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Abstract In this paper, an efficient method is proposed to improve the payoffs of
cooperators in cooperative three-player quantum game under the action of amplitude
damping, bit flip and depolarizing channels using weakmeasurements. It is shown that
the payoffs of cooperators can be enhanced to a great extent in the case of amplitude
damping channel, and the payoff sudden death can be avoided in the case of bit flip
and depolarizing channels. Moreover, the payoffs of cooperators tend to a constant by
changing weak measurement strength in spite of sufficiently strong decoherence.

Keywords Three-player cooperative game · Decoherence · The payoff ·
Weak measurement

1 Introduction

The game theory was initially developed for in economics by von Neumann and Mor-
genstern [1]. After the important contributions given by JohnNash [2], the game theory
has been a branch of applied mathematics with many applications, e.g., modeling the
behavior of biological, economical and computer systems. It aims to capture math-
ematical behavior in strategic situations, in which an individuals success in making
a choice depends on the choice of the other players. Papers by Meyer [3] and Eisert
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et al. [4] paved the way for the creation of the new field of quantum game theory.
Starting from the works of Meyer and Eisert, a number of classical games have been
converted into the realm of quantum mechanics [5–18], such as quantum matching
pennies game [8], Prisoner’s dilemmaquantumgame [14],QuantumParrondo’s games
[15] and quantum cooperative games [16]. Miszczak et al. [19] studied a qubit flip
game on a Heisenberg spin chain. It has been shown that being well aware of the
dimensionality of the system, a player can achieve a mean payoff equal to almost 1.
Sharif et al. [20] proposed the quantum solution to a three-player Kolkata restaurant
problem. The Kolkata paise restaurant (KPR) [21] is a repeated game similar to the
minority games, played between a large number of agents among whom there are no
interactions. In recent years, the quantumminority games [22–25] have attractedmuch
attention. They have been analyzed under the influence of decoherence by Flitney and
Hollenberg [26].

Quantum games in the presence of decoherence have been studied by a number
of authors [27–34]. In Ref. [35], effect of quantum decoherence in a three-player
quantum Kolkata restaurant problem was investigated by using tripartite entangled
qutrit states. In Ref. [36], Khan et al. studied the behavior of cooperative multiplayer
quantum games using different quantum channels. The result shows that in the case
of depolarizing channel, the game is a no-payoff game irrespective of the degree of
entanglement in the initial state for the larger values of decoherence parameter. The
decoherence makes the cooperators worse off. Thus, the main issue is how to battle
against the decoherence and improve the payoff.

Quantum strategies and quantum entanglement lead quantum players to harness
the outcome of the game in their favor. In Ref. [37], Gawron et al. investigated
the quantum version of the coin flip game under decoherence. The goal is to opti-
mize the players control pulses and thus allow them to achieve higher probability
of winning compared with the Pauli strategy. It turns out that it is possible to opti-
mize the strategy of both players in the low noise scenario. However, if the rate of
decoherence is high enough, the players strategies have little impact on the game
outcome.

In 1988, Weak measurement was introduced by Aharonov, Albert and Vaidman
(AAV) [38]. Weak measurement is very useful and can help understand many coun-
terintuitive quantum phenomena, for example, Hardy’s paradoxes [39–41]. Recently,
the weak measurement has been applied as a practically implementable method for
protecting entanglement and quantum fidelity of quantum states undergoing deco-
herence through the amplitude damping channel [42–46]. In Ref. [45], by using
weak measurement and quantum measurement reversal, Kim et al. experimentally
demonstrated a scheme for protecting entanglement from amplitude damping deco-
herence. However, the study on the improvement of the payoffs in the quantum games
in the presence of decoherence via using weak measurements is not involved so
far.

In this paper, we propose a method to improve the payoffs of cooperators in coop-
erative three-player quantum game under the action of amplitude damping, bit flip and
depolarizing channels by using weak measurements. It is shown that the payoffs of
cooperators can be enhanced greatly.
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2 Three-player cooperative game

2.1 Classical form

A classical three-person normal form game [47] is given by three nonempty sets �A,
�B and�C , the strategy sets of the players A, B andC and three real valued functions
PA, PB and PC defined on�A×�B ×�C . The product space�A×�B ×�C is the set
of all tuples (σA,σB ,σC ) with σAε�A, σBε�B and σCε�C . A strategy is understood
as such a tuple (σA,σB ,σC ) and PA, PB , PC are payoff functions of the three players.
The game is usually denoted as � = {�A, �B, �C ; PA, PB, PC }.

Each of three players A, B and C chooses one of the two strategies 0, 1. Players
A and B are said to be cooperators if they choose the same strategy. If the three
players choose the same strategy, there is no payoff; otherwise, the two players who
have chosen the same strategy receive a equal fixed amount each from the loser. The
loser is one who chooses strategy different from the other two players. Hence, the
classical three persons symmetric cooperative game is a zero-sum game. And, the
mixed strategies 1

2 [00]+ 1
2 [11], 12 [0]+ 1

2 [1] are optimal for cooperators and the loser,
respectively. In this case, the game is also symmetric with zero sum.

2.2 Quantum form

In quantum form of the three-player game, the players implement their strategies by
applying the unitary operators in their possession on the initial quantum state. The
strategy set of each player consists of two strategies I and σx , where I is the single
qubit identity operator and σx is the Pauli spin flip operator. The initial three qubits
entangled state is prepared by an arbiter, and then, the qubits are sent to all players at
random, one qubit for each player. The players execute their strategies on their own
qubit, and the final state is returned to the arbiter. Upon receiving all the qubits, the
arbiter will perform measurement and the corresponding payoffs of the players are
declared.

There are two different ways for each player to perform his/her strategies. The
classical probability operator (CPO), then each player is allowed to perform I and σx
with probability x and 1 − x , respectively. In CPO, the players work exactly the way
as in a classical game. The only difference is that they lay their bet on a quantum state.
The quantum superposed operator (QSO), then each player is allowed to perform an
unitary operation that is a linear combination of I and σx :

√
x I + √

1 − xσx . This
corresponds to a physical implementation that each player is allowed to use linear
superposition of the identity operator I and the σx . For the three cooperative quantum
game, because A and B are cooperators, in term of the rules, they take the same
strategies. Which implies A and B do the same operations on their respective qubits:
UAB = √

q I
⊗

I+√
1 − qσx

⊗
σx ,whileC takes operationUC = √

r I+√
1 − rσx .

3 Theoretical framework

In this paper, we propose amethod to improve the payoffs of cooperators in cooperative
three-player quantum game under the action of decoherence channels by using weak
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Fig. 1 Schematic diagram of our approach to improve the payoffs of cooperators in three-players coop-
erative game using weak measurements. We perform two weak measurements M and N , before and after
the decoherence channels. The operator UAB represents the strategy of the two cooperators and UC is the
strategy of the third player

measurements. Specifically, we consider a simple schemes as shown in Fig. 1. The
scheme is weak measurement M + decoherence + weak measurement N +strategy
operator.

For the three-player game, we consider the initial state as |ψ〉 = cos(Q/2)|000〉 +
sin(Q/2)|111〉, where Qε[0, π/2] is a measure of entanglement.

A quantum channel transfers information from one place to another. During the
course of transformation, the source of information may interact with the channel with
the many degrees of freedom and thus lead to the information damage. The effect of
quantum channels on the state of a system is a completely positive and trace-preserving
map that is described in terms of Kraus operators.

ρin = |ψ〉〈ψ | �→ εchannel =
∑

l

Kl |ψ〉〈ψ |K †
l (1)

The operator Kl satisfies the CPTP relation
∑

l K
†
l Kl = I . Kl can be expressed in

terms of the linear operator E A,B,C
l as Kl = E A

l ⊗ EB
l ⊗ EC

l .
In order to improve the payoff, we should perform two weak measurements M and

N , before and after the decoherence channels, respectively. The two weak measure-
ments can be written, respectively, as a nonunitary quantum operation [48]

M =
[
1 0
0 m

]

N =
[
n 0
0 1

]

(2)

where m and n are the measurement strengths.
After these weak measurements being implemented, the state is,

ρG = Nεchannel(MρinM†)N †

Tr(Nεchannel(MρinM†)N †)
(3)
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where εchannel is defined by Eq. (1).
The final density matrix of the game after the players execute their moves is given

by

ρl = (UAB
⊗

UC )ρG(UAB
⊗

UC )†

Tr((UAB
⊗

UC )ρG(UAB
⊗

UC )†)
(4)

The operator UAB = √
q I

⊗
I + √

1 − qσx
⊗

σx , represents the strategy of the two
cooperators andUC = √

r I +√
1 − rσx , is the strategy of the third player. The payoff

function of the player is given by [16]

PA,B,C = Tr(P
′
A,B,Cρl) (5)

where P
′
A,B,C is the payoff operator for players A, B or C, which is given by

P
′
A,B,C = �8

i=1(αi , βi , γi ) × ρl
i i (6)

with ρl
i i are the diagonal elements of the final density matrix ρl of the game. αi

′s, βi ′s,
and γi

′s are the elements of the payoff matrix of the three-player game. According to
the rules of the game, the values of the matrix elements are

α1 = α8 = 0, α2 = α3 = α6 = α7 = 1, α4 = α5 = −2

β1 = β8 = 0, β2 = β4 = β5 = β7 = 1, β3 = β6 = −2

γ1 = γ8 = 0, γ3 = γ4 = γ5 = γ6 = 1, γ2 = γ7 = −2 (7)

4 Improving payoff for the amplitude damping channel using weak
measurements

A single qubit Kraus operators for amplitude damping channel is

E0 =
[
1 0
0

√
1 − p

]

E1 =
[
0

√
p

0 0

]

(8)

where p is the decoherence parameter.
If there is no weak measurement, according to Eq. (5), then the payoff function of

cooperators A and B is given by

PAD1
A,B = [q + r − 2 q r + 4 p2 q sin

(
Q

2

)2

+ 4 p2 r sin

(
Q

2

)2

− 4 p q sin

(
Q

2

)2

− 4 p r sin

(
Q

2

)2

+ 8 p q r sin

(
Q

2

)2

− 8 p2 q r sin

(
Q

2

)2

− 1

2
]/[4√

q
√
r sin (Q) (1 − p)

3
2
√
1 − q

√
1 − r + 1] + 1

2
(9)
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Byusingweakmeasurement,when the initial state ismaximally entangled (Q = π/2),
the payoff function of cooperators A and B is given by (see “Appendix 1”).

PAD3
A,B = (q+r−2qr)[m6(pn2+ p−1)2(pn2− p+1)+n6]+ 4m3n3

√
qr(1− p)3(1−q)(1−r)

m6(pn2− p+1)3+n6+ 8m3n3
√
qr(1− p)3(1−q)(1−r)

(10)

To gain the optimal payoff, we let

∂PAD3
A,B

∂q
= 0

∂PAD3
A,B

∂r
= 0 (11)

From above equations, we get q = r = 1/2. Substituting them into Eq. (10), the
maximum payoff of cooperators becomes

PAD
A,B,max = 2m6 n2 p (p − 1)

(
p n2 − p + 1

)

m6
(
p n2 − p + 1

)3 + n6 + 2m3 n3 (1 − p)
3
2

+ 1

2
(12)

In the classical form of the game, the maximum values of payoffs that define the Nash
equilibrium of the game is a fixed point. Whereas by using weak measurements, in the
presence of decoherence, the Nash equilibrium under the action of amplitude damping
channels is a function of decoherence parameter p, and measurement strengths m
and n.

The payoff of player C is negative and twice the payoff function of a cooperator,
that is,

PAD3
C = −2PAD3

A,B

P AD
C,max = −2PAD

A,B,max (13)

Certainly, PAD
A + PAD

B + PAD
C = 0, that is, our scheme is still a zero-sum game by

using weak measurements.
In order to compare with the results in Ref. [36], we choose that the initial state is

maximally entangled (Q = π/2) and the probability parameters q = r = 0.2. These
parameters are the same as those in Ref. [36]. Thus, according to Eq. (10), the payoff
of player A(B) for the amplitude damping channel against the decoherence parameter
p with q = r = 0.2, n = 0.9 for different m is shown in Fig. 2. From this figure, we
can see that under the action of amplitude damping channel, the payoff of cooperators

reaches to a minimum. By using numerical method to let
∂PAD1

A,B
∂p |q=r=0.2,Q=π/2 =

800p−400−4
√
1−p(32p2−96p+91)

[16(1−p)(3/2)+25]2 = 0, we can get the minimum at p = 0.6311. Instead,
the payoff can be improved greatly by using weak measurement. Moreover, when
n = 0.9, with the decrease in m, the payoff becomes a fixed value gradually. When
m = 0.1, the fixed value is 0.32 regardless of the decoherence parameter (see Fig. 2d).
It seems that decoherence has no effect on the payoff of cooperators.
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Fig. 3 The payoff of player A(B) for the amplitude damping channel against the decoherence parameter p
and m with q = r = 0.2, Q = π/2, n = 0.9

Figure 3 displays the dependence of payoff PA(B) on the decoherence parameter
p and the measurement strength m with q = r = 0.2, Q = π/2, and n = 0.9. It
shows that the cooperators’ payoff tends to a constant value when m becomes small
in spite of sufficiently strong decoherence. Moreover, it is interesting to observe that,
limm→0 PAD

A,B = 0.32. This result can be explained from Eq. (10). From the equation,

we get limm→0 PAD
A,B = q + r − 2qr . When q = r = 0.2, the limit is 0.32. If choose

q = 0.001, r = 0.999, then limm→0 PAD
A,B = 0.998, which means that by choosing

the appropriate parameters, the payoff of a cooperator can be approximated to 1 under
the action of weak measurement.

5 Improving payoff for the bit flip channel using weak measurements

A single qubit Kraus operators for the bit flip channel is

E0 = √
1 − p

[
1 0
0 1

]

E1 = √
p

[
0 1
1 0

]

(14)

Withoutweakmeasurement, according toEq. (5), the payoff function of cooperators
A and B is given by

PB f 1
A,B = (2 p − 1)2

2
+ (2 p − 1)2 (q + r − 2 q r) − (2 p−1)2

2

4
√
q

√
r sin (Q)

√
1 − q

√
1 − r + 1

(15)

By using weak measurement, when the initial state is maximally entangled (Q =
π/2), the payoff function of cooperators A and B PB f 3

A,B is given by (see “Appendix
2”).
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PB f 3
A,B ={(q+r−2qr)[m6(pn2+ p−1)2(pn2− p+1)+(p−n2 p+n2)(p+n2 p−n2)2]

+ 4m3n3(2p−1)2
√
qr(1−q)(1−r)}/{m6(pn2 − p+1)3+(p−n2 p + n2)3

+ 8m3n3
√
qr(1 − q)(1 − r)} (16)

The maximization of PB f 3
A,B with respect to q and r , leads to q = r = 1/2, and the

maximum payoff of cooperators becomes

PB f
A,B,max =

[
2 n2 p (p − 1)

(
p + 2m3 n − m6 p − n2 p + m6 + n2 + m6 n2 p

)]

/
[
n2

(
3m6 p3 − 6m6 p2 + 3m6 p − 3 p3 + 3 p2

)
− 3m6 p

+ n4
(
−3m6 p3 + 3m6 p2 + 3 p3 − 6 p2 + 3 p

)

+ n6
(
m6 p3 − p3 + 3 p2 − 3 p + 1

)
+ m6 + p3

+ 2m3 n3 + 3m6 p2 − m6 p3
]

+ 1

2
(17)

Unlike the equilibrium payoff in the classical form of the three players game, this
payoff depends on decoherence parameter p, and measurement strengths m and n
under the action of bit flip channels by using weak measurements.

As in the amplitude damping channel, the calculation results show that the payoff
of player C is negative and twice the payoff function of a cooperator in the case of bit
flip channel. So, our scheme is still a zero-sum game using weak measurements under
the action of bit flip channel.

According to Eq. (16), the payoff of player A(B) for the bit flip channel against
the decoherence parameter p with q = r = 0.2, m = 0.9 for different n is shown in
Fig. 4. From this figure, we can see that the game is no-payoff around the decoherence
parameter p = 0.5 under the influence of bit flip channel. This result can be obtained
directly from Eq. (15). Obviously, when p = 0.5, PB f 1

A,B = 0. However, we are
able to enhance payoff greatly, and to avoid the payoff sudden death by using weak
measurement.Moreover, whenm = 0.9, with the decrease in n, the payoff is improved
to a great extent.

In Fig. 5, we plot the dependence of payoff of player A(B) for the bit flip channel
on the decoherence parameter p and weak measurement strength n with q = r = 0.2,
Q = π/2, m = 0.9. We can observe that except n = 1, the payoff sudden
death can be avoided for all strengths of decoherence by using weak measure-
ment. The payoff of player A(B) tends to a constant value when n becomes small
in spite of sufficiently strong decoherence. Moreover, it is interesting to observe that,
limn→0 P

B f
A,B = 0.32. This result can be explained from Eq. (16). From the equation,

we get limn→0 P
B f
A,B = q + r − 2qr . When q = r = 0.2, we obtain limn→0 P

B f
A,B =

0.32. This result is the same as that discussed in the case of amplitude damping
channel.
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Fig. 5 The payoff of player A(B) for the bit flip channel against the decoherence parameter p and n with
q = r = 0.2, Q = π/2, m = 0.9

6 Improving payoff for the depolarizing channel using weak
measurements

A single qubit Kraus operators for depolarizing channel is

E0=√
1− p

[
1 0
0 1

]

E1=
√

p

3

[
0 1
1 0

]

E2=
√

p

3

[
0 −i
i 0

]

E3=
√

p

3

[
1 0
0 −1

]

(18)

Although the analytical solutions for the cooperators’ payoffs are possible, the formu-
las are rather lengthy and we will not give them in this paper. Instead, in Fig. 6, we
plot the payoff of player A(B) for the depolarizing channel against the decoherence
parameter p with q = r = 0.2, Q = π/2, m = 0.9 for different n. From this figure,
we can see that the game becomes a no-payoff game around a decoherence of 75%
under the influence of depolarizing channel. But, we are able to enhance payoff to
a great extent, and to circumvent payoff sudden death by using weak measurement.
Moreover, when m = 0.9, as the decrease in n, the payoff is improved clearly.

In Fig.7, we plot the dependence of payoff of player A(B) for the depolarizing
channel on the decoherence parameter p and the measurement strength n with q =
r = 0.2, Q = π/2, m = 0.9. We conclude that except n = 1, the payoff sudden
death can be avoided for all values of the decoherence parameter by using weak
measurement. Moreover, it is interesting to observe that limn→0 P

Dp
A,B = 0.32 in spite

of sufficiently strong decoherence.
The results of calculation for the depolarizing channel show that the Nash equilib-

rium is a function of decoherence parameter p, and measurement strengths m and n.
And, the payoff of player C is negative and twice the payoff function of a cooperator.
This means that our scheme is still a zero-sum game using weak measurements in
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Fig. 7 The payoff of player A(B) for the depolarizing channel against the decoherence parameter p and n
with q = r = 0.2, Q = π/2, m = 0.9

the case of depolarizing channel. These results are the same as those in the amplitude
damping and bit flip channel.

7 Conclusion and outlook

In this paper, we have proposed a method to improve the payoffs of cooperators in
cooperative three-player quantumgame under the action of amplitude damping, bit flip
and depolarizing channels by using weak measurements. It is shown that the payoffs
of cooperators can be enhanced greatly in the case of amplitude damping channel,
and the payoff sudden death can be avoided in the case of bit flip and depolarizing
channels.Moreover,we have found that the payoffs of cooperators tend to a constant by
changing weak measurement strength irrespective of sufficiently strong decoherence.

Some experimental realizations of quantum games are described in Refs. [49–51].
Moreover, weak measurements have been experimentally realized in various phys-
ical systems, e.g., solid systems [52], superconducting phase qubits [53] and linear
optic devices [54]. We hope that our proposal can be realized by using such or other
systems. Although we have illustrated our protocol for quantum game with tripartite
entangled qubits, generalization to quantum game with entangled qutrits and quan-
tum game with more than three players seems straightforward. And, we believe that
weak measurement scheme can be used to improve the payoff in some more general
channels.

Acknowledgments This work is supported by the National Natural Science Foundation of China (Grant
No.11374096) and theMajor Program for the Research Foundation of Education Bureau of Hunan Province
of China (Grant No. 10A026).
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Appendix 1

In this Appendix, we present the payoff function of cooperators A and B by using Eq.
(5) for the amplitude damping channel using weak measurements as follows:

PAD2
A,B =

[

n6 q cos

(
Q

2

)2

+ n6 r cos

(
Q

2

)2

+ m6 q sin

(
Q

2

)2

+ m6 r sin

(
Q

2

)2

− 2 n6 q r cos

(
Q

2

)2

− 3m6 p q sin

(
Q

2

)2

− 3m6 p r sin

(
Q

2

)2

− 2m6 q r sin

(
Q

2

)2

+ 3m6 p2 q sin

(
Q

2

)2

− m6 p3 q sin

(
Q

2

)2

+ 3m6 p2 r sin

(
Q

2

)2

− m6 p3 r sin

(
Q

2

)2

+ 6m6 p q r sin

(
Q

2

)2

−m6 n2 p q sin

(
Q

2

)2

− m6 n2 p r sin

(
Q

2

)2

− 6m6 p2 q r sin

(
Q

2

)2

+ 2m6 p3 q r sin

(
Q

2

)2

+ 2m6 n2 p2 q sin

(
Q

2

)2

− m6 n2 p3 q sin

(
Q

2

)2

−m6 n4 p2 q sin

(
Q

2

)2

+ m6 n4 p3 q sin

(
Q

2

)2

+ m6 n6 p3 q sin

(
Q

2

)2

+ 2m6 n2 p2 r sin

(
Q

2

)2

−m6 n2 p3 r sin

(
Q

2

)2

− m6 n4 p2 r sin

(
Q

2

)2

+m6 n4 p3 r sin

(
Q

2

)2

+m6 n6 p3 r sin

(
Q

2

)2

−4m6 n2 p2 q r sin

(
Q

2

)2

+ 2m6 n2 p3 q rsin

(
Q

2

)2

+ 2m6 n4 p2 q r sin

(
Q

2

)2

− 2m6 n4 p3 q r sin

(
Q

2

)2

− 2m6 n6 p3 q r sin

(
Q

2

)2

+ 2m6 n2 p q r sin

(
Q

2

)2

+ 4m3 n3
√
q

√
r cos

(
Q

2

)

sin

(
Q

2

)

(1 − p)
3
2

√
1 − q

√
1 − r [/]n6 cos

(
Q

2

)2

+ m6 sin

(
Q

2

)2

− 3m6 p sin

(
Q

2

)2

+ 3m6 p2 sin

(
Q

2

)2

− m6 p3 sin

(
Q

2

)2

− 6m6 n2 p2 sin

(
Q

2

)2

+ 3m6 n2 p3 sin

(
Q

2

)2

+ 3m6 n4 p2 sin

(
Q

2

)2

− 3m6 n4 p3 sin

(
Q

2

)2

+m6 n6 p3 sin

(
Q

2

)2

+ 3m6 n2 p sin

(
Q

2

)2

+ 8m3 n3
√
q

√
r cos

(
Q

2

)

sin

(
Q

2

)

(1 − p)
3
2
√
1 − q

√
1 − r

]

123



Improving the payoffs of cooperators in three-player… 4409

When the initial state is maximally entangled, i.e., Q = π/2, we obtain the payoff
function Eq. (10).

Appendix 2

In this Appendix, we present the payoff function of cooperators A and B by using Eq.
(5) for the bit flip channel using weak measurements as follows:
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When the initial state is maximally entangled, i.e., Q = π/2, we obtain the payoff function Eq.
(16).
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