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Abstract We study the global entanglement and quantum phase transition with the
anisotropy parameter and Dzyaloshinskii–Moriya (DM) interaction by methodology
of quantum renormalization group within a spin 1/2 XXZ model. It has been shown
that the global entanglement can develop two different fixed values, which can exhibit
quantum phase transition at the critical point, and DM interaction not only can con-
trol the occurrence of the critical point, but also can recover the spoiled three-block
entanglement. The behavior of the three-block global entanglement of this large 1D
spin 1/2 XXZmodel with DM interaction can be revealed in this paper. It turns out that
the critical exponent had a relation with the correlation length in the neighborhood of
the critical point. Furthermore, the scaling behavior and nonanalytic phenomenon in
the spin chains are disclosed.

Keywords Global entanglement · Quantum phase transition · XXZ model ·
Dzyaloshinskii–Moriya interaction

1 Introduction

It is well known that quantum entanglement is an important resource [1–4] in the
field of quantum information processing, such as quantum teleportation, quantum
key distribution, quantum cryptograph, and quantum dense coding. In recent years,
quantum phase transition (QPT) has attracted a plenty of attention in condensedmatter
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physics (CMP) and become a hot topic [5–7]. In fact, a remarkable change in the
ground state of the system will take place when one considers the connection between
entanglement and QPT. This change will occur at zero temperature or final cryogenic
situations where all thermal fluctuations get frozen. And quantum fluctuations play a
dominant role in driving the phase transition [8–12].

Additionally, quantum renormalization-group (QRG) method is considered as one
of the good candidates for investigating quantum properties of multibody systems. In
the past, considerable effort had been made on that theme via QRG [13–18]. Specially,
performance of coupled quantum entanglement in QPT was studied in different spin
systems by means of QRG [18–21]. Generally speaking, QRG method, which is orig-
inally designed to investigate the statistical questions of continuum limit, can be used
to study the total properties of the model entering a few sites by the renormalizing of
coupling constants [21–23]. Via our investigations, we found that the QRG method is
efficient for probing the scaling behavior and the nonanalytic near the critical points
within some physical systems [22–27].

Some spinmodels can supply amagnetic termwhich is called as theDzyaloshinskii–
Moriya (DM) interaction arising from spin-orbit coupling. The DM interaction, firstly
proposed by Dzyaloshinsky [28] and Moriya [29], can affect QPT and the critical
properties of many spin systems. It is found that the introduction of the DM interaction
can cause the ferromagnetic spin line to be a better quantum channel for teleportation
[30]. Recently, the relations between two-qubit quantum entanglement or correlation
and quantum phase transition of some spin models have been reported by using the
QRG method [18,31]. However, there are some differences in the practical system
when a site was traced. Factually, N -qubit (N > 2) quantum entanglement and QPT
of some spinmodels have not been studied thoroughly.Motivated by this, in this paper,
we will study three-body entanglement by using the global entanglement to indicate
the QPT in the XXZ model with DM interaction [32,33]. Our results show that the
global entanglement can develop two different fixed values, which preferably exhibit
quantum phase transition at the critical point, and we found that DM interaction not
only can control the occurrence of the critical point, but also can recover the spoiled
three-block entanglement. At the same time, the scaling behavior and nonanalytic
phenomenon have also been revealed.

The paper is arranged as follows. In Sect. 2, multipartite entanglement measure
method called as global entanglement is introduced. In Sect. 3, we elaborate how to
obtain the fixed points of the spin 1/2 XXZ model with DM interaction by means of
QRGmethod. InSect. 4, dynamical properties of the renormalizedglobal entanglement
and the QPT are shown. In Sect. 5, the scaling behavior and nonanalytic phenomenon
in the spin chains are disclosed. Finally, we conclude our results with the summary
section.

2 Entanglement measure in N-qubit systems

Aswe know, the global entanglementwas generally introduced tomeasuremultipartite
entanglement [33]. Given that there is a state vector |φ〉 describing a pure composite
quantum system consisting of N qubits, the global entanglement Q is defined as
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Q(|φ〉) = 2

[
1 − 1

N

N∑
i

Tr
(
ρ2
i

)]
, (1)

where ρi is the reduced density matrix for qubit i . The global entanglement is nor-
malized within the limitation of 0 ≤ Q ≤ 1; explicitly, Q = 0 if and only if |φ〉 is
a product state; Q = 1 when Tr(ρ2

i ) = 0.5, ∀i , i.e., when the reduced state of each
qubit is a maximally mixed state in a state vector |φ〉.

3 Quantum renormalization of the XXZmodel with DM interaction

In this section, we will focus on recalling the quantum renormalization-group (QRG)
method and its application in the spin 1/2 XXZ model with Dzyaloshinskii–Moriya
(DM) interaction. The major aim of QRGmethod is to gradually reduce the degrees of
freedom by iteration until we obtain a controllable state with keeping the low-energy
part of the system unvaried. In Kadanoff’s block method, the lattice is grouped into
blocks in which the Hamiltonian is precisely diagnosed and solved. Each block can
be treated autonomously to obtain the lower-energy renormalized Hilbert subspace.
After that, one can get the effective Hamiltonian H eff via the full Hamiltonian being
mapped into the renormalized space.

Now, we review the renormalization method in the 1D anisotropic XXZmodel with
DM interaction in the z direction. The Hamiltonian of the spin 1/2 XXZ model with
DM interaction on a periodic chain of Nsites is given by

H(J,�) = J

4

N∑
k=1

[
σ x
k σ x

k+1 + σ
y
k σ

y
k+1 + �σ z

k σ z
k+1 + D

(
σ x
k σ

y
k+1 − σ

y
k σ x

k+1

)]
, (2)

where J is the exchange constant, � is the anisotropy parameter, D is the strength of
z component of DM interaction, and σα

k (α = x, y, z) are the standard Pauli matrices
at site k. Besides, the coefficients satisfy J,�, D > 0.

In order to attain a self-similar Hamiltonian after each QRG step, it is nec-
essary to divide the spin chain into three-site blocks. In the standard bases
{|↑↑↓〉 , |↑↓↑〉 , |↑↓↓〉 , |↓↑↑〉 , |↓↑↓〉 , |↓↓↑〉 , |↓↓↓〉 , |↑↑↑〉} the degenerate ground
states are given by

|φ0〉 = 1√
2q(� + q)(1 + D2)

{2(1 + D2) |↓↓↑〉 − (1 − i D)(� + q) |↓↑↓〉

− 2[2i D + (D2 − 1)] |↑↓↓〉}
, (3)

and

∣∣φ′
0

〉 = 1√
2q(� + q)(1 + D2)

{2(1 + D2) |↓↑↑〉 − (1 − i D)(� + q) |↑↓↑〉

− 2[2i D + (D2 − 1)] |↑↑↓〉}
, (4)
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where |↑〉 and |↓〉 are the eigenstates of σz , and q = √
8(1 + D2) + �2. Thus, the

effective Hamiltonian of the renormalized XXZ chain can be expressed as

H eff = J ′

4

N/3∑
k=1

[
σ x
k σ x

k+1 + σ
y
k σ

y
k+1 + �′σ z

k σ z
k+1 + D′ (σ x

k σ
y
k+1 − σ

y
k σ x

k+1

)]
, (5)

where J ′ and D′ are the renormalized coupling constants. Consequently, the iterative
relationship is

J ′ = J
(
1 + D2

) (
2

q

)2

, �′ = �(q + �)2

16
(
1 + D2

) , D′ = D. (6)

The most important information given in the QRG method is its fixed points. By
solving the expression of�′ = �, one can obtain a phase boundary� = √

1 + D2 that
detaches the spin-fluid phase 0 ≤ � <

√
1 + D2 from the Néel phase� >

√
1 + D2.

4 Dynamical properties of the renormalized global entanglement

In order to exploit the performance of the renormalized global entanglement among
three spins located on the side of the block, we here consider one of the degenerate
ground states. Correspondingly, the density matrix of a ground state is defined by

ρ123 = |φ0〉 〈φ0| , (7)

where |φ0〉 has been defined as Eq. (3). The results will be the same if we consider
∣∣φ′

0

〉
constructing the density matrix. After calculation, one can obtain the global entangle-
ment as follows:

Q = 2

(
1 − 1

3

((
4

(
1 + D2

) + (� + q)2
)2

2q2 (� + q)2
+ (� + q)2

4q2
+ 24

(
1 + D2

)2
q2 (� + q)2

))
. (8)

In Fig. 1, we illuminate the evolution of the global entanglement versus� for differ-
ent QRG steps, when D = 1. In the calculation, we choose the iteration relation of the
Eq. (6) and q = √

8(1 + D2) + �2. As the iterations are increased, all entanglement
crosses each other at the critical point of � = √

2. The global entanglement develops
two satisfied values, which are two different phases: the spin-fluid phase and the Néel
phase. It is worth noting that after enough iteration steps Q = 5

6 for 0 ≤ � <
√
2,

while Q → 0 for � >
√
2. Compared with the previous works [24–30], the global

entanglement Q of three-qubit systems is bigger than that in the arbitrary two-qubit
system. What is more, the global entanglement can preferably exhibit a QPT at the
critical point. Afterward, the relationship between the global entanglement and DM
interaction with the increase in the QRG for � = √

2 is shown in Fig. 2. From the
figure, one can easily find that the plots of global entanglement exist an intersection
each other when D = 1 for the different iterations. The global entanglement still can
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Fig. 1 Variation of the global
entanglement with the
anisotropic parameters (�) in
the case of different QRG
iterations when D = 1
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Fig. 2 Global entanglement as
a function of the DM interaction
(D) in the case of QRG
iterations at a fixed value
� = √
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Fig. 3 Global entanglement as
a function of the anisotropic
parameters (�) for the different
strength of DM interaction (D)
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develop two saturated values, which can preferably exhibit QPT at the critical point
D = 1. After enough iteration steps, we found that Q → 0 for 0 ≤ D < 1, and
Q = 5

6 for D > 1.
Next, for the sake of developing how the anisotropy parameters and DM interac-

tion influence quantum entanglement, here we have plotted their relation graphs as
Fig. 3. One can readily see that global entanglement is decreased with the increase
in the anisotropy parameter, when the strength of DM interaction is a constant value.
Moreover, the global entanglement is increased with the increase in the strength of
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DM interaction, when anisotropy parameter is a nonzero value. However, the global
entanglement has a maximum constant value Qmax = 5

6 when � = 0. Hence, one
can conclude that the decay of global entanglement can be effectively suppressed by
tuning the intensity of DM interaction, i.e., the DM interaction can enhance the global
entanglement to some extent, but the anisotropy parameter can weaken the global
entanglement.

5 Scaling behaviors and nonanalytic phenomenon

Now, let us illustrate how nonanalytic behavior and no characteristic length scale occur
at the intersection point. Remarkably, it indicates that quantum entanglement displays
a scaling behavior in the neighborhood of intersection point.

Definitely, we here focus on the behavior of the three-block global entanglement
of this large 1D spin 1/2 XXZ model with DM interaction. Firstly, we analyze the
scaling behavior of y = |dQ/d�|�min versus the size of the system N when D = 1,
where �min is the position of the minimum of dQ/d�. Distinctly, one can gain that a
liner relationship between ln (|dQ/d�|min) and ln(N ) is shown in Fig. 4. At the same
time, one can obtain that the position of the minimum �min of dQ/d� is slowly close
to the intersection point � = √

2, which is analyzed in Fig. 5. Through numerical
calculation, it is verified that the exponent for this behavior is �min = �c + N−0.461.

Subsequently, we also analyze the scaling behavior of y = ||dQ/dD|Dmax versus
the size of the system N for � = √

2, where Dmax is the position of the maximum
of dQ/dD. In Fig. 6, one can obtain that the position of the maximum Dmax of
dQ/dD is slowly close to the critical point D = 1, which is analyzed in Fig. 7. After
calculation, it is proved that the exponent for this behavior is Dmax = Dc + N−0.111.
By comparing Figs. 4 with 6, one can find that two straight line slopes are equal,
which is equal to 0.72. These results show that the quantum renormalization-group
realization is effective and feasible to gain the critical point behavior of the spin 1/2
XXZ model with DM interaction.

Fig. 4 Logarithm of the
absolute value of minimum,
ln (|dQ/d�|min), versus the
logarithm of chain size, ln(N ),
which shows a scaling behavior.
Each point corresponds to the
minimum value of dQ/d�
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Fig. 5 Logarithm of
(�min − �c), ln (�min − �c),
versus the logarithm of chain
size, ln(N ), which shows a
scaling behavior. The scaling
behavior of �min in terms of
system size (N ) where �min is
the position of minimum for
dQ/d�
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Fig. 6 Logarithm of the
absolute value of maximum,
ln (|dQ/dD|max), versus the
logarithm of chain size, ln(N ),
which shows a scaling behavior.
Each point corresponds to the
maximum value of dQ/dD
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Fig. 7 Logarithm of
(Dmax − Dc), ln (Dmax − Dc),
versus the logarithm of chain
size, ln(N ), which shows a
scaling behavior. The scaling
behavior of Dmax in terms of
system size (N ) where Dmax is
the position of maximum for
dQ/dD
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6 Summary

To summarize, we have investigated the dynamical behaviors of the important quan-
tum entanglement witness, the global entanglement in the spin 1/2 XXZ model with
DM interaction by the utilization of QRGmethod. The result shows that the DM inter-
action can make critical point move backward. Thus, one can modulate the critical
point by controlling the DM interaction. Because of this, we claim that our inves-
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tigation might provide a valid method for studying quantum phase transition in the
further. On the other hand, the spoiled entanglement can be recovered by applying the
DM interaction for � �= 0. In addition, after the enough iteration steps, the global
entanglement develops two saturated values, which can preferably exhibit QPT at the
critical point. Meanwhile, the critical behavior is described by the first derivative of
global entanglement of the block, which is increased slowly as the size of the system
becomes larger and larger. This indicates that the behavior of the entanglement can
perfectly help one observe the quantum critical properties of the spin model. At last,
we find that the critical exponent had a relation with the correlation length near the
critical point. Thereby, we expect that these results would be helpful for researchers
to use the global entanglement as the indicators of the quantum phase transition in the
Heisenberg spin models.
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