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Abstract In this paper, we propose an efficient scheme to generate three-atom W
states in spatially separated cavities connected by optical fibers. In the scheme, we
combine the “transitionless quantum driving” with “quantum Zeno dynamics” to con-
struct a shortcut to fast generate W states. Comparing with the traditional adiabatic
passage, the significant advantage is that the interaction time required for the cre-
ation of the W state is much shorter, which is very important in view of decoherence.
Furthermore, the harmful effects of various decoherence such as atomic spontaneous
emission, cavity losses and the fiber photon leakages are considered. Numerical sim-
ulations illustrate that the shortcut scheme is much faster than the schemes using
adiabatic passage and robust against the decoherence. Moreover, this scheme can also
be generalized to generation of N -atom W states.

Keywords W states · Adiabatic passage · Shortcuts to adiabatic passage ·
Transitionless quantum driving

1 Introduction

Quantum entanglement is the soul of quantummechanics. The manipulation of entan-
gled states is not only the basic task for quantum information processing (QIP) [1,2],
but also fundamental for demonstrating quantum nonlocality [3,4]. In general, entan-
glement of multi-qubit is more useful for QIP and shows more nonclassical effects.
There are two main kinds of entangled states for three-qubit entanglement, the W
state [5] and the Greenberger–Horne–Zeilinger (GHZ) state [4]. Among these two
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kinds of tripartite entanglement, the W state attracts much attention since it can retain
bipartite entanglement when any one of the qubits is traced out, and it has the advan-
tages in quantum teleportation [6]. Thus, many theoretical works have been devoted to
the generation of W states via different techniques [7–26]. Among these techniques,
the resonant interaction [16,17] and the stimulated Raman scattering involving adi-
abatic passage (STIRAP) [18–21] have attracted attention in recent years. However,
the schemes based on resonant interaction are very fast, but they depend on the exact
knowledge of all parameters and require controlling the interaction time accurately.
Although the schemes based on adiabatic passage are robust against experimental
parameters and do not require controlling the interaction time accurately, the operation
time required to get the goal is relatively long, which may lead to larger decoherence
effects. In order to combine advantages of the resonant interaction and the adiabatic
passage, a famous technique named “shortcuts to adiabatic passage” (STAP) [27–31],
which can fast and robustly generate entangled states, has been extended in recent
years.

The “transitionless quantum driving” (TQD) [31] is a well-known method to con-
struct shortcuts to speed up adiabatic processes effectively. Generally speaking, the
laser pulses are not strongly limited by using TQD to construct shortcuts, but a nonex-
istent Hamiltonian in real experiment is necessary by using this method. Apparently,
if we take no account of that whether the constructed Hamiltonian in experiment
is existent or not, TQD is an effective method to fast generate entangled states and
implement quantumprocessing. Because for any time-dependent original Hamiltonian
H0(t), TQD provides a very effective method to construct a Hamiltonian H(t) which
accurately derives the instantaneous eigenstates of H0(t). Moreover, the transitions
between them do not occur at all during the evolution of the whole system regardless
of the rate of change. In other words, the instantaneous eigenstates of H0(t) can be
regarded as truly moving eigenstates of H(t). As we mentioned above, the outcome as
the same as the adiabatic process can be obtained by using TQD in a shorter time. In
view of the advantages of TQD, it is worth to finding ways to overcome the problem
that the Hamiltonian H(t) designed by suing TQD does not exist in experiment. So far,
lots of shortcut schemes have been proposed in theory and implemented in experiment
[30–53].

It is worth noticing that Chen et al. [33] first constructed shortcuts to perform
fast and noise-resistant populations transfer in multi-particle systems, by combining
“Lewis–Riesenfeld invariants” with “quantum Zeno dynamics” (QZD). Soon after,
a lot of schemes are rapidly proposed to perform fast and noise-resistant QIP [35–
37,54–56], by suing similar ideas with slightly breaking the Zeno condition down.
However, most of the above shortcut schemes are based on a single cavity, which is
still a challenge to manipulate a large number of qubits. This is due to the fact that
the spatial separation between neighboring qubits decreases as the number of qubits
increases, and thus, individual addressing becomes increasingly difficult. The coupled-
cavity systems [57–64] are considered as a suitable candidate for the solution of the
above deficiency. In view of that we wonder if it is possible to use TQD to construct
shortcuts for generation ofmulti-atom entanglement, i.e.,W states, in coupled cavities.

In this paper, we construct STAP to fast generate W states in spatially separated
cavities by combining “TQD”with “QZD.” The scheme has the following advantages:
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(1) The interaction time required for the creation of theW state ismuch shorter than the
adiabatic passage. (2)Numerical simulations show that the decoherence such as atomic
spontaneous emission, cavity losses and the fiber photon leakages has little influence
on this scheme. (3) Individual addressing becomes relatively easy in coupled cavities.
(4) This scheme can be generalized to generation of N -atom W states as well.

This paper is structured as follows. In Sect. 2, we construct a theoretical model
by using QZD. In Sect. 3, we construct a shortcut passage based on TQD and show
how to use the constructed shortcut to fast generate W states. In Sect. 4, N -atom W
states are generated in one step by the same principle. A discussion on experimental
feasibility and a summary are given in Sect. 5.

2 Theoretical model

As shown in Fig. 1a, b, we consider that three identical �-type atoms are trapped in
three spatially separated cavities C1,C2 and C3, respectively. The cavities are linked
by optical fibers f1 and f2. Each atom has an excited state |e〉 and two ground states
| f 〉 and |g〉. The atomic transition | f 〉 ↔ |e〉 is resonantly driven by classical field

Fig. 1 Experimental setup and level configuration for each atom
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Ω(t), and the transition |g〉 ↔ |e〉 resonantly coupled to the cavity with coupling
coefficient λ. In the short-fiber limit, i.e., 2Lν/(2πc) � 1 (where L denotes the fiber
length, c denotes the speed of light, and ν denotes the decay of the cavity field into a
continuum of fiber mode), only one resonant fiber mode interacts with the cavity mode
[65]. Under the rotating-wave approximation (RWA), the interaction Hamiltonian for
this system can be written as (h̄ = 1)

Ho = Hal + Hac,

Hal =
3∑

k=1

Ωk(t)|e〉k〈 f | + H.c.,

Hac =
3∑

k=1

λkak |e〉k〈g| + υ1b
†
1(a1 + a2) + υ2b

†
2(a2 + a3) + H.c., (1)

where a†k and ak denote creation and annihilation operators of the cavities Ck(k =
1, 2, 3), respectively; b†j and b j denote the creation and annihilation operators asso-
ciated with the resonant mode of fiber f j ( j = 1, 2), respectively. For the sake of
simplicity, we assume Ω2 = Ωx ,Ω1 = Ω3 = Ωy, λk = λ and υ j = υ. If we assume
the initial state of the system is in |g, f, g〉1,2,3|0, 0, 0〉c1,c2,c3|0, 0〉 f 1, f 2, the whole
system evolves in the subspace ∀ spanned by:

|ψ1〉 = |g, f, g〉1,2,3|0, 0, 0〉c1,c2,c3|0, 0〉 f 1, f 2,
|ψ2〉 = |g, e, g〉1,2,3|0, 0, 0〉c1,c2,c3|0, 0〉 f 1, f 2,
|ψ3〉 = |g, g, g〉1,2,3|1, 0, 0〉c1,c2,c3|0, 0〉 f 1, f 2,
|ψ4〉 = |g, g, g〉1,2,3|0, 1, 0〉c1,c2,c3|0, 0〉 f 1, f 2,
|ψ5〉 = |g, g, g〉1,2,3|0, 0, 1〉c1,c2,c3|0, 0〉 f 1, f 2,
|ψ6〉 = |g, g, g〉1,2,3|0, 0, 0〉c1,c2,c3|1, 0〉 f 1, f 2,
|ψ7〉 = |g, g, g〉1,2,3|0, 0, 0〉c1,c2,c3|0, 1〉 f 1, f 2,
|ψ8〉 = |g, g, e〉1,2,3|0, 0, 0〉c1,c2,c3|0, 0〉 f 1, f 2.
|ψ9〉 = |g, g, f 〉1,2,3|0, 0, 0〉c1,c2,c3|0, 0〉 f 1, f 2,

|ψ10〉 = |e, g, g〉1,2,3|0, 0, 0〉c1,c2,c3|0, 0〉 f 1, f 2,
|ψ11〉 = | f, g, g〉1,2,3|0, 0, 0〉c1,c2,c3|0, 0〉 f 1, f 2. (2)

Under the Zeno condition Ωx ,Ωy � √
3λ, the Hilbert subspace ∀ is split into seven

Zeno subspaces according to the degeneracy of eigenvalues of Hac,

Z0 = {|φ1〉, |φ2〉, |φ3〉, |φ4〉, |φ5〉},
Z1 = {|φ6〉}, Z2 = {|φ7〉}, Z3 = {|φ8〉},
Z4 = {|φ9〉}, Z5 = {|φ10〉}, Z6 = {|φ11〉}, (3)
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where the eigenstates of Hac are

|φ1〉 = |ψ1〉,
|φ2〉 = υ√

2υ2 + λ2

[
|ψ2〉 + λ

υ
|ψ7〉 + |ψ8〉

]
,

|φ3〉 = |ψ9〉,
|φ4〉 = υ√

2υ2 + λ2

[
|ψ2〉 − λ

υ
|ψ6〉 + |ψ10〉

]
,

|φ5〉 = |ψ11〉,
|φ6〉 = 1√

6
[−|ψ2〉 + |ψ3〉 − |ψ4〉 − |ψ5〉 + |ψ8〉 + |ψ10〉] ,

|φ7〉 = 1√
6
[−|ψ2〉 − |ψ3〉 + |ψ4〉 + |ψ5〉 + |ψ8〉 + |ψ10〉],

|φ8〉 = λ

2
√

υ2 + λ2

[
−

√
υ2 + λ2

λ
|ψ4〉 +

√
υ2 + λ2

λ
|ψ5〉 + υ

λ
|ψ6〉

− υ

λ
|ψ7〉 − |ψ8〉 + |ψ10〉

]
,

|φ9〉 = λ

2
√

υ2 + λ2

[√
υ2 − λ2

λ
|ψ4〉 −

√
υ2 + λ2

λ
|ψ5〉 + υ

λ
|ψ6〉

− υ

λ
|ψ7〉 − |ψ8〉 + |ψ10〉

]
,

|φ10〉 = λ

2
√
3(3υ2 + λ2)

[
2|ψ2〉 − 2

√
3υ2 + λ2

λ
|ψ3〉 − 2

√
3υ2 + λ2

λ
|ψ4〉

− 2
√
3υ2 + λ2

λ
|ψ5〉 + 3υ

λ
|ψ6〉 + 3υ

λ
|ψ7〉 + |ψ8〉 + |ψ10〉

]
,

|φ11〉 = λ

2
√
3(3υ2 + λ2)

[
2|ψ2〉 + 2

√
3υ2 + λ2

λ
|ψ3〉 + 2

√
3υ2 + λ2

λ
|ψ4〉

+ 2
√
3υ2 + λ2

λ
|ψ5〉 + 3υ

λ
|ψ6〉 + 3υ

λ
|ψ7〉 + |ψ8〉 + |ψ10〉

]
, (4)

and the corresponding eigenvalues are

ς0 = 0, ς1 = −λ, ς2 = λ, ς3 = −
√

υ2 + λ2, ς4 =
√

υ2 + λ2,

ς5 = −
√
3υ2 + λ2, ς6 =

√
3υ2 + λ2. (5)

Under theZeno condition,weobtain the effectiveHamiltonian governing the evolution

Heff = δΩx (|φ2〉 + |φ4〉)〈ψ1| + δΩy(|φ2〉〈ψ9| + |φ4〉〈ψ11|) + H.c., (6)
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where δ = υ√
2υ2+λ2

is the normalization factors of the eigenstates |φ2〉 and |φ4〉.
Then, we use four orthogonal vectors |μ+〉 = 1√

2
(|φ2〉 + |φ4〉), |μ−〉 = 1√

2
(|φ2〉 −

|φ4〉), |ϑ+〉 = 1√
2
(|ψ9〉 + |ψ11〉) and |ϑ−〉 = 1√

2
(|ψ9〉 − |ψ11〉) to rewrite the Hamil-

tonian in Eq. (6) as

H1
eff = √

2δΩx |μ+〉〈ψ1| + δΩy |μ+〉〈ϑ+| + δΩy |μ−〉〈ϑ−| + H.c.. (7)

It is obvious that when the initial state is |ψ1〉, the terms containing |μ−〉 and |ϑ−〉 are
negligible because they are decoupled to the time evolution of initial state. Then, we
can obtain the final effective Hamiltonian

Hfe = √
2δΩx |μ+〉〈ψ1| + δΩy |μ+〉〈ϑ+| + H.c., (8)

which can be treated as a simple three-level system with an excited state |μ+〉 and
two ground states |ψ1〉 and |ϑ+〉. Then, we obtain the instantaneous eigenstates of the
final effective Hamiltonian Hfe

|n0(t)〉 = cos θ |ψ1〉 + sin θ |ϑ+〉,
|n±(t)〉 = 1√

2
(sin θ |ψ1〉 ± √

2β|μ+〉 − cos θ |ϑ+〉), (9)

and corresponding eigenvalues ι0 = 0, ι± = ±δβ, respectively. Here, β =√
2Ω2

x + Ω2
y and θ = arctan−

√
2Ωx
Ωy

. It is obvious that the state |ψ1〉 = |n0(0)〉
would follow |n0(t)〉 closely, if the adiabatic condition | 〈n0(t)|∂t n±(t)〉| � |ι±| is
fulfilled. However, it is undesirable to obtain the target state, because this process
would take quite a long time.

3 The shortcut scheme is proposed to generate W states based on TQD

3.1 Construct STAP by using TQD

As far as we know, the instantaneous states |nk(t)〉 (k = 0,±)wementioned in Eq. (9)
do not meet the Schrödinger equation i∂t |nk(t)〉 = Hfe(t)|nk(t)〉. The key to solving
the problem is to construct shortcuts for a system governed by H0(t)with finding out a
Hamiltonian H(t)which drives the instantaneous eigenstates |nk(t)〉 of H0(t) exactly.
According to the Berry’s transitionless tracking algorithm [31], the Hamiltonian H(t)
can be reverse engineered from H0(t). And disregarding the effect of phases, we obtain
the simplest Hamiltonian H(t) in the form of

H(t) = i
∑

k=0,±
|∂t nk(t)〉〈nk(t)|. (10)
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Then, we can use transitionless tracking algorithm to construct the Hamiltonian that
exactly drives the eigenstates of Hfe(t),

HCCD = i θ̇ |ϑ+〉〈ψ1| + H.c., (11)

where θ̇ = √
2[Ω̇y(t)Ωx (t) − Ω̇x (t)Ωy(t)]/β2. However, it is necessary to find

out an alternative physically feasible (APF) system whose effective Hamiltonian is
equivalent to HCCD, because obtaining the CDD Hamiltonian H(t) is an outstanding
challenge in present experimental condition. The model we used with three atoms
trapped in coupled cavity is as the same as Fig. 1a. As shown in Fig. 1c, we make all
the resonant atomic transitions into nonresonant atomic transitions with detuning Δ.
The interaction Hamiltonian for the present system reads

H̃o = H̃al + H̃ac + He,

H̃al =
3∑

k=1

Ω̃k(t)|e〉k〈 f | + H.c.,

H̃ac =
3∑

k=1

λak |e〉k〈g| + υb†1(a1 + a2) + υb†2(a2 + a3) + H.c.,

He =
3∑

k=1

|e〉k〈e|. (12)

For the sake of simplicity, we set Ω̃2 = Ω̃x , Ω̃1 = Ω̃3 = Ω̃y, λ̃k = λ and υ̃k = υ.
Then, for the Hamiltonian in Eq. (12), performing similar processes from Eqs. (1)–(8),
we can approximatively neglect the terms containing the high oscillating frequencies.
Meanwhile, the terms that are decoupled to the time evolution of initial state can also
be neglected. We obtain an effective Hamiltonian for present system

H̃eff = (
√
2δΩ̃x |μ+〉〈ψ1| + δΩ̃y |μ+〉〈ϑ+| + H.c.) + 3Δδ2|μ+〉〈μ+|, (13)

where δ = υ√
2υ2+λ2

. Then, we adiabatically eliminate the state |μ+〉 by using second-
order perturbation approximation. The effective Hamiltonian becomes

H̃1
eff = 2|Ω̃x |2

3Δ
|ψ1〉〈ψ1| + |Ω̃y |2

3Δ
|ϑ+〉〈ϑ+| +

(√
2Ω̃xΩ̃

∗
y

3Δ
|ϑ+〉〈ψ1| + H.c.

)
.

(14)

When we choose �̃x = �̃∗
y = �s , and Ω̃x = iΩs√

2
, the front two terms caused by Stark

shift being removed, the above Hamiltonian becomes

H̃fe = iΩ|ϑ+〉〈ψ1| + H.c., (15)
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where Ω = Ω2
s

3Δ . If we set Ω = θ̇ , we can obtain H̃fe = HCCD. That means, under
condition Ω̃x , Ω̃y � √

3λ,
√
3Δ, the Hamiltonian for speeding up the adiabatic dark-

state evolution governed by H0 has been constructed.

3.2 Generation of W states based on STAP

Wewill show that the generation of theW state based on STAP is much faster than the
adiabatic passage. To generate a three-atom W state, we choose the Rabi frequencies
as

Ωx (t) = Ω0 sin α exp

[−(t − t0 − t f /2)2

t2c

]
,

Ωy(t) = Ω0 exp

[−(t + t0 − t f /2)2

t2c

]
+ Ω0 cosα exp

[−(t − t0 − t f /2)2

t2c

]
,

(16)

where Ω0 is the amplitude and {t0, tc} are related parameters. In order to meet the
limited conditions, the time-dependent Ωx (t) and Ωy(t) are gotten as shown in Fig. 2
with parameters tan α = 1, t0 = 0.15t f and tc = 0.2t f . As we mentioned above, the
Ωs is given

Ωs =
√
3Δθ̇ =

√
3
√
2Δ(Ω̇yΩx − Ω̇xΩy)

β2 . (17)

If we set two dimensionless parameters

η1 = t ′t f − t0 − 0.5t f
tc

,
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Fig. 2 Dependence on t/t f of Ωx/Ω0 and Ωy/Ω0
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η2 = t ′t f + t0 − 0.5t f
tc

, (18)

where t ′ = t
t f
. Then, putting Eqs. (16) and (18) into Eq. (17), we obtain

Ωs =
√
6
√
2ΔR2

t f
. (19)

where

R =
√√√√η1ΩxΩy − ΩxΩ0(η2e−η22 + cosαη1e−η21 )

2Ω2
x + Ω2

y
. (20)

We find out the amplitude of Ωs is mainly dominated by χ =
√

6
√
2Δ
t f

, since the

amplitude of R is close to 1. Therefore, the limited conditions become

√
6
√
2Δ

t f
� √

3λ ⇒ t f � 2
√
2Δ

λ2
,

√
6
√
2Δ

t f
� √

3Δ ⇒ t f � 2
√
2

Δ
. (21)

In order to meet the Zeno condition, it is better to choose a smaller Δ if the interac-
tion time t f is short, when λ is a constant value. However, a larger Δ is still required
due to need to meet the large detuning condition. This can be demonstrated in Fig. 3
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Fig. 4 a Time evolution of the populations for the states |ψ1〉, |ψ9〉 and |ψ11〉 with {t f = 75/λ and
Δ = 3λ}.bTime evolution of the populations for the intermediate states |τ 〉, |τ+〉 and |τ−〉with {t f = 75/λ
and Δ = 3λ}

which shows the fidelity of the W state versus parameters λt f and Δ/λ. As shown
in Fig. 3, a long operation time t f is still required if Δ is too small or too large.
The fidelity F of the state is defined as F = ∣∣〈ψ |ρ(t f )|ψ〉∣∣, where ρ(t f ) is the
density operator of the given system when t = t f . Then, in order to verify the short-
cut scheme effectively, we contrast the performances of population transfer from the
initial state |ψ1〉. The time-dependent population for any state |ψ〉 is given through
relationship P = |〈ψ |ρ(t)|ψ〉|, where ρ(t) is the corresponding time-dependent den-
sity operator. Figure 4a shows that a perfect populations transfer can be achieved
with suitable parameters {Δ = 3λ, t f = 75/λ}. Unfortunately, slightly breaking
the Zeno condition leads to a slight failure of the approximation during the stepped-
up evolution. Wherefore, the parameter should be slightly corrected, i.e., a related
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Fig. 6 Fidelity of the W state via STAP versus the variations of T and χ

parameter (Ω̃x → 1.05Ω̃x ). We plot the time evolution of the populations in inter-
mediate states |τ 〉 = 1√

3
(|ψ2〉 + |ψ8〉 + |ψ10〉), |τ+〉 = 1√

3
(|ψ3〉 + |ψ4〉 + |ψ5〉) and

|τ−〉 = 1√
2
(|ψ6〉+|ψ7〉) in Fig. 4b to prove this. Figure 4b shows that the intermediate

states can be effectively neglected, because the populations of the intermediate states
are almost zero. In Fig. 5, we compare the fidelity between our scheme and adiabatic
scheme. Generally speaking, the interaction time required for the creation of the W
state via adiabatic passage becomes more and more shorter with increasing of Ω0,
but the RWA is not longer effective for the system if Ω0 is relatively large. Figure 5
shows that the interaction time via adiabatic passage is still much longer than that via
STAP, even if we choose Ω0 = 0.5λ. That means our scheme is much faster than the
adiabatic passage. However, it is known to all that the fidelity of the W state is influ-
enced with the mutative parameters. The fidelity of the W state versus the variation
δχ and δT is plotted in Fig. 6. Here, we define δx = x ′ − x as the deviation of any
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parameter x , where x ′ is the actual value and x is the ideal value. As shown in Fig. 6,
the fidelity almost keeps unchanging with the variation δT (T = 85/λ). Figure 6 also
shows a deviation |δχ/χ | = 5% which means the variation in the amplitude of Ωs

only causes a reduction about 1.5% in the fidelity. That is to say, our scheme is robust
against variations in the experimental parameters.

Now, we will investigate the influence of various decoherence caused by the atomic
spontaneous emission, cavity losses and the fiber photon leakages. Themaster equation
of the whole system reads

ρ̇ = −i[H0, ρ] + �3
k=1

γk

2

(
2σ−

k ρσ+
k − σ+

k σ−
k ρ − ρσ+

k σ−
k

)

+�3
k=1

κk

2

(
2a−

k ρa+
k − a+

k a
−
k ρ − ρa+

k a
−
k

)

+�2
k=1

βk

2

(
2b−

k ρb+
k − b+

k b
−
k ρ − ρb+

k b
−
k

)
, (22)

where γk denotes the atomic spontaneous decay rate of the kth atom; κk and βk denote
the decay rates of the kth cavity andfiber, respectively. For simplicity,we setγ1 = γ2 =
γ3 = γ, κ1 = κ2 = κ3 = κ and β1 = β2 = β. Themaster equation can be numerically
solved in the subspace ∀̃ ∈ {∀, |ψ12〉 = |g, g, g〉1,2,3|0, 0, 0〉c1,c2,c3|0, 0〉 f 1, f 2}. Then,
we plot the fidelity versus the dimensionless parameters γ /λ, κ/λ and β/λ in Fig. 7.
We can see the fidelity is almost unaffected by the fiber loss rate β, because the fiber
length is very short. Thus, the cavity decay and the atomic spontaneous emission decay
become the main sources of decoherence. It is necessary to focus on the influences
of the atomic spontaneous emission rate γ and the cavity decay rate κ . As shown in
Fig. 8, the scheme is more sensitive to atomic spontaneous emissions than the cavity
decay, since theZeno condition is not satisfied faultlessly. Therefore, the populations of
intermediate states (|τ 〉, |τ+〉 and |τ−〉) cannot be completely suppressed. Fortunately,
we still can create a three-atom W state with a high fidelity 96.27%, even if we set
γ = κ = 0.01λ. This means the scheme is robust since the fidelity decreases slowly.
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Fig. 7 Fidelity of the W state via STAP versus the decoherence parameters γ /λ, κ/λ and β/λ with
t f = 75/λ and Δ = 3λ
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Fig. 8 Dependences on the decoherence parameters γ /λ and κ/λ of the fidelity of the W state via STAP
with t f = 75/λ and Δ = 3λ

4 Generation of N-atom W states by STAP

In this section, we give a brief description about generation of N -atom (N > 3) W
states in a similar system by the same principle. As shown in Fig. 9, we assume that N
identical �-type atoms are trapped in N spatially separated cavities C1,C2, . . . ,CN ,
respectively. The cavities are linked by optical fibers f1, f2, . . . , fN−1. The level con-
figurations of the atoms are the same aswementioned in Fig. 1b. Then, theHamiltonian
for the system in the interaction picture reads

H́o = H́al + H́ac + H́e,

H́al =
N∑

k=1

Ωk(t)|e〉k〈 f | + H.c.,

H́ac =
N∑

k=1

λkak |e〉k〈g| +
N−1∑

k=1

υkb
†
k (a1 + ak+1) + H.c.,

H́e =
N∑

k=1

|e〉k〈e|. (23)

We assume the initial state is | f, g, . . . , g〉1,2,...,N |0, 0, . . . , 0〉c1,c2,...,cN |0, 0, . . . ,
0〉 f1, f2,..., fN−1 . The whole system evolves in the subspace spanned ∀́ by

|ψ́1〉 = | f, g, g, . . . , g〉1,2,...,N |0, 0, 0, . . . , 0〉c1,c2,...,cN |0, 0, . . . , 0〉 f1, f2,..., fN−1 ,

|ψ́2〉 = |e, g, g, . . . , g〉1,2,...,N |0, 0, 0, . . . , 0〉c1,c2,...,cN |0, 0, . . . , 0〉 f1, f2,..., fN−1 ,
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Fig. 9 Experimental setup diagram for generation of N -atom W states

|ψ́3〉 = |g, g, g, . . . , g〉1,2,...,N |1, 0, 0, . . . , 0〉c1,c2,...,cN |0, 0, . . . , 0〉 f1, f2,..., fN−1 ,

|ψ́4〉 = |g, g, g, . . . , g〉1,2,...,N |0, 0, 0, . . . , 0〉c1,c2,...,cN |1, 0, . . . , 0〉 f1, f2,..., fN−1 ,

|ψ́5〉 = |g, g, g, . . . , g〉1,2,...,N |0, 1, 0, . . . , 0〉c1,c2,...,cN |0, 0, . . . , 0〉 f1, f2,..., fN−1 ,

|ψ́6〉 = |g, e, g, . . . , g〉1,2,...,N |0, 0, 0, . . . , 0〉c1,c2,...,cN |0, 0, . . . , 0〉 f1, f2,..., fN−1 ,

|ψ́7〉 = |g, f, g, . . . , g〉1,2,...,N |0, 0, 0, . . . , 0〉c1,c2,...,cN |0, 0, . . . , 0〉 f1, f2,..., fN−1 ,

|ψ́8〉 = |g, g, g, . . . , g〉1,2,...,N |0, 0, 0, . . . , 0〉c1,c2,...,cN |0, 1, . . . , 0〉 f1, f2,..., fN−1 ,

|ψ́9〉 = |g, g, g, . . . , g〉1,2,...,N |0, 0, 1, . . . , 0〉c1,c2,...,cN |0, 0, . . . , 0〉 f1, f2,..., fN−1 ,

|ψ́10〉 = |g, g, e, . . . , g〉1,2,...,N |0, 0, 0, . . . , 0〉c1,c2,...,cN |0, 0, . . . , 0〉 f1, f2,..., fN−1 ,

|ψ́11〉 = |g, g, f, . . . , g〉1,2,...,N |0, 0, 0, . . . , 0〉c1,c2,...,cN |0, 0, . . . , 0〉 f1, f2,..., fN−1 ,

. . . . . .

|ψ́4N−1〉 = |g, g, g, . . . , f 〉1,2,...,N |0, 0, 0, . . . , 0〉c1,c2,...,cN |0, 0, . . . , 0〉 f1, f2,..., fN−1 .

(24)

The procedure is the same as we mentioned in Sect. 3, and we get an effective Hamil-
tonian (we set Ώ2 = Ώ3 = · · · = ΏN = Ώy)

123



Generation of multi-atom entangled states in coupled… 4489

H́eff = (N − 1)|Ώ1|2
NΔ

|ψ́1〉〈ψ́1| + |Ώy |2
NΔ

|ϑ́+〉〈ϑ́+|

+
(√

N − 1Ώ1Ώ
∗
y

NΔ
|ϑ́+〉〈ψ́1| + H.c.

)
. (25)

When we choose Ώy = Ώs and Ώ1 = iΏs√
N−1

(here Ώs is a real number), the above
Hamiltonian becomes

H́fe = iΏ|ϑ́+〉〈ψ́1| + H.c., (26)

where Ώ = |Ώs |2
NΔ

, |ϑ́+〉 = 1√
N−1

(|ψ́7〉 + |ψ́11〉 + · · · + |ψ́4N−1〉) (N = 4, 5, . . . , N ).

As long as Ώ = θ̇ , H́fe = HCCD, the Hamiltonian for speeding up the adiabatic
dark-state evolution governed by H́0 has been constructed. Wherefore, we can obtain
N -atomW states, i.e., |ψ́(t)〉 = 1√

2
(|ψ́1〉+ |ϑ́+〉) = 1√

N
(|ψ́1〉+ |ψ́7〉+ |ψ́11〉+ · · ·+

|ψ́4N−1〉).

5 Experimental feasibility and conclusions

Finally, let us consider the experimental feasibility of the proposed scheme. In experi-
ment, this scheme can be realized in the strong-coupling regime [31,66], if the cesium
atoms can be cooled and trapped in coupled cavity. Furthermore, a set of cavity quan-
tum electrodynamics (QED) parameters (λ, γ, κ)/2π = (750, 2.62, 3.5) MHz is
predicted to be available [67], with the cavity mode wavelength about 850nm. In
this condition, we can obtain a relatively high fidelity 98.42% in the shortcut scheme.

In summary, we have proposed an efficient theoretical scheme to generateW states
for three atoms trapped in coupled cavities linked by optical fibers based on STAP by
combining “TQD” with “QZD.” The influences of the decoherence such as atomic
spontaneous emission, cavity losses and the fiber photon leakages are numerically
studied. Numerical simulations demonstrate that the shortcut scheme is faster and
robust against the decoherence. Additionally, N -atom W states can also be generated

when we set Ώ1 = iΏs√
N−1

and Ώ2 = Ώ3 = · · · = ΏN = Ώs . In fact, the shortcut is
possible to be constructed with the same method presented in this scheme, so long as
the quantum systemwhose Hamiltonian is possible to be simplified into a similar form
in Eq. (8). That means the shortcut method is useful to realize fast and noise-resistant
quantum information processing for multi-particle systems.
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