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Abstract One-way quantum deficit and quantum discord are two important measures
of quantum correlations. We revisit the relationship between them in two-qubit sys-
tems. We investigate the conditions that both one-way quantum deficit and quantum
discord have the same optimalmeasurement ensembles, and demonstrate that one-way
quantum deficit can be derived from the quantum discord for a class of X states. More-
over, we give an explicit relation between one-way quantum deficit and entanglement
of formation. We show that under phase damping channel both one-way quantum
deficit and quantum discord evolve exactly in the same way for four parameter X
states. Some examples are presented in details.

Keywords One-way quantum deficit · Quantum discord · Entanglement of
formation

1 Introduction

Quantum entanglement plays important roles in quantum information and quantum
computation [1]. However, some quantum states without quantum entanglement can
also perform quantum tasks [2,3] such as quantum state discrimination [4,5], remote
state preparation [6], quantum state merging [7,8], which have led to new definitions
of quantum correlations such as quantum discord [9,10], one-way quantum deficit
[11–14], and various “discord-like” measures [15].
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One-way quantum deficit was first proposed by Oppenheim et al. [11] for study-
ing thermodynamical systems. They considered the amount of work which could be
extracted from a heat bath by local operations. It quantifies the minimum distillable
entanglement generated between the whole system and the measurement apparatus in
measuring one subsystem of the whole system [16]. The analytical formulae of one-
way quantum deficit are not known even for two-qubit states. With limited analytical
results [17,18], many discussions on quantum deficit only rely on numerical results,
since it involves minimization of sum of local and conditional entropies.

Another famous measure of quantum correlations, the quantum discord [9,10], is
defined to be the difference of two classically equivalent expressions for the mutual
information. There have been a lot of results on quantum discord for bipartite as
well as multipartite mixed quantum states [15]. Nevertheless, due to the optimization
problem involved, it has been recently shown that calculating quantum discord is an
NP complexity problem [19].

It is meaningful to link directly one-way quantum deficit to quantum discord. The
relationship between quantum discord and one-way quantum deficit was first dis-
cussed in Ref. [14]. Horodecki et al. show that the one-way quantum deficit is upper
bounded by the quantum discord for any bipartite quantum states. In Ref. [20], a
tradeoff relationship between one-way unlocalizable quantum discord and one-way
unlocalizable quantum deficit has been presented. The tradeoff relationship between
quantum discord and one-way quantum deficit is obtained [21].

Anyway, decisive results between quantum discord and one-way quantum deficit
are not fully explored even for the two-qubit X states yet. Here, we revisit the relation-
ship between one-way quantum deficit and quantum discord. We find that for special
two-qubit X states the one-way quantum deficit can be derived from quantum dis-
cord exactly in some optimal measurement bases. Furthermore, we connect one-way
quantum deficit to entanglement of formation directly.

To capture the non-classical correlations in bipartite systems, let us recall the fol-
lowing two popular measures of quantum correlations.

One-way quantum deficit Suppose Alice and Bob are allowed to perform only
local operations. Consider a one-way classical communication, say, from Alice to
Bob. The amount of information extractable from quantum system �AB is given
by Ie = log2 D − S(�AB), where D is the dimension of the Hilbert space and
S(�) = −Tr[� log2 �] is the von Neumann entropy of a quantum state �.

The classical operations to extract the amount of information from the quantum state
is Io = log2D − min S((�AB)′), where (�AB)′ = ∑

k M
A
k �ABMA

k is the quantum
state after measurement MA

k has been performed on A. The one-way quantum deficit
[11–14] is given by the difference of Ie and Io [16],

⇀

� = Ie − Io
= min S

(
∑

k

M A
k �ABMA

k

)

− S
(
�AB

)
. (1)

The minimum is taken over all local measurements MA
k . This quantity is equal to the

thermal discord [22].
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Quantum discord The quantum discord is defined as the minimal difference between
quantum mutual information and classical correlation. The quantum mutual informa-
tion is denoted by I(�AB) = S(�A) + S(�B) − S(�AB), which is also identified as
the total correlation of the bipartite quantum system �AB . The �A(B) are the reduced
density matrices TrB(A)�

AB , respectively. Let {MA
k } be a measurement on subsys-

tem A. Classical correlation is given as J (�AB) = S(�B) − min
∑

k pk S(�B
MA

k
),

where pk = Tr(MA
k ⊗ I2�AB) is the probability of kth measurement outcome and

�B
MA

k
= TrA[MA

k ⊗ I2�AB]/pk is the post-measurement state.

The quantum discord [9,10] is defined by

⇀

δ = I
(
�AB

)
− J

(
�AB

)

= S
(
�A

)
+ min

∑

k

pk S
(
�B
MA

k

)
− S

(
�AB

)
. (2)

The superscript “⇀” stands for that the measurement performed on subsystem A. The
minimum is taken over all possible measurements {MA

k } on the subsystem A.

2 Linking one-way quantum deficit to quantum discord

Let us consider bipartite systems in Hilbert space C2 ⊗ C2. Generally, the quantum
correlations are invariant under local unitary operations [15]. Hence, one can write the
X states [23] in the form

�AB = 1

4

⎛

⎝I2 ⊗ I2 + aσz ⊗ I2 + bI2 ⊗ σz +
∑

i∈{x,y,z}
ciσi ⊗ σi

⎞

⎠ , (3)

where σi (i ∈ {x, y, z}) are Pauli matrices, I2 is the identitymatrix, and the parameters
{a, b, cx , cy, cz} ∈ [−1, 1] are real numbers.

The optimal measurement with measurement operators satisfying MA
k � 0,

∑
k M

A
k = I , is generally positive operator-valued measurement (POVM). For rank-

two two-qubit systems, the optimal measurement is just projective ones [24]. It is also
sufficient to consider projective measurement for rank three and four [25].

Let MA
k = |k′〉〈k′|, k ∈ {0, 1}, where

|0′〉 = cos(θ/2)|0〉 − e−iφ sin(θ/2)|1〉, (4)

|1′〉 = eiφ sin(θ/2)|0〉 + cos(θ/2)|1〉. (5)

For the given system (3), we obtain
⇀

δ = S(�A) + min
∑

k pk S(�B
MA

k
) − S(�AB),

in which

pk∈{0,1} = 1

2
(1 ± a cos θ), (6)

123



282 B.-L. Ye, S.-M. Fei

S(�A) = h( 1+a
2 ) with h(x) = −x log2 x − (1 − x) log2(1 − x),

∑

k

pk S
(
�B
MA

k

)
= p0S

(
�B
MA

0

)
+ p1S

(
�B
MA

1

)

= −
∑

k, j∈{0,1}
pkwk j logwk j , (7)

with w00, w01 and w10, w11 the eigenvalues of �B
MA

0
and �B

MA
1
, respectively,

wk j∈{0,1} =
{
1 + (−1)ka cos θ

+ (−1) j
√[

c2x cos2 φ + c2y sin
2 φ

]
sin2 θ + [

b + (−1)kcz cos θ
]
2

}/

(4pk).

(8)

The corresponding quantity S(
∑

k M
A
k �ABMA

k ) in the definition of one-way quan-
tum deficit is given by

S

(
∑

k

M A
k �ABMA

k

)

= S
(
MA

0 ⊗ p0�
B
MA

0
+ MA

1 ⊗ p1�
B
MA

1

)

= S
(
p0�

B
MA

0

)
+ S

(
p1�

B
MA

1

)

= −
∑

k, j∈{0,1}
pkwk j log pkwk j

= h(p0) −
∑

k, j∈{0,1}
pkwk j logwk j . (9)

Substituting Eq. (7) into above equation, we have

S

(
∑

k

M A
k �ABMA

k

)

= h(p0) +
∑

k

pk S
(
�B
MA

k

)
, (10)

which is joint entropy theorem [26].
Let us set

F = S(�A) +
∑

k

pk S
(
�B
MA

k

)
− S

(
�AB

)
, (11)

G = S

(
∑

k

M A
k �ABMA

k

)

− S
(
�AB

)
. (12)
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Inserting Eqs. (7), (9) into Eqs. (11), (12), respectively, we have

F = S(�A) −
∑

k, j∈{0,1}
pkwk j logwk j − S(�AB), (13)

G = h(p0) −
∑

k, j∈{0,1}
pkwk j logwk j − S(�AB). (14)

To search for the minimization involved in computing quantum discord and one-
way quantum deficit is equivalent to seek for the minimal value of the function F and
G with respect to the two parameters θ and φ in the measurement operators. According
to the similar technique used in calculating the quantum discord which only need to
minimize F(θ, 0) [27], here to minimize G(θ, φ), we only need to minimize G(θ, 0)
in calculating the one-way quantum deficit. We denote

G(θ, φ) = S

(
∑

k

M A
k �ABMA

k

)

= −
∑

k, j∈{0,1}
pkwk j log pkwk j = −

4∑

l=1

λl log2 λl ,

where,

λ1,2 = 1

4

(
p0 ± √

R + T0
)

, λ3,4 = 1

4

(
p1 ± √

R + T1
)

,

and p0 = 1 + a cos θ , p1 = 1 − a cos θ , R = [c2x cos2 φ + c2y sin
2 φ] sin2 θ , T0 =

(b + cz cos θ) 2, T1 = (b − cz cos θ) 2. Since λl � 0, one has pk �
√
R + Tk � 0.

Noting that G(θ, φ) = G(π − θ, φ) = G(θ, 2π − φ) and G(θ, φ) is symmetric
with respect to θ = π/2 and φ = π , we only need to consider the case of θ ∈ [0, π/2]
and φ ∈ [0, π). The extreme points of G(θ, φ) are determined by the first partial
derivatives of G with respect to θ and φ,

∂G

∂θ
= − sin θ

4
Hθ , (15)

with

Hθ = R csc θ cot θ − cz
√
T0√

R + T0
log2

p0 + √
R + T0

p0 − √
R + T0

+ a log2
p21 − (R + T1)

p20 − (R + T0)

+ R csc θ cot θ + cz
√
T1√

R + T1
log2

p1 + √
R + T1

p1 − √
R + T1

, (16)

and

∂G

∂φ
= 2 e f sin2 θ sin 2φ Hφ, (17)
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with

Hφ = 1√
R + T0

log2
p0 + √

R + T0
p0 − √

R + T0
+ 1√

R + T1
log2

p1 + √
R + T1

p1 − √
R + T1

, (18)

e = 1
4 |cx + cy | and f = 1

4 |cx − cy | where the absolute values have been taken since
the phase for X states can be always removed by local unitary operation [15].

As Hφ is always positive, ∂G
∂φ

= 0 implies that either φ = 0, π/2 for any θ , or θ = 0
for any φ which implies that Eq. (15) is zero and the minimization is independent on
φ. If θ �= 0, one gets the second derivative of G,

∂2G

∂φ2

∣
∣
∣
∣
(θ,0)

= 4e f sin2(θ)Hφ=0 > 0,

and

∂2G

∂φ2

∣
∣
∣
∣
(θ,π/2)

= −4e f sin2(θ)Hφ=π/2 < 0.

Since for any θ the second derivative ∂2G/∂φ2 is always negative for φ = π/2, we
only need to deal with the minimization problem for the case of φ = 0. To minimize
G(θ, φ) becomes to minimize G(θ, 0). Thus, we need only to find the minimal value
of F and G by varying θ only.

Denote F(θ) = F |φ=0, G(θ) = G|φ=0 and H(θ) = G(θ) − F(θ). The first
derivative ofH(θ) with respect to θ is given by

H(θ)′ = a

2
sin θ log2

1 + a cos θ

1 − a cos θ
. (19)

From H(θ)′ = 0, we have either a = 0 or θ = 0, π/2. Since these stationary points
make F(θ)′ = G(θ)′, they are the sufficient conditions that both G(θ) and F(θ) reach
the minimum with the same optimal measurement ensemble. Here a is a parameter
of the X states and θ is a parameter related to measurement. Substituting a = 0 or
θ = 0, π/2 into F(θ) and G(θ), we have the following results:

Theorem For two-qubit X states, if the measurement is performed on the subsystem

A (resp. B), then
⇀

� = ⇀

δ for a = 0 (resp. b = 0). Depending on the parameters of
the state, the optimum is either at θ = 0 or at θ = π/2. If the optimum is at θ = 0,

then
⇀

� = ⇀

δ . If the optimum is at θ = π/2, then
⇀

� = ⇀

δ − S(�A) + 1.

Recently, we notice that in Ref. [28], the authors assumed that the quantum dis-
cord and one-way quantum deficit get their minimal values in the same measurement
ensemble simultaneously. Thus similar to the quantum discord, the frozen quantum
phenomenon under bit flip channels of one-way quantum deficit happens. Here, our
Theorem gives the explicit conditions that both quantumdiscord and one-way quantum
deficit have the same optimal measurement bases.
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Corollary 1 The one-way quantum deficit is bounded by the quantum discord for
two-qubit X states,

⇀

δ �
⇀

� � S(ρA). (20)

Proof Since 0 � H � 1, we have
⇀

δ �
⇀

� �
⇀

δ + 1 . By using the tight bound about
one-way quantum deficit � � S(ρA) in Ref. [26], we obtain (20). 	

Corollary 2 One-way quantum deficit and the entanglement of formation satisfy the
following relations for two-qubit X states,

⇀

� = E f (�
BC ) − S(�AB) +

{
1, a = 0 or θ = π/2;
h

( 1−a
2

)
, θ = 0,

(21)

whereC is the assisted system topurify the state�AB, and E f (�
BC ) is the entanglement

of formation of �BC , while �BC is the reduced state from a pure state |ψ〉ABC .
Proof From the Koashi–Winter equality [29]

S(�B) = J (�AB) + E f (�
BC ), (22)

andJ (�AB) = S(�B)−min
∑

k pk S(�B
MA

k
), one has E f (�

BC ) = min
∑

k pk S(�B
MA

k
).

Consequently, quantum discord is rewritten as

⇀

δ = S(�A) + E f (�
BC ) − S(�AB). (23)

Thus, we have

⇀

� = ⇀

δ = h

(
1 − a

2

)

+ E f (�
BC ) − S(�AB), (24)

where both of the optimal measurement bases are taken at θ = 0. Hence for a = 0,

we have
⇀

� = E f (�
BC ) − S(�AB) + 1 indeed. For θ = π/2, by using the relations in

Theorem and Eq. (23) we also get
⇀

� = E f (�
BC ) − S(�AB) + 1. 	


Remark Recently, in Ref. [21] by using measure of relative entropy of coherence,

CRE (�A) = min
σ∈I

S(�A||σ), (25)

where I stands for the set of decoherence states σ = ∑
i μi |i〉〈i | with μi ∈ [0, 1] and

∑
i μi = 1, and the authors provided a tradeoff relationship between

⇀

δ and
⇀

�, i. e.,
⇀

δ + CRE (�A) = ⇀

�.
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In fact, one-way quantum deficit can be derived from quantum discord directly.
We consider the exact relationship between quantum discord and one-way quantum
deficit in the following examples.

Example 1 The Bell-diagonal state �AB
Bell = 1

4 (I2 ⊗ I2 + ∑
i∈{x,y,z} ciσi ⊗ σi ). In this

case a = 0 and

⇀

� = ⇀

δ = h

(
1 − c

2

)

+
∑

s∈{ jkl}
As log2 As, (26)

where s is the set { jkl} = {111, 100, 010, 001}, A jkl = 1
4 (1+ (−1) j cx + (−1)kcy +

(−1)l cz), and c ≡ max{|cx |, |cy |, |cz |}. Therefore, from Theoremwe get the analytical
expression of one-way quantum deficit from quantum discord given in [30].

Example 2 Consider a class of X-state,

�AB
q = q|ψ−〉〈ψ−| + (1 − q)|00〉〈00|, (27)

where |ψ−〉 = 1√
2
(|01〉 − |10〉).

For this state, quantum discord is derived at θ = π/2 for q ∈ [0, 1]. The optimal
basis of one-way quantum deficit for q ∈ [0.67, 1] is also at θ = π/2. The value 0.67
is the solution of H ′

θ |θ=π/2,φ=0 = 0 in Eq. (16) for the state �AB
q . According to the

Theorem, we have

⇀

� = E f (�
BC ) − S(�AB) + 1, (28)

where the entanglement of formation

E f (�
BC ) = h

(
1 + √

1 − C2
2

)

(29)

with concurrence C = √
2q(1 − q). So analytical one-way quantum deficit of state

�AB
q is

⇀

� = h

(
1 + √

1 − C2
2

)

− h(q) + 1 (30)

for q ∈ [0.67, 1], see Fig. 1.

3 Quantum correlations under phase damping channel

Aquantumsystemwouldbe subject to interactionwith environments.Weconsider now
the evolution of one-way quantum deficit and quantum discord under noisy channels.
Consider a class of initial two-qubit states,
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One-way quantum deficit

Quantum discord
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Fig. 1 One-way quantum deficit (turquoise solid line) and quantum discord (blue dashed line) versus q.
The interval q ∈ [0.67, 1] one-way quantum deficit and quantum discord both get their optimum at θ = π/2
(Color figure online)

� = 1

4

⎛

⎝I2 ⊗ I2 + bI2 ⊗ σz +
∑

i∈{x,y,z}
ciσi ⊗ σi

⎞

⎠ . (31)

If both two qubits independently go through a channel given by the Kraus operators
{Ki }, ∑i K

†
i Ki = I . The state � evolves into

�̃ =
∑

i, j∈{1,2}
K A
i ⊗ K B

j · � ·
[
K A
i ⊗ K B

j

]†
. (32)

For phase damping channels [31], the Kraus operators are given by K A(B)
1 = |0〉〈0|+√

1 − γ |1〉〈1|, and K A(B)
2 = √

γ |1〉〈1| with the decoherence rate γ ∈ [0, 1]. Thus we
have

�̃ = 1

4

⎡

⎣I2 ⊗ I2 + bI2 ⊗ σz + czσz ⊗ σz +
∑

i∈{x,y}
(1 − γ )ciσi ⊗ σi

⎤

⎦ , (33)

which is a two-qubit X state with a = 0. From the Theorem, we obtain one-way quan-
tum deficit and quantum discord performed on the subsystem A evolve coincidentally
with each other all the time.

For example, we draw the quantum discord and one-way quantum deficit vs
parameter γ in Fig. 2 for b = 0.26, cx = 0.13, cz = 0.08, and cy =
0.15, 0.25, 0.35, 0.45, 0.55, respectively.

123



288 B.-L. Ye, S.-M. Fei

Fig. 2 One-way quantum deficit and quantum discord evolve exactly in the sameway under phase damping
channel. The solid lines from bottom to top correspond cy = 0.15, 0.25, 0.35, 0.45, 0.55, respectively, for
fixed parameters b = 0.26, cx = 0.13, and cz = 0.08

4 Conclusions

We have investigated the connections between one-way quantum deficit and quan-
tum discord for two-qubit X states. Sufficient conditions are given that the one-way
quantum deficit can be derived from quantum discord directly. The explicit relation
between one-way quantum deficit and entanglement of formation is also presented.
Moreover, we have shown that the one-way quantum deficit and quantum discord of
a class of four parameters X states evolve coincidentally under phase damping chan-
nel. Our results may enlighten the understanding on the relations between one-way
quantum deficit and quantum discord. It is also interesting to study the relationship
between one-way quantum deficit and quantum discord for higher-dimensional and
multipartite systems.
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