

)
dv.

3 Wave operator

To prove Theorem 2.1, we use the following general proposition:

Proposition 3.1 Let U and U0 be unitary operators on a Hilbert spaceH and suppose
that U − U0 ∈ T1. The following limit exists:

W+ = s- lim
t→∞ U−tU t

0�ac(U0)

Proof of Theorem 2.1 Since, by Lemma 2.1, U − U0 ∈ T1, the wave operator W+
exists. If we interchange the roles of U and U0, then the proposition says that the
limit s- limt→∞ U−t

0 U t�ac(U ) also exists, which implies that W+ is complete. This
completes the proof. 
�

In the remainder of this section,we suppose thatU −U0 ∈ T1 and prove Proposition
3.1. This is done by a discrete analogue of [11, Theorem 6.2]. We useHac and Hp to
denote the subspaces of absolute continuity and the direct sum of all eigenspaces of
U0. Let E0 be the spectral measure of U0 with E0([0, 2π)) = I . Let

Hac,0 = {ψ ∈ Hac | d‖E0(λ)ψ‖2 = Gψ(λ)2dλ and Gψ ∈ L2 ∩ L∞},

where L2 = L2([0, 2π)) and L∞ = L∞([0, 2π)). Although the following lemma
may be well known, we give proofs for completeness.

Lemma 3.1 Hac,0 is dense in Hac.

Proof For all ψ ∈ Hac, there exists a positive function F ∈ L1 such that
d‖E0(λ)ψ‖2 = F(λ)dλ. Let Bn = F−1([0, n]), and let χBn be the characteristic
function of Bn . We set Gn = √

FχBn and ψn = E0(Bn)�. Then, Gn ∈ L2 ∩ L∞ and
‖E0(B)ψn‖2 = ∫

B Gn(λ)2dλ. Hence, ψn ∈ Hac,0 and ψ = limn ψn . This completes
the proof. 
�
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112 A. Suzuki

Lemma 3.2 Let φ ∈ H and ψ ∈ Hac,0. Then,

∑
t∈Z

∣∣〈φ, U t
0ψ

〉∣∣2 ≤ 2π‖φ‖2 sup
λ

Gψ(λ)2.

Proof Let ψ ∈ Hac,0 and L = L2([0, 2π), G2
ψ(λ)dλ). Let H0 be the self-adjoint

operator defined by 〈ξ, H0η〉 = ∫ 2π
0 λd〈ξ, E0(λ)η〉 (ξ, η ∈ H). LetU :L → H be an

injection defined by U f = f (H0)ψ ( f ∈ L). Then U 1 = ψ and U eitλ = U t
0ψ

(t ∈ N). We use � to denote the orthogonal projection onto UL. Let φ ∈ H and
F = U −1�φ ∈ L. Then, we have

〈φ, U t
0ψ〉 =

∫ 2π

0
eitλ F̄(λ)Gψ(λ)2dλ = 2π ̂̄FG2

ψ(t).

Hence, by Parseval’s identity, we obtain

∑
t∈Z

|〈φ, U t
0ψ〉|2 = 2π

∫ 2π

0
|F̄(λ)Gψ(λ)2|2dλ

≤ 2π sup
λ

Gψ(λ)2
∫ 2π

0
|F̄(λ)|2Gψ(λ)2dλ

≤ 2π sup
λ

Gψ(λ)2‖�φ‖2.

This completes the proof. 
�

Let Wt = U−tU t
0.

Lemma 3.3 Let t, s ∈ N (s �= t). Then, s- limr→∞(Wt − Ws)Ur
0�ac(U0) = 0.

Proof For t, s ∈ N (t > s), we have Wt = ∑t
k=s+1(Wk − Wk−1) + Ws and Wk −

Wk−1 = U−k(−T )U k−1
0 , where T = U − U0 ∈ T1. Since T1 is an ideal, we know

that

Wt − Ws =
t∑

k=s+1

U−k(−T )U k−1
0 ∈ T1.

In particular, Wt − Ws is compact. Let H0 be the self-adjoint operator defined in the
proof of Lemma 3.2. Since w- limr→∞ eir H0�ac(H0) = 0, we have

s- lim
r→∞(Wt − Ws)U

r
0�ac(U0) = s- lim

r→∞(Wt − Ws)e
ir H0�ac(H0) = 0.

This completes the proof. 
�
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Asymptotic velocity of a position-dependent quantum walk 113

Proof of Proposition 3.1 By Lemma 3.1, it suffices to prove that, for ψ ∈ Hac,0,

‖(Wt − Ws)ψ‖ → 0, t, s → ∞.

Because

‖(Wt − Ws)ψ‖2 = 〈ψ, W ∗
t (Wt − Ws)ψ〉 − 〈ψ, W ∗

s (Wt − Ws)ψ〉,

we need only to prove that

〈ψ, W ∗
t (Wt − Ws)ψ〉 → 0, t, s → ∞.

By direct calculation, we have, for r > 1,

W ∗
t (Wt − Ws) − U−r

0 W ∗
t (Wt − Ws)U

r
0

= U−r
0 W ∗

t WsUr
0 − W ∗

t Ws

=
r−1∑
k=0

(
U−k−1
0 W ∗

t WsU k+1
0 − U−k

0 W ∗
t WsU k

0

)
.

Since

U−k−1
0 W ∗

t WsU k+1
0 − U−k

0 W ∗
t WsU k

0 = U−k−t−1
0

(
T U t−s − U t−s T

)
U s+k
0 ,

we obtain

W ∗
t (Wt − Ws) − U−r

0 W ∗
t (Wt − Ws)U

r
0

=
r−1∑
k=0

U−k−t−1
0

(
T U t−s − U t−s T

)
U s+k
0 .

Since, by Lemma 3.3, s- limr→∞ U−r
0 W ∗

t (Wt − Ws)Ur
0ψ = 0, we have

W ∗
t (Wt − Ws)ψ =

∞∑
k=0

U−k−t−1
0

(
T U t−s − U t−s T

)
U s+k
0 ψ

= Zt,s((U0T )U t−s − (U0U t−s)T )ψ,

where

Zt,s(A) =
∞∑

k=0

U−k−t
0 AU k+s

0 .
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114 A. Suzuki

By Lemma 3.4 below, we know that

|〈ψ, W ∗
t (Wt − Ws)ψ〉| ≤ |〈ψ, Zt,s((U0T )U t−s)ψ〉|

+ |〈ψ, Zt,s(U0U t−s)T )ψ〉| → 0, t, s → ∞.

This completes the proof. 
�

Lemma 3.4 Let Y ∈ T1 and {Q(t, s)} be a family of bounded operators with
supt,s ‖Q(t, s)‖ < ∞. Then, for all ψ ∈ Hac,0,

(1) limt,s→∞
〈
ψ, Zt,s(Y Q(t, s))ψ

〉 = 0;
(2) limt,s→∞

〈
ψ, Zt,s(Q(t, s)Y )ψ

〉 = 0.

Proof Let Y = ∑∞
n=1 λn|ψn〉〈φn| be the canonical expansion of the compact operator

Y . Since Y ∈ T1,
∑

n λn < ∞. Then, by the Cauchy–Schwartz inequality, we have

∣∣〈ψ, Zt,s(Y Q(t, s))ψ
〉∣∣ ≤

∞∑
n=1

∞∑
k=0

λn

∣∣∣〈U k+t
0 ψ,ψn

〉 〈
φn, Q(t, s)U k+s

0 ψ
〉∣∣∣

≤ I1(t, s)1/2 × I2(t, s)1/2,

where

I1(t) =
∞∑

n=1

∞∑
k=0

λn

∣∣∣〈ψn, U k+t
0 ψ

〉∣∣∣2 ,

I2(t, s) =
∞∑

n=1

∞∑
k=0

λn

∣∣∣〈Q(t, s)∗φn, U k+s
0 ψ

〉∣∣∣2 .

By Lemma 3.2, we have

I2(t, s) ≤ 2π sup
λ

Gψ(λ)2 sup
t,s

‖Q(t, s)‖
∑

n

λn < ∞,

where we have used the fact that φn is a normalized vector. Let uk = ∑∞
n=1 λn| 〈ψn,

U k
0ψ

〉 |2. Then, similar to the above, we observe that {uk} ∈ �1(Z). Hence, we have

lim
t→∞ I1(t) = lim

t→∞

∞∑
k=t

uk = 0.

This proves (i). The same proof works for (ii). 
�
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4 Asymptotic velocity

4.1 Proof of Theorem 2.2

Let

H0 =
∞⋃

m=0

{� ∈ H | �(x) = 0, |x | ≥ m} .

We use D to denote a subspace of vectors � ∈ H whose Fourier transform �̂ is
differentiable in k with

sup
k∈[0,2π)

∥∥∥∥ d

dk
�̂(k)

∥∥∥∥ < ∞.

Note that H0 is a core for x̂ , and so is D. Let D = F x̂F−1. Then, by direct
calculation, we know that (D�̂)(k) = i ddk

�̂(k) for � ∈ D. We prove the following
theorem:

Theorem 4.1 Suppose that (A.2) holds. Then,

s- lim
t→∞

(
x̂0(t)

t
− z

)−1

= (v̂0 − z)−1, z ∈ C \ R. (4.1)

Proof For all� ∈ H and ε > 0, there exists a vector�ε ∈ D such that ‖�−�ε‖ ≤ ε.
Because, by the second resolvent identity,

∥∥∥∥∥
(

x̂0(t)

t
− z

)−1

� − (v̂0 − z)−1�

∥∥∥∥∥
≤ 2ε

|Imz| +
∥∥∥∥∥
(

x̂0(t)

t
− z

)−1

�ε − (v̂0 − z)−1�ε

∥∥∥∥∥
≤ 2ε

|Imz| + 1

|Imz|
∥∥∥∥
(

v̂0 − x̂0(t)

t

)
(v̂0 − z)−1�ε

∥∥∥∥ ,

it suffices to prove that

lim
t→∞

∥∥∥∥
(

v̂0 − x̂0(t)

t

)
(v̂0 − z)−1�

∥∥∥∥ = 0, � ∈ D.

Note that

(v̂0 − z)−1 = F−1

⎛
⎝∫ ⊕

[0,2π)

dk
∑
j=1,2

(
iλ′

j (k)

λ j (k)
− z

)−1

|u j (k)〉〈u j (k)|
⎞
⎠F .
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Since λ j (k) is analytic and |λ j (k)| = 1, we observe from (A.2) that (v̂0 − z)−1 leaves
D invariant. Hence, we only need to prove that

lim
t→∞

∥∥∥∥
(

v̂0 − x̂0(t)

t

)
�

∥∥∥∥ = 0, � ∈ D.

By direct calculation, we have

∥∥∥∥
(

v̂0 − x̂0(t)

t

)
�

∥∥∥∥
2

=
∫ 2π

0
dk

∥∥∥∥∥∥
∑
j=1,2

(
iλ′

j (k)

λ j (k)

)
〈u j (k), �̂(k)〉u j (k) − Û (k)−t D

t
Û (k)t �̂(k)

∥∥∥∥∥∥
2

=
∫ 2π

0

dk

t2

∥∥∥∥∥∥
∑
j=1,2

λ j (k)t Û (k)−t
(

i
d

dk
〈u j (k), �̂(k)〉u j (k)

)∥∥∥∥∥∥
2

.

By the definition of D and (A.2), we know that

sup
k∈[0,2π)

∥∥∥∥
(

i
d

dk
〈u j (k), �̂(k)〉u j (k)

)∥∥∥∥ < ∞.

Hence, we have

∥∥∥∥
(

v̂0 − x̂0(t)

t

)
�

∥∥∥∥ = O(t−1),

which completes the proof. 
�

4.2 Proof of Theorem 2.3

The proof falls naturally into two parts:

Theorem 4.2 Let U be a unitary operator on H. x̂(t) = U−t x̂U t satisfies

s- lim
t→∞ exp

(
iξ

x̂(t)

t

)
�p(U ) = �p(U ), ξ ∈ R.

Theorem 4.3 Let U = SC and U0 = SC0 satisfy (A.1) and (A.2). Then,

s- lim
t→∞ exp

(
iξ

x̂(t)

t

)
�ac(U ) = exp(iξ v̂+)�ac(U ), ξ ∈ R.
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Proof of Theorem 2.3 By (A.3), we have

s- lim
t→∞ exp

(
iξ

x̂(t)

t

)
= s- lim

t→∞ exp

(
iξ

x̂(t)

t

)
(�p(U ) + �p(U ))

= �p(U ) + exp(iξ v̂+)�ac(U ).

This prove the theorem. 
�

It remains to prove Theorems 4.2 and 4.3.

Proof of Theorem 4.2 LetHp(U ) be the direct sum of all eigenspaces ofU . It suffices
to prove that, for � ∈ Hp(U ),

s- lim
t→∞ exp

(
iξ

x̂(t)

t

)
� = �.

Let λn be the eigenvalues of U and take an ONB {ηn}∞n=1 of Hp such that Uηn =
λnηn . We have �p(U ) = ∑

n |ηn〉〈ηn|. Let ε > 0. For sufficiently large N , �N =∑N
n=1〈ηn, �〉ηn satisfies ‖� − �N ‖ ≤ ε. Then,

∥∥∥∥exp
(

iξ
x̂(t)

t

)
� − �

∥∥∥∥ ≤ 2ε +
∥∥∥∥exp

(
iξ

x̂(t)

t

)
�N − �N

∥∥∥∥ .

By direct calculation, we have

∥∥∥∥exp
(

iξ
x̂(t)

t

)
�N − �N

∥∥∥∥ =
∥∥∥∥
(
exp

(
iξ

x̂

t

)
− 1

)
U t�N

∥∥∥∥
=

∥∥∥∥∥
N∑

n=1

λt
n〈ηn, �〉

(
exp

(
iξ

x̂

t

)
− 1

)
ηn

∥∥∥∥∥
≤

N∑
n=1

|〈ηn, �〉|
∥∥∥∥
(
exp

(
iξ

x̂

t

)
− 1

)
ηn

∥∥∥∥ . (4.2)

Since limt→∞ |1 − eiξ x/t | = 0, |1 − eiξ x/t | ≤ 2 and
∑

x ‖ηn(x)‖2
C2 = ‖ηn‖2 < ∞,

we have

lim
t→∞

∥∥∥∥
(
exp

(
iξ

x̂

t

)
− 1

)
ηn

∥∥∥∥
2

= lim
t→∞

∑
x∈Z

|eiξ x/t − 1|2‖ηn(x)‖2
C2 = 0,

which, combined with (4.2), completes the proof. 
�

Lemma 4.1 [U0, exp(iξ v̂0)] = 0.
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Proof By direct calculation, we have

[U0, exp(iξ v̂0)] = s- lim
t→∞

[
U0, exp

(
iξ

x̂0(t)

t

)]

= s- lim
t→∞ U0

{
exp

(
iξ

x̂0(t)

t

)
− exp

(
iξ

x̂0(t + 1)

t

)}
= 0.

Proof of Theorem 4.3 By (A.1) and (A.2), Theorems 2.1 and 2.2 hold. Then, W+ is a
unitary operator fromHac(U0) toHac(U ). Hence, we have

exp(iξ v̂+)�ac(U ) = W+exp(iξ v̂0)W ∗+�ac(U ).

By direct calculation, we observe that

I (t) := exp

(
iξ

x̂(t)

t

)
�ac(U ) − exp(iξ v̂+)�ac(U )

= Wtexp

(
iξ

x̂0(t)

t

)
W ∗

t �ac(U ) − W+exp(iξ v̂0)W ∗+�ac(U )

=:
3∑

j=1

I j (t),

where

I1(t) = Wtexp

(
iξ

x̂0(t)

t

) (
W ∗

t − W ∗+
)
�ac(U ),

I2(t) = Wt

(
exp

(
iξ

x̂0(t)

t

)
− exp(iξ v̂0)

)
W ∗+�ac(U ),

I3(t) = (Wt − W+) exp(iξ v̂0)W ∗+�ac(U ).

Because Wt and exp(iξ x̂0(t)/t) are uniformly bounded, we know from Theorems 2.1
and 2.2 that s- limt→∞ I1(t) = s- limt→∞ I2(t) = 0. Hence, we have

I (t) = (Wt − W+) exp(iξ v̂0)W ∗+�ac(U ) + o(1)

= (Wt − W+)�ac(U0)exp(iξ v̂0)W ∗+�ac(U )

+ (Wt − W+) [exp(iξ v̂0),�ac(U0)]W ∗+�ac(U ) + o(1),

where we have used the fact that RanW ∗+ = Hac(U0). Since, by Lemma 4.1,
[exp(iξ v̂0),�ac(U0)] = 0, we obtain from Theorem 2.1, that s- limt→∞ I (t) = 0.
This completes the proof. 
�
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