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Abstract Quantum correlations are thought to be the reason why certain quantum
algorithms overcome their classical counterparts. Since the nature of this resource
is still not fully understood, we shall investigate how entanglement and nonlocality
among register qubits vary as the Grover search algorithm is run. We shall encounter
pronounced differences between the measures employed as far as bipartite and global
correlations are concerned.
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1 Introduction

Quantum correlations lie at the heart of quantum information theory. They are respon-
sible for some tasks that possess no classical counterpart. Among those correlations,
entanglement is perhaps one of the most fundamental and nonclassical features exhib-
ited by quantum systems [1–9]. Other measures have been introduced in the literature
that grasp features that are not captured by entanglement, like the maximum violation
of a Bell inequality, that is, nonlocality. The maximum violation of a Bell inequality
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for N parties is a good figure of merit that complements entanglement in those sce-
narios where the study of truly multipartite quantum correlations renders somehow
impossible [10,11].

Now, when it comes to quantum computing, the presence of multipartite entan-
glement is not a sufficient condition for a pure state quantum computer to be hard to
simulate classically. Jozsa and Linden [12] stressed the fact that if the quantum com-
puter is described using stabilizer formalism, there are many highly entangled states
that have simple classical descriptions. Also, we have to bear in mind that being hard
to simulate classically does not imply the corresponding quantum process to be doing
any useful computation

Few discovered quantum algorithms provide an exponential speed-up over classical
algorithms. Shor’s algorithm [13] is perhaps the most important because it can be used
to factor large numbers and hence has implications for classical cryptographymethods.

In the case of the Grover quantum search algorithm [14], the speed of calculation
is improved by a factor of O(

√
N ) with respect to the best classical result. Certainly

it is not an exponential improvement, but considerable. The two physical mechanisms
that are believed to make possible the former speed-up over classical algorithms are
on the one hand quantum correlations and on the other hand quantum parallelism, the
superposition principle.

Therefore, taking into account that Grover’s algorithm provides a considerable—
although nonexponential—speed-up, and given that multipartite entanglement is
necessary (though not sufficient) for pure state quantum search, we investigate in
the present work what quantum correlations are doing during the search process. The
aforementioned study was discussed recently in the literature [15–18], although only
two-qubit correlations were considered.

The actual role of entanglement or nonlocality in quantum algorithms is very less
known. All effort has been devoted entirely on proving it is present, in sufficient quan-
tities to make classical simulation inefficient [19–22]. We aim to throw some light on
the question of what role it plays by calculating global quantum correlation measures
as they vary during the course of the execution of Grover’s algorithm. Specifically, we
shall pay special attention to the evolution of quantum correlations present between
the qubits in a given register. By tracing the evolution of entanglement during the
search, we shall obtain a better insight into how this algorithm works. To be clear, we
reiterate that we are not trying to prove whether entanglement or any other correlation
is present, we take them as given.

The present contribution is organized as follows. In Sect. 2, we revisit the details
of the Grover search algorithm. Next, the correlations measures employed during the
evolution of the search algorithm are introduced in Sect. 3. The corresponding results
for bipartite and multipartite quantum correlations are shown in Sect. 4. Finally, some
conclusions are drawn in Sect. 5.

2 Grover’s algorithm revisited

Grover [14] introduced in 1996 a faster than classical search algorithm in an unsorted
database. Let us discuss the details of the algorithm. Suppose that we have a quantum
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circuit with an input register of n qubits plus some auxiliary ancillas, which are not of
our concern now. A key ingredient in the algorithm is the Hadamard gate

H = 1√
2

(
1 1
1 −1

)
, (1)

which converts single-qubit states into a coherent superposition of them. It is conve-
nient to introduce the gate W resulting of the action of n times the application of the
Hadamard gate in our quantum circuit

WH = H ⊗ H ⊗ · · · ⊗ H (≡ H⊗n) |0 . . . 0〉
= 1√

2n
(|00 . . . 00〉 + |00 . . . 01〉 + · · · + |11 . . . 11〉)

= 1√
2n

2n−1∑
i=0

|i〉 (2)

on the initial register of n qubits, set initially at x = |0〉. It is clear that what the WH

gate does is to create a uniform superposition of all possible states of the register of n
qubits, starting from an initial state preparation of all states being reset to |0〉.

We also need an operator (2n ×2n matrix) that flips only one element while leaving
the remaining 2n − 1 untouched (|x〉 → |x〉). Thus, we obtain the gate

I0 =

⎛
⎜⎜⎜⎜⎜⎝

−1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

. (3)

Now we wonder about the composite action G = WH I0WH on an arbitrary state
|�〉 =(|a〉 ⊗ |b〉 ⊗ |c〉 ⊗ · · · ⊗ |z〉), that is, we firstly apply in our quantum circuit (2)
to |�〉, followed by (3) and finally let us act (2) again. The resulting state is given by

⎛
⎜⎜⎜⎝

(−1 + 2
2n

)
a + 2

2n (b + c + · · · + z)
2
2n a + (−1 + 2

2n
)
b + 2

2n (c + d + · · · + z)
...

2
2n (a + b + · · · + y) + (−1 + 2

2n
)
z

⎞
⎟⎟⎟⎠ . (4)

The outcome of G|0〉 has a clear significance: every element is inverted around its
mean, that is, every single element value x j of the n qubits at stage or iteration j , turns
into a new value x j+1 = 2α − x j . We have to wait for the last ingredient to give sense
to G|0〉. During our search, we need an oracle that identifies the element(s) we seek
in the search. This is tantamount to assign the value 0 to the element which does not
accomplish the characteristics of the search, while to give the value 1 to the element(s)
that is(are) sought. To be more precise, every time we ask the oracle, we perform the
operation
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F : |x〉 �→ (−1) f (x)|x〉, (5)

where f (x) is either zero or one for some k values out of 2n components of a general
state |� j (x)〉, at iteration j , of our register of n qubits .

Now we can give sense to the action −GF on the register |x〉. Suppose that there
is only one element out of n qubits that is being sought. We have N = 2n , and
all the amplitudes are equal to 1√

2n
. Suppose that the element ck is the one we are

looking for. Let us now apply F such that ck is being flipped. By reversing about the
mean, we obtain an enhancement of the amplitude of the element we are looking for.
By repeating the action of −GF several times, we arrive at the desired result with
probability p = c2k being maximum.

What is the efficiency of the algorithm? So far we have supposed that there is one
only item to be found, but there can exist several of them. Suppose that according to
this criterion, we represent the general state vector of the register at iteration j by the
wave function

|� j (x)〉 = s j
∑
x∈S

|x〉 + c j
∑
x∈NS

|x〉, (6)

where S is the set of k solutions of the oracle f (x) = 1 (number of items pursued),
whereas there are 2n−k terms of (6)which are not (set NS). This decomposition proves
to be extremely useful. We assume without loss of generality that the coefficients in
(6) are real. After the oracle, we have

|� ′
j (x)〉 = −s j

∑
x∈S

|x〉 + c j
∑
x∈NS

|x〉. (7)

Recall that the average of amplitudes of (7) at this stage is given by

α = 1

2n
( − s j k + c j (2

n − k)
)
. (8)

After application of operator −GF , we get the new state ( j + 1)

|� j+1(x)〉 = s j+1

∑
x∈S

|x〉 + c j+1

∑
x∈NS

|x〉, (9)

where we have the celebrated ‘inversion around the mean’ expressions s j+1 = 2α −
s j , c j+1 = 2α − c j . Expanding coefficients we have two recursion relations between
coefficients s j+1 and c j+1, that transforms (s j , c j ) into (s j+1, c j+1) (the action of
−GF). Because all operations done on the generic state |� j (x)〉 are unitary, due to
the fact that it is initially normalized to unity (s0 = c0 = 1√

2n
), it must preserve its

norm. This condition entails that

|〈� j (x)|� j (x)〉|2 = k s2j + (2n − k)c2j = 1, (10)
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which is equivalent to an ellipse with coordinates s j = 1√
k
sin θ j , c j = 1√

2n−k
cos θ j ,

for some angle θ j . After simplifying the aforementioned recursion relation, we obtain

sin θ j+1 = sin(θ j + ω),

cos θ j+1 = cos(θ j + ω), (11)

providedwe identify cosωwith 1− 2k
2n . After imposing the initial conditionsmentioned

before, we arrive at the final expression for the 2n coefficients of |� j (x)〉 at step j :

s j = 1√
k
sin

(
(2 j + 1)ν

)
,

c j = 1√
2n − k

cos
(
(2 j + 1)ν

)
, (12)

with sin2 ν = k
2n .

We finish the search once we have absolute certainty about the result. In other
words, ks2j = sin2

(
(2 j + 1)ν

) = 1 for some j∗. If the number of qubits n is high
enough, then j∗ is the closest integer value to

[
π

4

√
2n

k

]
= O(

√
2n). (13)

With this analysis we show that Grover’s algorithm is of O(
√
N ), as opposed to the

best classical result N/2.

3 Correlations measures employed

Research on the properties and applications of multipartite entanglement measures has
attracted considerable attention in recent years [23–33]. One of the first useful entan-
glement measures for n-qubit pure states |φ〉 to be proposed was the one introduced
by Meyer and Wallach [24]. It was later pointed out by Brennen [25] that the measure
advanced by Meyer and Wallach is equivalent to the average of all the single-qubit
linear entropies, that is, the average entanglement of each qubit of the system with the
remaining (n − 1) qubits.

One way of characterizing the global amount of entanglement exhibited by an n-
qubit state is provided by the sum of the (bipartite) entanglement measures associated
with the 2n−1 − 1 possible bipartitions of the n-qubits system [23]. This particular
number takes into account that the marginal density matrices describing the kth party,
after tracing out the rest, are equivalent to those of n−k parties because of the relation(n
k

) = ( n
n−k

)
. In essence, these entanglement measures are given by the degree of

mixedness of the marginal density matrices associated with each bipartition. In our
case, we shall use the von Neumann entropy

SVN =
∑
i

−Tr[ρi ln ρi ], (14)
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where the sum is performed over all 2n−1 − 1 different bipartitions.
A considerable amount of research has been devoted to unveil the mathemati-

cal structures underlying entanglement, in particular concerning those states which
possess maximum entanglement, as given by some appropriate measure. Indeed,
highly entangled multipartite states generate intense interest for quantum informa-
tion processing and one-way universal quantum computing [34]. They are essential
for several quantum error codes and communication protocols [35], since they are
robust against decoherence. What differs here from the work of Meyer and Wallach
is the fact that we introduce new quantum correlations measures in the study of the
performance of the Grover search algorithm. As we shall see, we shall not arrive at
the same conclusions for we do not address the same questions.

Another measure for entanglement that we shall consider is based on the conjecture
(numerically checked by us) that the inequality [36]

0 ≤ dE ≡ C2
1(2..n) −

n∑
i=2

C2
1i ≤ 1 (15)

holds for an arbitrary number n of qubits in a pure state ρ = |�〉1..n〈�|. C2
xy stands

for the concurrence squared between qubits x, y and C2
1(2..n) = 4 detρ1, with ρ1 =

Tr2..n(ρ). We regard the quantity dE between inequalities as a proper measure for
multipartite entanglement, and so it is considered here.

A good witness of useful correlations is, in many cases, the violation of a Bell
inequality by a quantum state. Most of our knowledge on Bell inequalities and
their quantum mechanical violation is based on the CHSH inequality [37]. With two
dichotomic observables per party, it is the simplest [38] (up to local symmetries) non-
trivial Bell inequality for the bipartite case with binary inputs and outcomes. Let A1
and A2 be two possible measurements on A side whose outcomes are a j ∈ {−1,+1},
and similarly for the B side. Mathematically, it can be shown that, following LVM,
|BLVM

CHSH(λ)| = |a1b1 + a1b2 + a2b1 − a2b2| ≤ 2. Since a1(b1) and a2(b2) cannot
be measured simultaneously, instead one estimates after randomly chosen measure-
ments the average value BLVM

CHSH ≡ ∑
λ BLVM

CHSH(λ)μ(λ) = E(A1, B1) + E(A1, B2) +
E(A2, B1) − E(A2, B2), where E(·) represents the expectation value. Therefore, the
CHSH inequality reduces to

|BLVM
CHSH| ≤ 2. (16)

Quantum mechanically, since we are dealing with qubits, these observables reduce
to Aj(Bj) = aj(bj) · σ , where aj(bj) are unit vectors in R

3 and σ = (σx , σy, σz)

are the usual Pauli matrices. Therefore, the quantal prediction for (16) reduces to the
expectation value of the operator BCHSH

A1 ⊗ B1 + A1 ⊗ B2 + A2 ⊗ B1 − A2 ⊗ B2. (17)

Tsirelson showed [39–41] that CHSH inequality (16) is maximally violated by a
multiplicative factor

√
2 (Tsirelson’s bound) on the basis of quantum mechanics. In

fact, it is true that |Tr(ρABBCHSH)| ≤ 2
√
2 for all observables A1, A2, B1, B2, and all

states ρAB. Increasing the size of Hilbert spaces on either A and B sides would not give
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any advantage in the violation of the CHSH inequalities. In general, it is not known
how to calculate the best such bound for an arbitrary Bell inequality, although several
techniques have been developed [42].

Although it is known that the violation of an n-particle Bell-like inequality of some
sort by an n-particle entangled state is not enough, per se, to prove genuinemultipartite
nonlocality, it is the only approximation left in practice. Mermin, Ardehali, Belinskii
and Klyshko (MABK) inequalities [43–45] are such that they constitute extensions
of the Clauser–Horne–Shimony–Holt (CHSH) Bell inequalities [37] with the require-
ment that generalizedGHZstatesmaximally violate them. In the case ofmultiqubit sys-
tems, onemust instead use a generalization of theCHSH inequality to n qubits.MABK
inequalities are of such nature that they constitute extensions of older inequalities. To
concoct an extension to the multipartite case, we shall introduce a recursive relation
[46] that will allow for more parties. This is easily done by considering the operator

Bn+1 ∝ [(B1 + B ′
1) ⊗ Bn + (B1 − B ′

1) ⊗ B ′
n], (18)

with Bn being the Bell operator for n parties and B1 = v · σ , with σ = (σx , σy, σz)

and v a real unit vector. The prime on the operator denotes the same expression but
with all vectors exchanged. The concomitant maximum value

Bmax
n ≡ max

aj,bj
Tr(ρBN ) (19)

will serve as a measure for the nonlocality content of a given state ρ of n qubits if aj
and bj are unit vectors in R

3. The nonlocality measure (19) is maximized by gener-

alized GHZ states, 2
n+1
2 being the corresponding maximum value. The threshold for

MABK Bell violation is given by the previous value over a
√
2 factor. For instance,

for n = 3 it is equal to 2, and for n = 4, equal to 4.
However, there exist other measures [47] such as the Svetlichny inequalities [48]

which serve the same purpose, having a similar structure extended to the n-partite
scenario [49,50].

We are going to call ‘global measures’ the maximum violation of the MABK (19)
Bell inequality and the total sum of entropies (14) performed over all 2n−1−1 different
bipartitions, for they naturally involve all qubits in the register of the quantum search.
On the other hand, we shall call ‘local measures’ the ones that just employ usual
measures for two qubits, such as (15), where there is a simple sum for concurrences.
High values mean the following: maximum MABK violation of (19) only occurs for

generalized GHZ states, and it is 2
N+1
2 ; maximum of (14) implies most of the reduced

matrices being maximally mixed, while for (15) it is usually almost one. Low values
of all previous measures imply being either zero or O(1).

4 Results

Where do we find multipartite correlation during the search process? Whenever we
apply −GF on a reference state, we induce all qubits to interact between them. If we
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start with the state x = |0〉, we do not have any entanglement initially. But as soon as
we make them interact, we create several superpositions of all possible states of the
register, until a single state is reached, the solution to the search algorithm. Therefore,
we end up in a product state and no entanglement is present.

In order to discuss quantum correlations in the pure state (9), we need to define
the corresponding density matrix ρ. Assuming a ≡ s j = 1√

k
sin

(
(2 j + 1)ν

)
and

b ≡ c j = 1√
2n−k

cos
(
(2 j +1)ν

)
, with k = 1, the state ρ 2n ×2n in the computational

basis is given by
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2 ab ab ab ab ab ab ab . . .

ab b2 b2 b2 b2 b2 b2 b2 . . .

ab b2 b2 b2 b2 b2 b2 b2 . . .

ab b2 b2 b2 b2 b2 b2 b2 . . .

ab b2 b2 b2 b2 b2 b2 b2 . . .

ab b2 b2 b2 b2 b2 b2 b2 . . .

ab b2 b2 b2 b2 b2 b2 b2 . . .

ab b2 b2 b2 b2 b2 b2 b2 . . .
...

...
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

Any reduced state of m parties is obtained tracing out the remaining n − m qubits
in the register. Due to symmetry, it is not difficult to prove that the reduced density
matrix for any reduced state ρm , which is a 2m × 2m real, symmetric matrix, is of the
form

ρm =

⎛
⎜⎜⎜⎜⎜⎝

α β β · · · β

β γ γ · · · γ

β γ γ · · · γ
...

...
...

. . .
...

β γ γ · · · γ

⎞
⎟⎟⎟⎟⎟⎠

2m×2m

, (21)

with α ≡ a2 + ( 2n
2m − 1

)
b2, β ≡ ab + ( 2n

2m − 1
)
b2 and γ ≡ 2n

2m b
2. One can easily

check the trace being unity for α+ (2m −1)γ = a2 + (2n −1)b2 = 1. It can be shown
due to the high symmetry of state (21) that, among the 2m concomitant eigenvalues,
only two {λ1, λ2} are different from zero, namely

1

2
±

√(
α − 1

2

)2

+ (2m − 1)β2. (22)

The concomitant proof is given in the Appendix. For all m, the corresponding eigen-
vectors have the form, in the computational basis {|00..00〉, |00..01〉, . . . , |11..11〉},
of

|λi 〉 = N ·
(

β(2m − 1)

λi − α
, 1, 1, . . . , 1

)T

, (23)

where N is the normalization constant. These results will have strong implications as
far as entanglement will be concerned, as we shall see.
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Now that we are able to address any reduced density matrix in very much detail,
we shall study quantum correlations for n = 2, 4, 6 and 8 qubits.

4.1 Bipartite nonlocality and entanglement

In the case of two qubits, the maximal violation of the CHSH Bell inequality can be
found analytically. Let us consider (21) for m = 2. Following the steps in [11], let us
change the basis for state ρ2 from the computational basis {|00〉, |01〉, |10〉, |11〉} to
the Bell basis {|�+〉, |�−〉, |�+〉, |�−〉}. In such basis, the state reads

1

2

⎛
⎜⎜⎝

α + 2β + γ α − γ 2(β + γ ) 0
α − γ α − 2β + γ 2(β − γ ) 0

2(β + γ ) 2(β − γ ) 4γ 0
0 0 0 0

⎞
⎟⎟⎠ . (24)

If we consider in the Bell basis only the terms that contribute in the optimization of
the CHSH Bell inequality, that is, in Tr(ρ2BCHSH), we have

⎛
⎜⎜⎜⎜⎜⎝

ρ11 iρ I
12 iρ I

13 ρR
14

−iρ I
12 ρ22 ρR

23 iρ I
24

−iρ I
13 ρR

23 ρ33 iρ I
34

ρR
14 −iρ I

24 −iρ I
34 ρ44

⎞
⎟⎟⎟⎟⎟⎠

. (25)

Thus, state ρ2 behaves as a state almost linear in the Bell basis as far as effective
contribution to CHSH is concerned. That state reads

1

2

⎛
⎜⎜⎝

α + 2β + γ 0 0 0
0 α − 2β + γ 2(β − γ ) 0
0 2(β − γ ) 4γ 0
0 0 0 0

⎞
⎟⎟⎠ . (26)

Let us define ρ11 = (α + 2β + γ )/2, ρ22 = (α − 2β + γ )/2, ρ33 = 2γ , ρ44 = 0 and
ρ23 = β − γ . Optimization is carried out as in [11] and after some algebra, we obtain

2
√
2
√

(ρ11 − ρ44)2 + (ρ22 − ρ33)2 + 4
(
ρR
23

)2
, (27)

with the diagonal elements of (26) arranged so that ρ11 > ρ22 > ρ33 > ρ44. Non-
locality CHSHmax is depicted in Fig. 1 for the number of register qubits n = 4, 8.
We must recall that the relation of coefficients {a, b} with the number of qubits n in
the register is given in (12), with (k = 1) sin2 ν = 1

2n . If n become big enough, then
ν ≈ 0, which collapses the evolution of the state in the Grover search algorithm into
a single one for all iterations, which has null correlations. On the other hand, ν ≈ 0
implies more iterations in order to have full probability success.
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842 J. Batle et al.

Fig. 1 (Color online) Evolution of the maximum violation of the CHSH Bell inequality for any pair of
two qubits within a register of n = 4 qubits (crosses, green curve) and n = 8 qubits (diamonds, red curve).
Violation of CHSH never occurs. See text for details

As far as entanglement is concerned, the concurrence ismeasured in (21) form = 2.
As we can appreciate from Fig. 1, no violation of CHSH occurs. The concurrence
measure is easy to compute as a function of the iteration step j , as performed in [15].
The concurrence reads

Cxy = 2
∣∣ cos((2 j + 1)ν + δ)

− 1√
2n − 1

sin((2 j + 1)ν + δ)
∣∣

× 1√
2n − 1

sin((2 j + 1)ν + δ). (28)

As seen from (23), the more number of qubits n we have in the register, the less
correlated the state will be, for the only different coefficient decreases very fast with n
taking into account the functional form for β. This fact is mathematically evident from
(28). Usually, concurrence (28) is not very big from computations and decreases very
fast as the total number of qubits in the register increase. As a matter of fact, evolution
of the concurrence is very similar to the one corresponding to a Bell diagonal state
(C = max(2λmax − 1, 0), with λmax being the maximum eigenvalue of the reduced
two-qubit matrix).

4.2 Multipartite nonlocality and entanglement

The maximum violation of MABK for n = 4 qubits is depicted in Fig. 2. Nonlocality
is actually very low, which implies that no quantum correlation boosts the search.
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Global versus local quantum correlations in the Grover… 843

Fig. 2 (Color online) Evolution of the maximum violation of the MABK Bell inequality for n = 4 qubits
(diamonds, red curve) and success probability (crosses, green curve). Violation of MABK never occurs.
Also, the corresponding numerical value is very low. See text for details

Fig. 3 (Color online) Evolution of the maximum violation of the MABK Bell inequality for n = 6 qubits
(diamonds, red curve) and n = 8 qubits (crosses, green curve). Violation of MABK never occurs in this
case either. It can be appreciated that as n increases, the frequency decreases. See text for details

Regarding higher number of qubits, the situation does not improve. Nonlocality for
n = 6 and n = 8 is shown in Fig. 3. Computing the maximum of MABK for n ≥ 8
becomes computationally demanding. As well as in the n = 4-case, no Bell violation
occurs, even when we compute nonlocality for the whole register.
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Measure dE (15) can be easily converted into an analytic expression fromC2
1(2..n) =

4 detρ1, with ρ1 = Tr2..n(ρ) being (21) for m = 1, and the fact that the concurrence is
the same between all two qubits in the register.With these information, the dE measure
reads

C2
1(2..n) −

n∑
i=2

C2
1i = 4

(
αγ − β2) − (n − 1)C2

xy ← f ( j; n). (29)

As n increases, dE = f ( j; n) decreases the frequency (the target is reached with
more number of steps) and the numerical value becomes smaller and smaller. As far
as entanglement measure (14) is concerned, any reduced state of m qubits possesses
only two nonzero eigenvalues, having eigenstates (23) which resemble almost uniform
pure states. Thus, we do expect measure (14) to be extremely low, as it is the case.
Since there are only two eigenvalues {λ1, λ2}, the states being the same for the same
partition and the sum is taken over 2n−1 − 1 m-partitions, measure (14) reads

SvN = −1

2

n−1∑
m=1

(
n

m

)

(
λ1(v j,m, n) log

(
λ1(v j,m, n)

) +

λ2(v j,m, n) log
(
λ2(v j,m, n)

))
. (30)

It is interesting to notice that (30) can thus be computed analytically, a fact that greatly
helps in computing entanglement measures in the Grover search algorithm.

Measures (29) and (30) are plotted in Fig. 4 for n = 4 and Fig. 5 for n = 8. Their
functional form follow the same pattern, although SvN takes into account all possible
bipartitions. dE detects the presence of nonzero entanglement, whereas SvN has very
low values. SvN conceptually grasps more details of the pure state of the register.
Thus, practically speaking, we have either null or extremely low real multipartite
entanglement.

As far as the behavior of entanglement is concerned, its measure of evolution in the
Grover algorithm can already be found for multipartite systems in [24,51]. That is, the
curves increase up to approximately half of the optimal number of iteration and then
decease. The novelty in our case is that the measure of nonlocality is exactly doing
the same thing, first pointed out in the present work. It seems to be a common trend
for several entanglement measures and even for a quantum correlation measure such
as nonlocality, very far from any definition related to quantum entanglement.

5 Discussion

In this work, we have studied global correlations in the whole process of the Grover
search algorithm. What is meant by ‘global’ here are the quantum correlations that
grasp the entire register containing several qubits, as opposed to ‘local’ were partitions
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Fig. 4 (Color online) Evolution of the entanglement measures dE (crosses, green curve) and SvN (dia-
monds, red curve). The curve in blue (squares) depicts the probability of success. Although different in
nature, both measures evolve in the same fashion. See text for details

Fig. 5 (Color online) Same as in Fig. 4 but for n = 8 qubits. The green curve (crosses) corresponds to
SvN /100, whereas the one in red (diamonds) is dE . Although it may seem that the numerical value of SvN
is considerable, it is in fact very low. Notice how smooth curves become as n increases. See text for details

are introduced to deal with bipartite quantum correlations. It is a general trend that
global correlations are very low as opposed to local ones. All correlation measures
have been given in analytic fashion, evenwhen it is required to find all possible reduced
matrices of the original pure state of the quantum register. These new results, when
compared to the previous ones found in the literature, are more general since they
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tackle truly multipartite quantum correlations. Since both nonlocality and entangle-
ment are either zero or extremely low, it is very difficult to address the precise role of
quantum correlations in this particular quantum algorithm. These conclusions follow
from Figs. 3 and 5. In Fig. 3, we can clearly appreciate how small the maximum viola-

tions of MABK Bell inequalities are from the corresponding exponential values 2
N+1
2

belonging to generalized GHZ states. Also, in Fig. 5, the huge difference between the
values of SVN and dE are apparent.

One could explain that these low correlations are due to the high symmetry that is
present in the problem. It might be the case. Studying much more complex algorithms
(see, for instance [52]) could shed some light on the real role of quantum correlations
in the speed-up process as compared to classical algorithms. However, in the present
case, it appears as if only quantumparallelismwas the only tool required fromquantum
mechanics to overcome their classical counterparts.
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Appendix: Eigenvalues and eigenvectors of the state algorithm

The (pure) state of the system of qubits in the register over which we run the Grover
search algorithm is given by (20). In order to find eigenvalues and eigenvectors corre-
sponding to any reduced state of m-qubits (they all possess the same form), we have
to diagonalize first the following general 2m × 2m matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A B B B B B B B . . .

B 0 0 0 0 0 0 0 . . .

B 0 0 0 0 0 0 0 . . .

B 0 0 0 0 0 0 0 . . .

B 0 0 0 0 0 0 0 . . .

B 0 0 0 0 0 0 0 . . .

B 0 0 0 0 0 0 0 . . .

B 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2m×2m

(31)

by solving the characteristic equation from

∣∣∣∣∣∣∣∣∣∣∣

x − A −B −B · · · −B
−B x 0 · · · 0
−B 0 x · · · 0
...

...
...

. . .
...

−B 0 0 · · · x

∣∣∣∣∣∣∣∣∣∣∣
2m×2m

= 0. (32)
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Let us now multiply the first row by B
x−A and then add the ensuing row to all others.

After that, we divide the first row again by B
x−A , so that we obtain, after simplifying,

(x − A)

∣∣∣∣∣∣∣∣∣∣∣

x + C C C · · · C
C x + C C · · · C
C C x + C · · · C
...

...
...

. . .
...

C C C · · · x + C

∣∣∣∣∣∣∣∣∣∣∣
(2m−1)×(2m−1)

. (33)

with C = −B2

x−A . Using the well-known determinant

∣∣∣∣∣∣∣∣∣∣∣

a b b · · · b
b a b · · · b
b b a · · · b
...

...
...

. . .
...

b b b · · · a

∣∣∣∣∣∣∣∣∣∣∣
k×k

(34)

to be equal to (a + (k − 1)b)(a − b)k−1, we obtain the following equation for the
eigenvalues of (31)

x2
m−1 · (

x2 − Ax − (2m − 1)B2) = 0. (35)

Thus, xi = 0 with multiplicity 2m − 2, and x1,2 = 1
2

(
A ± √

A2 + 4(2m − 1)B2
)
.

Now, if λ is an eigenvalue of (31), λ+1 is an eigenvalue of (31) plus the (2m ×2m)-
unit matrix. Finally, C(λ + 1) will be an eigenvalue of

∣∣∣∣∣∣∣∣∣∣∣

C(A + 1) C(B + 1) C(B + 1) · · · C(B + 1)
C(B + 1) C C · · · C
C(B + 1) C C · · · C

...
...

...
. . .

...

C(B + 1) C C · · · C

∣∣∣∣∣∣∣∣∣∣∣
2m×2m

, (36)

which has the same structure as (21), the one we are interested in. Writing A, B and
C in terms of {α, β, γ } we obtain λ1,2 to be

α + (2m − 1)γ

2
±

√(
α − (2m − 1)γ

2

)2

+ (2m − 1)β2. (37)

After using the normalization condition α + (2m − 1)γ = 1, the eigenvalues finally
reduce to the form given in the text. Once we have the eigenvalues, eigenvectors (23)
are immediately obtained.
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