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Abstract This paper is concernedwith the feasibility of the classical nearest-neighbor
interpolation based on flexible representation of quantum images (FRQI) and novel
enhanced quantum representation (NEQR). Firstly, the feasibility of the classical
image nearest-neighbor interpolation for quantum images of FRQI and NEQR is
proven. Then, by defining the halving operation and bymaking use of quantum rotation
gates, the concrete quantum circuit of the nearest-neighbor interpolation for FRQI is
designed for the first time. Furthermore, quantum circuit of the nearest-neighbor inter-
polation for NEQR is given. The merit of the proposed NEQR circuit lies in their low
complexity, which is achieved by utilizing the halving operation and the quantum ora-
cle operator. Finally, in order to further improve the performance of the former circuits,
new interpolation circuits for FRQI and NEQR are presented by using Control-NOT
gates instead of a halving operation. Simulation results show the effectiveness of the
proposed circuits.

Keywords Quantum image scaling · Nearest-neighbor interpolation · Quantum
halving operation · Control-NOT gate

1 Introduction

Along with the bright prospect of quantum computers [1,2], quantum image process-
ing has inspired interest by researchers in recent years. Until the arrival of practical
quantum computers, the first task in this direction was the construction of a pattern for
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capturing and storing the images on quantum computers. A great number of research
results concerning quantum image representation exist in the literature, i.e., qubit lat-
tice [3], entangled image [4], real ket [5], a flexible representation for quantum images
(FRQI) [6], multi-channel representation of quantum image (MCRQI) [7], quantum
representation for log-polar images [8] and a novel enhanced quantum representation
(NEQR) [9].

Among numerous quantum image models, FRQI and NEQR, which capture infor-
mation about colors and their corresponding positions in an image into a normalized
quantum state, are the two most important and convenient models in considering the
way in which a gray image is encoded under rectangular coordinate system.

The FRQI method contains the color information and corresponding position infor-
mation of every pixel in an image into the entangled quantum state [6]. Many quantum
image processing algorithms have been proposed based on FRQI, such as quantum
image watermarking [10–12], quantum image encryption [13–16], quantum image
scrambling [17–19] and the geometric transformations on quantum images (GTQI)
[20]. For the convenience of frequency domain research, quantum Fourier transform
[21], quantum wavelet transform [22] and quantum discrete cosine transform [23,24]
were given.

In 2013, Zhang improved the storage mode for color information in FRQI and
named the new representation as NEQR [9]. The major difference between the two is

that in NEQR the color encoding is a binary form of
∣
∣cyx

〉 =
∣
∣
∣c

q−1
yx cq−2

yx · · · c0yx
〉

, while

in FRQI it is in the shape of
(

cos θyx |0〉 + sin θyx |1〉) corresponding to a classical
image sized 2n × 2n and with a gray range of

[

0, 2q − 1
]

. Because of the difference,
the number of qubits needed for encoding FRQI and NEQR is also distinct and is
2n+ 1 and 2n+ q, respectively. Also, the preparation process for FRQI and NEQR is
different. Taking these characteristics of the NEQR binary color encoding information
into consideration, selections of the algorithms have been examined, such as quan-
tum image translation algorithm [25], scaling transform [26] and local feature point
extraction algorithm [27].

Image geometric transformations mainly contain translation, transposition, mir-
roring and scaling, in which the first three transformations have been thoroughly
researched based on FRQI [20]. For the first three transformations, each pixel of the
output quantum image has a specific pixel corresponding to the input quantum image.
But for a scaling operation, such as expanding the quantum image, the relationship
between the pixels of the output quantum image and the pixels of the input quantum
image is not bijective. Unfortunately, none of these studies has been done concerning
FRQI. The first aim of this paper is to test the reliability of the scaling transformation
regarding FRQI.

Recently, based on the improved novel enhanced quantum representation (INEQR),
Jiang et al. [26] started the research of the quantum image nearest-neighbor interpo-
lation method. However, the complexity regarding the quantum image scaling down
circuit is O (q · 2n · (2n + m)), with n andm representing an image that is scaled down
from 2n+m to 2n . Further work regarding the nearest-neighbor interpolation method
for NEQR should be researched. This paper plans to provide two NEQR circuits with
lower complexity to improve the previous quantum circuit in [26].
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The following advantages of NEQR and FRQI are suggested to make them suitable
for quantum image scaling algorithms:

(1) FRQI and NEQR acquire color information and their corresponding positions in
an image into a normalized quantum state. Thus, quantum Control-NOT gate and
other simple quantumgates are used toflexibly link color and location information,
providing an easy to process image for the user.

(2) FRQI and NEQR both use a binary qubit basis to encode position information. It
is easy to design unitary operators to change the number of positions for binary
qubits, which achieves the aim of changing the size of an image.

(3) For FRQI, colors are encoded in the form of
(

cos θyx |0〉 + sin θyx |1〉) which
makes it easier to use quantum rotation gates to prepare pixels values.

(4) For NEQR, colors are stored in binary quantum sequence which is similar to
the representations of classical digital images. This makes it relatively easy
to apply image interpolation algorithms from classical computers to quantum
computers.

In this paper, a substantially different method for the quantum realization is pro-
posed for nearest-neighbor interpolation of NEQR and FRQI. In the proposedmethod,
the reliance on using multi-control-qubit-NOT gate to copy color information is no
longer necessary. The key idea is how to assign a color value for the interpolation
mapping relationship between the position of the original and the interpolated image
if the size of an empty interpolated image and the color, and the position of original
image are known. A method of designing unitary operators to prepare pixel values of
original image is resorted to, which is the equivalent to the pixel of resulting image.
Specifically, the FRQI interpolation problem is solved by utilizing a quantum con-
trol rotation gate to regenerate color values. The NEQR problem is figured out using
a quantum oracle operator to prepare color. From a circuit’s complexity perspec-
tive, the method proposed in this paper is simpler than previous NEQR results in
[26].

The contributions of this paper are listed as follows: First, by using a halv-
ing operation or Control-NOT gate, the relationship between original image’s
position and interpolated image’s position is established. Second, the halving
operation and control rotation gates are utilized to construct FRQI interpolation
circuit. Third, the halving operation and the quantum oracle operation are intro-
duced to design the circuit of NEQR interpolation method, with the benefit of
improving the complexity of the previous circuit. Forth, Control-NOT gate is
utilized to improve the performance of the former designed FRQI and NEQR cir-
cuits.

This paper is organized as follows: Sect. 2 briefly introduces related works, Sect. 3
explains the feasibility of the nearest-neighbor interpolation method for NEQR and
FRQI, and in Sect. 4, the proposed quantum circuits are detailed. The further improve-
ments of the quantum circuits are then given in Sect. 5. The simulation experiment and
its discussion are shown in Sect. 6. The conclusion and future directions are finally
drawn in Sect. 7.
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2 Preliminaries

2.1 FRQI

Inspired by the pixel representation for images in classical computers, FRQI on quan-
tum computers was proposed in [6], in which the quantum image corresponding to a
classical image sized 2n × 2n is defined by a quantum encoding state about the image
color and position.

FRQI was proposed by Le et al. in the form of a normalized state which captures
information about colors and their corresponding positions in the images. The quantum
representation for an 2n × 2n image is described as follows:

|I (θ)〉 = 1

2n

22n−1
∑

i=0

(cos θi |0〉 + sin θi |1〉) ⊗ |i〉

= 1

2n

2n−1
∑

y=0

2n−1
∑

x=0

(

cos θyx |0〉 + sin θyx |1〉) ⊗ |yx〉 (1)

where θi ∈ [

0, π
2

]

, i = 0, 1, . . . 22n − 1, cos θi |0〉+ sin θi |1〉 encodes the color infor-
mation, and |i〉 encodes the corresponding position of the quantum image. The position
information includes two parts: the vertical and horizontal coordinates. Considering a
quantum image in the 2n-qubit system,

|i〉 = |y〉 |x〉 = |yn−1yn−2 · · · y0〉 |xn−1xn−2 · · · x0〉
x, y ∈ {

0, 1, . . . 2n − 1
}

,
∣
∣x j

〉

,
∣
∣y j

〉 ∈ {|0〉 , |1〉} , j = 0, 1, . . . n − 1 (2)

where |y〉 = |yn−1yn−2 · · · y0〉 encodes the first n-qubits along the vertical loca-
tion and |x〉 = |xn−1xn−2 · · · x0〉 encodes the second n-qubits along the horizontal
axis. In addition, [6] provided a polynomial preparation theorem that proves the
existence of a unitary preparation process which can use a polynomial number
of simple operators to transform quantum computers from the initial state to the
FRQI state. The FRQI state is a normalized state, i.e, ‖|I (θ)〉‖ = 1 as given by

‖|I (θ)〉‖ = 1
2n

√

22n−1∑

i=0

∣
∣cos2 θi + sin2 θi

∣
∣ = 1.

An example of a 2 × 2 FRQI image is shown in Fig. 1.

2.2 NEQR

Based on the analysis of existing FRQI quantum image representation, a novel
enhanced quantum representation (NEQR) for digital images is proposed [9]. NEQR
uses the basis state of a qubit sequence to store the grayscale value of each pixel
in the image for the first time, instead of the probability amplitude of a qubit, as in
FRQI. Also NEQR employs two entangled qubit sequences to store the grayscale and
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Fig. 1 A simple 2 × 2 FRQI image and its FRQI state

position information and stores the whole image in the superposition of the two qubit
sequences. Suppose that the gray range of an image is

[

0, 2q − 1
]

, binary sequence

Cq−1
yx Cq−2

yx · · ·C1
yxC

0
yx encodes the grayscale value f (y, x) of the corresponding pixel

(y, x) as in Eq. (3):

f (y, x) = Cq−1
yx Cq−2

yx · · ·C1
yxC

0
yx ,C

k
yx ∈ [0, 1] , f (y, x) ∈ [

0, 2q − 1
]

(3)

The representative expression of a quantum image for a 2n × 2n image is described
as follows [9]:

|I 〉 = 1

2n

2n−1
∑

y=0

2n−1
∑

x=0

| f (y, x)〉 |y〉 |x〉 (4)

And the same is for FRQI, where the position information includes both the vertical
y and the horizontal x coordinates. NEQR uses the basis qubit sequence to store the
grayscale information for each pixel in an image. Some digital image processing
operations, for example, certain complex color operations, partial color operations
and statistical color operations, can be conveniently performed in light of NEQR [27].

A 4 × 4 NEQR quantum image is shown in Fig. 2. f (y, x) denotes the grayscale
value of pixel (y, x), which is stored as the basis state | f (y, x)〉 of a qubit sequence.
Compared with the example of FRQI in Fig. 1, the obvious difference is that NEQR
utilizes the basis state of qubit sequence to represent the gray scale of pixels instead
of probability amplitude of a single qubit in FRQI.

Figure3 illustrates a 2 × 2 grayscale image and its representative expression in
NEQR. In this figure, because the gray scale ranges between 0 and 255, eight qubits
are needed in NEQR to store the grayscale information for the pixels. Hence, NEQR
needs q + 2n qubits to represent a 2n × 2n image with gray range 2q .

The major difference between FRQI and NEQR is mainly in the color encod-
ing stage. For FRQI, color encoding is in the form of

(

cos θyx |0〉 + sin θyx |1〉) and
obviously 1 qubit to encode is needed. NEQR color encoding is in the shape of
∣
∣cyx

〉 =
∣
∣
∣c

q−1
yx cq−2

yx · · · c0yx
〉

and it requires q qubit. So the number of qubits required

for encoding FRQI and NEQR is 2n+ 1 and 2n+q, respectively. Due to the different
pattern of color encoding state, the preparation process for NEQR and FRQI is also
distinct [6,9].
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Fig. 2 A 4 × 4 NEQR quantum
image

Fig. 3 A 2 × 2 example image and its representative expression in NEQR

2.3 Classical nearest-neighbor interpolation method

Nearest-neighbor interpolation makes a unique contribution to classical image scaling
transformation, which is a basic image scaling method and the basis of the bilinear
interpolation method. Now, the principle of classical nearest-neighbor interpolation
method is reviewed.

Suppose that there is an image, with a size that is M × N . M is the width of the
image, and N is the height of the image. The interpolated image with a size that is
M ′ × N ′. The principle can be described in the following way: Pixel value in position
(

x ′, y′) of the interpolated image equals to the pixel value of the original image in
(x, y). The coordinates restored from the original image can be calculated according
to the following formula:

x =
⌊

x ′ ×
(
M

M ′

)⌋

, y =
⌊

y′ ×
(
N

N ′

)⌋

(5)

Nearest-neighbor interpolation has the advantage of fewer calculations. The algo-
rithm is also simple, which leads to a faster operation. Expanding the classical image
operation to the quantum image processing is meaningful [17]. The quantum realiza-
tion of nearest-neighbor interpolation method is concentrated in this paper.

123



Quantum realization of the nearest-neighbor interpolation... 43

2.4 Halving operation

Recently, Zhang et al. [27] have designed a quantum circuit for the halving operation
UH based on NEQR. This operation makes the gray scale of all pixels reduced by half,
and all the qubits in the color sequence cycle shift downwards. Consider the following

NEQR image with a color encoding: |I 〉NEQR = 1
2n

2n−1∑

y=0

2n−1∑

x=0
| f (y, x)〉 ⊗ |yx〉.

The concrete transformations of the quantum operation UH on NEQR are shown

in Eq. (6), where | f (y, x)〉 =
∣
∣
∣C

q−1
yx · · ·Ci

yx · · ·C0
yx

〉

= q−1⊗
i=0

∣
∣
∣Ci

yx

〉

.

UH
(∣
∣INEQR

〉)

= UH

(

1
2n

2n−1∑

y=0

2n−1∑

x=0
| f (y, x)〉 |y〉 |x〉

)

= UH

(

1
2n

2n−1∑

y=0

2n−1∑

x=0

q−1⊗
i=0

∣
∣
∣Ci

yx

〉

|y〉 |x〉
)

= 1
2n

2n−1∑

y=0

2n−1∑

x=0
UH

(
q−1⊗
i=0

∣
∣
∣Ci

yx

〉)

|y〉 |x〉

= 1
2n

2n−1∑

y=0

2n−1∑

x=0

(∣
∣
∣C0

yx

〉 q−2⊗
i=0

∣
∣
∣Ci+1

yx

〉

|y〉 |x〉
)

= 1
2n

2n−1∑

y=0

2n−1∑

x=0

(∣
∣
∣C0

yx

〉

| f (y, x) /2〉 |y〉 |x〉
)

(6)

In Eq. (6), because NEQR has the form of 1
2n

∑2n−1
y=0

∑2n−1
x=0 | f (y, x)〉 |y〉 |x〉, the

first equal sign sets up. The second equal sign holds because the color information

of the NEQR has the form of
q−1⊗
i=0

∣
∣
∣Ci

yx

〉

. The third equal sign can be verified because

halving operation UH only acts on the color qubits sequence. Again, the halving
operation UH implements the function of shifting q − 1 qubits to the right. That is

UH

(
q−1⊗
i=0

∣
∣
∣Ci

yx

〉)

=
∣
∣
∣C0

yx

〉 q−2⊗
i=0

∣
∣
∣Ci+1

yx

〉

. So the fourth sign establishes. The fifth sign

holds since
q−2⊗
i=0

∣
∣
∣Ci+1

yx

〉

= | f (y, x) /2〉. That is to say, the final q − 1 color encoding

qubits carry the halving color information | f (y, x) /2〉. For a quantum image in the
model NEQR, this operation will make all the qubits in the color sequence cycle shift
down.

The specific quantum circuit concerning the halving operation UH is shown in
Fig. 4. The left side of Fig. 4 is the input quantum state

∣
∣Cq−1Cq−2 · · ·C1C0

〉

. The
concrete procedure of Fig. 4 can be explained by Eq. (7).

∣
∣Cq−1Cq−2 · · ·C2C1C0

〉 → ∣
∣Cq−1Cq−2 · · ·C2C0C1

〉 → ∣
∣Cq−1Cq−2 · · ·C0C2C1

〉

→ · · · → ∣
∣Cq−1C0Cq−2 · · ·C3C2C1

〉 → ∣
∣C0Cq−1Cq−2 · · ·C3C2C1

〉

(7)
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Fig. 4 Quantum circuit of the halving operation [27]

From Fig. 4 and Eq. (7), the first swap gate exchanging |C1〉 with |C0〉 can be
realized. The second quantum swap gate exchanging |C2〉 with |C0〉 and the final
q − 1th quantum swap gate exchanging

∣
∣Cq − 1

〉

with |C0〉 are fulfilled. Finally, the
circuit outputs

∣
∣C0Cq−1Cq−2 · · ·C3C2C1

〉

are implemented under the action of the
halving operation UH .

There is
∣
∣C0Cq−1Cq−2 · · ·C3C2C1

〉 = |C0〉 |C/2〉, since ∣
∣Cq−1Cq−2 · · ·C3C2C1

〉

= |C/2〉. It signifies that the halving operationUH implements the function of shifting
q − 1 qubits to the right. Just like a classical binary bit shift operation, the binary bit
shift to the left (or right) means expanding (or reducing) twice the number, and the
quantum halving operation can be seen as a qubit shift operation.

We should note that the circuit of halving operation in Fig. 4 is composed of q − 1
number of quantum swap gates. Obviously, many quantum swap gates are used to
construct halving operation, and it is the disadvantage of halving operation.

Now correspondingly, the halving operation about x coordinate and y coordinate
which are shown in Eqs. (8) and (9) is given.

UHx

(∣
∣x ′〉) = UHx

(
n+m−1⊗
i=0

∣
∣x ′

i

〉
)

= ∣
∣x ′

0

〉 n+m−2⊗
i=0

∣
∣x ′

i+1

〉= ∣
∣x ′

0

〉 ∣
∣x ′/2

〉

(8)

UHy

(∣
∣y′〉) = UHy

(
n+m−1⊗
i=0

∣
∣y′

i

〉
)

= ∣
∣y′

0

〉 n+m−2⊗
i=0

∣
∣y′

i+1

〉= ∣
∣y′

0

〉 ∣
∣y′/2

〉

(9)

Taking x ′ as an input to the circuit shown in Fig. 5, the circuit realizes the aim of the
halving operation about the x coordinate.

With respect to the halving operation about the y coordinate, it is identical to the
halving operation about the x coordinate so the details about it are not needed to be
addressed here.

The halving operation circuit about the x coordinate is composed of n + m − 1
quantum swap gates. Under the conditions of choosing the Control-NOT gate to be
the basic unit, one quantum swap gate can be constructed by 3 Control-NOT gates.
Hence, the complexity of the circuit in Fig. 5 is O (3(n + m − 1)).
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Fig. 5 Quantum circuit of the halving operation about x coordinates

3 Feasibility and rationality of quantum image nearest-neighbor
interpolation

In this paper, we aim to construct the quantum circuits of the nearest-neighbor inter-
polation method for FRQI and NEQR. Therefore, the first problem is how to prove its
practicality for FRQI and NEQR.

There are only few works on the nearest-neighbor interpolation method for NEQR
and FRQI. Jiang et al. [26] proposed the first nearest-neighbor interpolation method
for INEQR. INEQR is a new quantum image representation, but actually, it is the
generalization of NEQR, which describes non-square NEQR image. In their scheme,
according to the scale ratio, color information of the interpolated image is set as the
same value with the color information of the original image. Their studies maybe have
been more reasonable if they had integrated a theoretical derivation corresponding to
the classical image’s nearest-neighbor interpolation considering this situation.

Before elaborating more on the quantum realization of the nearest-neighbor inter-
polation for FRQI and NEQR, the key idea of the proposed circuits mathematically in
Eq. (10) is explained.

x = x ′
2m , y = y′

2m
∣
∣Cy′x ′

〉 = ∣
∣Cyx

〉

∣
∣x ′〉 ∣∣y′〉 |0〉
︸ ︷︷ ︸

empty image

→ ∣
∣x ′〉 ∣∣y′〉 ∣∣Cy′x ′

〉

︸ ︷︷ ︸

resulting image

(10)

From Eq. (10), it should be observed that in order to prepare the color information
∣
∣Cy′x ′

〉

for all the pixels in the resulting image, what actually is prepared is the pixel
value in position (x, y) of the original image. One reason for this approach is that the
two different positions share the same pixel value. That is, once a position (x, y) has
been allocated to a color value

∣
∣Cyx

〉

, the value would be used again and assigned to
pixel

(

x ′, y′) in the resulting image. Other reason for this is that for a given original
image, its dimension is known and all the pixels would have fixed color values. At the
same time, the dimension of the resulting image is known. Therefore, x ′ and y′ can be
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considered as the input state when designing quantum circuits. Under the guidance of
this key idea, the qualification process has been built.

Using the halving operation described by Zhang et al. [27], the reasonability of the
nearest-neighbor interpolation method for quantum image can be proven.

Theorem 1 Nearest-neighbor interpolation method generated by Eq. (10) is rational
for quantum images FRQI and NEQR.

Proof Assume that the original two quantum images
∣
∣IFRQI

〉

and
∣
∣INEQR

〉

are both of
size 2n × 2n and have a gray range

[

0, 2q − 1
]

. The two image expressions are shown
in Eq. (11).

∣
∣IFRQI

〉 = 1

2n

2n−1
∑

y=0

2n−1
∑

x=0

(

cos θyx |0〉 + sin θyx |1〉) ⊗ |yx〉

∣
∣INEQR

〉 = 1

2n

2n−1
∑

y=0

2n−1
∑

x=0

∣
∣Cyx

〉 ⊗ |yx〉 (11)

Also suppose the dimension of the resulting quantum image |Iint〉 is 2n+m × 2n+m . In
the following analysis, the concrete feasibility of nearest-neighbor interpolation for
FRQI and NEQR is proven.

Case 1Nearest-neighbor interpolation is reasonable for FRQI in (11)with the above
assumption.

(1) Problem 1: the interpolation mapping relationship between the pixel of resulting
image and original image.

According to Eq. (5), we derive Eq. (12).

x = x ′ ×
(

2n

2n+m

)

= x ′

2m
, y = y′ ×

(
2n

2n+m

)

= y′

2m
(12)

where x ′ = x ′
n+m−1 · · · x ′

1x
′
0 and y′ = y′

n+m−1 · · · y′
1y

′
0.

To get the result of x and y described by Eq. (12), the halving operations UHx

and UHy are chosen as the unitary operators. The functions of UHx and UHy are to
reduce the position information by half. Then repeatingm times the halving operation
about x coordinate UHx and m times the halving operation about y coordinate UHy ,
the interpolation mapping relationship between the position of original image and the
position of interpolated image has established.

(2) Problem 2: the color value of the resulting image pixels.

For every pixel
(

x ′, y′) in the resulting image, Cy′x ′ is the gray value to be deter-
mined, which is equal to the pixel value of the original quantum image in coordinates
(x, y). The control rotation gates will be used to prepare the color information, and
the detailed structure is described as follows.

123



Quantum realization of the nearest-neighbor interpolation... 47

Suppose the corresponding color encoding information about the original quantum
image is θyx , yx = 0, . . . 22n − 1. Then the concrete function of the rotation gates
Ry

(

2θyx
)

can be described as Eq. (13).

Ry
(

2θyx
) |0〉=

(

cos θyx −sinθyx
sinθyx cosθyx

) (

1
0

)

=
(

cos θyx
sin θyx

)

=cos θyx |0〉+sin θyx |1〉
(13)

The quantum control rotation gates C2n
(

Ry
(

2θyx
))

, yx = 0, . . . 22n − 1 achieve
the aim of preparing the color information cos θyx |0〉 + sin θyx |1〉 in position (x, y)
of the original image. Again, the color information cos θyx |0〉 + sin θyx |1〉 equals to
the pixel value of the resulting image in

(

x ′, y′).
Therefore, for two quantum images

∣
∣IFRQI

〉

and an empty resulting image
∣
∣Iempty

〉

,
the quantum image nearest-neighbor interpolation can be done via m numbers of the
UHx operation and m numbers of UHy operation on the two-position qubit sequences∣
∣x ′

n+m−1 · · · x ′
0

〉

and
∣
∣y′

n+m−1 · · · y′
0

〉

and the quantum control rotation gates on the
2n + 1 qubit sequence |0〉⊗2n+1. As can be seen in the circuits given later, these ideas
render that the nearest-neighbor interpolation for FRQI is feasible.

Case 2 Nearest-neighbor interpolation is reasonable for NEQR in (11) with above
assumption.

(1) Problem 1: the interpolation mapping relationship between the pixel of the result-
ing image and the original image.

By following similar lines as in the proof of problem (1) in the FRQI case, the
problem is solved.

(2) Problem 2: the color value of the resulting image pixels.

For every pixel
(

x ′, y′) in the resulting image, the gray scale
∣
∣Cy′x ′

〉

is equal to
the pixel value of the original quantum image in coordinates (x, y). Because Cyx ∈
[

0, 2q − 1
]

, it is known that Cy′x ′ ∈ [

0, 2q − 1
]

, and therefore, q qubits are needed

to store the result, which is to say,
∣
∣Cy′x ′

〉 = q−1⊗
i=0

∣
∣
∣Ci

y′x ′
〉

.

Then, a quantum oracle operator Ωyx is designed to compute the result
∣
∣Cy′x ′

〉 =
∣
∣Cyx

〉

. A quantum oracle operator Ωyx can realize the aim of assigning color infor-
mation

∣
∣Cyx

〉

to the ancillary qubits |0〉⊗q . The detailed equation can be expressed as
Eq. (14).

Ωyx |0〉⊗q = q−1⊗
i=0

(

Ω i
yx |0〉

)

= q−1⊗
i=0

(∣
∣
∣0 ⊕ Ci

yx

〉)

= q−1⊗
i=0

∣
∣
∣Ci

yx

〉

= ∣
∣Cyx

〉

(14)

q oracle operationsΩ i
Y X , i = 0, . . . q−1 have the following definition. IfCi

Y X = 1,
Ω i

Y X is a 2n-Control-NOT qubit gate. Otherwise, it is a quantum identity gate. That
is to say, every oracle operation Ω i

Y X , i = 0, . . . q − 1 is at most a 2n-Control-NOT
qubit gate.
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Therefore, for two quantum images
∣
∣INEQR

〉

and the empty resulting NEQR image
∣
∣Iempty

〉

, the nearest-neighbor interpolation can be accomplished viam numbers of the
UHx operation and m numbers of UHy operation on the two-position qubit sequences∣
∣x ′

n+m−1 · · · x ′
0

〉

and
∣
∣y′

n+m−1 · · · y′
0

〉

and a quantum oracle operator on the q qubit
sequence |0〉⊗q to obtain the resulting NEQR image |Iint〉.

From cases (1) and (2), we verified theorem 1.
Note It should be noted that Eq. (12) is not the same as Eq. (5), which needs floor

operation. But the halving operation acted on the position qubit sequence of resulting
image ensures that (12) has the functionality of the floor operation.

4 Quantum realization of nearest-neighbor interpolation method

In the previous section, using the halving operation, the theoretical feasibility of the
nearest-neighbor interpolation method in the model of FRQI and NEQR is discussed.
Under the support of theoretical analysis, the quantum circuits of the nearest-neighbor
interpolation method for FRQI and NEQR are proposed in this section.

4.1 Quantum realization of nearest-neighbor interpolation method for FRQI

In this subsection, the concrete interpolation circuit in the model of FRQI and the time
complexity of the proposed circuit will be discussed.

4.1.1 Concrete FRQI circuit

On the basis of control rotation gates C2n
(

Ry
(

2θyx
))

, yx = 0, . . . 22n − 1 and
the halving operations UHx and UHy , the task of constructing the relationship
between the coordinates (x, y) of the original quantum image and the coordi-
nates

(

x ′, y′) of the resulting image is accomplished. The interpolation circuit for
FRQI is designed and shown in Fig. 6. The corresponding modules are displayed in
Fig. 7.

Next, the concrete flow of quantum circuit in Fig. 6 is considered.

Step 1. Obtain x = x ′
2m via m times halving operation UHx on the x ′ coordinates.

Correspondingly, obtain y = y′
2m through m times halving operation UHy on the

y′ coordinates.
Step 2. Choose the method of using the quantum swap gate m times which acts on
the x coordinates and the first n qubits |0〉 to make the first n qubits |0〉 carry the
x coordinates’ information. Meanwhile, execute m times the quantum swap gate
between the y coordinates and the second n qubits |0〉 so the second n qubits |0〉
brings the y coordinate information.
Step 3. Employ C2n

(

Ry
(

2θyx
))

, yx = 0, . . . 22n − 1 to produce the color infor-
mation being carried on the final qubits |0〉.
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Fig. 6 Quantum circuit of nearest-neighbor interpolation method for FRQI

Fig. 7 Quantum circuit of UHx , UHy , U
−1
Hx

and U−1
Hy

modules

Step 4. Perform the n times quantum swap gate between yn−1, . . . y0 coordinates
and the second n qubits |0〉 to make the second n qubits |0〉 carry its original
information. Performing n times quantum swap gate between xn−1, . . . x0 coordi-
nates and the second n qubits |0〉 to make the first n qubits |0〉 also take its own
information in an approximate form.
Step 5. Execute them times inverse halving operationU−1

Hx
operated on the x coor-

dinates to recover the x ′ coordinates information of the interpolated image. Then,
perform the m times inverse halving operationU−1

Hy
operated on the y coordinates

to recover the y′ coordinates information of the resulting image.
Step 6. Carry out the quantum swap gates between the first ancillary qubit |0〉 and
the final ancillary qubit |0〉 to make the first qubit |0〉 carry color information.
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Furthermore, the above steps can be summarized as in the following Eq. (15).

∣
∣x ′

n+m−1 · · · x ′
m · · · x ′

0

〉 · · · ∣∣y′
n+m−1 · · · y′

m · · · y′
0

〉 |0〉
︸ ︷︷ ︸

the empty FRQI image

|0〉⊗n |0〉⊗n |0〉

→ ∣
∣x ′

0x
′
1 · · · x ′

m−1x
′
n+m−1 · · · x ′

m

〉 ∣
∣y′

0y
′
1 · · · y′

m−1y
′
n+m−1 · · · y′

m

〉 |0〉
|0〉⊗n |0〉⊗n |0〉

→ ∣
∣x ′

0x
′
1 · · · x ′

m−10 · · · 0〉 ∣∣y′
0y

′
1 · · · y′

m−10 · · · 0〉 |0〉
∣
∣x ′

n+m−1 · · · x ′
m

〉 ∣
∣y′

n+m−1 · · · y′
m

〉 |0〉
→ ∣

∣x ′
0x

′
1 · · · x ′

m−10 · · · 0〉 ∣∣y′
0y

′
1 · · · y′

m−10 · · · 0〉 |0〉
∣
∣x ′

n+m−1 · · · x ′
m

〉 ∣
∣y′

n+m−1 · · · y′
m

〉 | f (y, x)〉
→ ∣

∣x ′
0x

′
1 · · · x ′

m−1x
′
n+m−1 · · · x ′

m

〉 ∣
∣y′

0y
′
1 · · · y′

m−1y
′
n+m−1 · · · y′

m

〉 |0〉
|0〉⊗n |0〉⊗n | f (y, x)〉

→ ∣
∣x ′

n+m−1 · · · x ′
m · · · x ′

0

〉 · · · ∣∣y′
n+m−1 · · · y′

m · · · y′
0

〉 |0〉 |0〉⊗n |0〉⊗n | f (y, x)〉
→ ∣

∣x ′
n+m−1 · · · x ′

m · · · x ′
0

〉 · · · ∣∣y′
n+m−1 · · · y′

m · · · y′
0

〉 | f (y, x)〉
︸ ︷︷ ︸

the interpolated FRQI image

|0〉⊗n |0〉⊗n |0〉

(15)

In summary, Fig. 6 outputs the interpolated FRQI quantum image on the corre-
sponding qubits.

Note 1 There are some quantum control rotation gates that are omitted. The total
number of quantum control rotation gates in Fig. 6 is 22n .

4.1.2 Circuit complexity

In quantum image processing, the network complexity depends on what is considered
to be an elementary gate. Following the discussion in Sect. 2.4, the Control-NOT gate
is chosen to be the basic unit. Now the complexity of Fig. 6 will be analyzed.

To each m halving operation, it contains

(n + m − 1) + (n + m − 2) + · · · n = m (2n + m − 1)

2
(16)

quantum swap gates.
Barenco et al. [28] have pointed out that one quantum swap gate can be constructed

by three Control-NOT gates and C2n
(

Ry
(

2θyx
))

can be broken down into 22n − 1

simple operations Ry

(
2θyx
22n−1

)

, Ry

(

− 2θyx
22n−1

)

and 22n − 2 Control-NOT operations.

Hence, the network complexity of m times UHx , UHy , U
−1
Hx

and U−1
Hy

is 3m(2n+m−1)
2 .

There are 4n+1 quantum swap gates,m halving operationUHx ,m halving operation
UHy ,m quantum inverse halving operationU−1

Hx
,m quantum inverse halving operation

U−1
Hy

and 22n quantum control rotation operations C2n
(

Ry
(

2θyx
))

.
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Fig. 8 Example quantum circuit of nearest-neighbor interpolation method for FRQI

Hence, the complexity of Fig. 6 is

O
(
3m(2n+m−1)

2 × 4 + (4n + 1) × 3 + (

22n − 1 + 22n − 2
) × 22n

)

= O
(

24n+1 − 3 · 22n + 12mn + 6m2 − 6m + 12n + 3
) (17)

Obviously, it is an approximate to O
(

2 · (

22n
)2 + 12mn + 6m2 + 12n

)

. This

number is quadratic to the total 22n angle values, θyx , y = 0, 1, . . . 2n − 1, x =
0, 1, . . . 2n − 1 and indicates the efficiency of the circuits.

In order to better understand Fig. 6, the interpolation case in Fig. 8 is used as an
example to describe quantum interpolation circuits in more detail. The case describes
the expanding quantum image from 2 × 2 to 22 × 22.

4.2 Quantum realization of nearest-neighbor interpolation method for NEQR

In this subsection, attention is focused on the process of the quantum circuit of nearest-
neighbor interpolation in the model of NEQR.

4.2.1 Concrete NEQR circuit

First, an introduction of how to obtain the concrete circuit is given.
Since the only distinguishing feature between NEQR and FRQI is the color encod-

ing information, the interpolation circuits for NEQR and FRQI are therefore distinct
regarding calculating pixel values at positions (x, y).

Quantum operatorΩyx is used to assign color value for the resulting NEQR image.
The detailed equation about the quantum operator Ωyx is described in the following
way:

Ωyx |0〉⊗q =q−1⊗
i=0

(

Ω i
yx |0〉

)

=q−1⊗
i=0

(∣
∣
∣0 ⊕ Ci

yx

〉)

=q−1⊗
i=0

∣
∣
∣Ci

yx

〉

=| f (y, x)〉 (18)

Ω i
Y X : |0〉 →

∣
∣
∣0 ⊕ Ci

Y X

〉

(19)
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Fig. 9 Quantum circuit of nearest-neighbor interpolation method for NEQR

where | f (y, x)〉 = q−1⊗
i=0

∣
∣
∣Ci

yx

〉

is the color information of the original image. q oracle

operationsΩ i
Y X , i = 0, . . . q−1 have been given in Sect. 3, and every oracle operation

Ω i
Y X , i = 0, . . . q − 1 is at most a 2n-Control-NOT qubit gate. For more information

about the black-box operation Ωyx , refer to [9].
The whole quantum circuit of the nearest-neighbor interpolation method for NEQR

is shown in Fig. 9. The modules appeared in Fig. 9 are already given in Fig. 7. Because
the size of the resulting image is known, namely x ′ and y′ are known. Moreover, the
color and coordinates of the original quantum image are also known. So,

∣
∣x ′〉 ,

∣
∣y′〉, |x〉

,|y〉 and f (y, x) are considered to be the input information of the quantum circuit.
In addition, when designing the quantum circuit, introducing ancillary qubits |0〉 is a
commonly used method.

In order to better analyze the circuit, the concrete framework of Fig. 9 is elaborated
as the following algorithm.

Step 1. Obtain the result of x = x ′
2m by executing the m times halving operation

UHx which operates on the x coordinates. Then, get the result of y = y′
2m through

the m times halving operation UHy which operates on the y coordinates.
Step 2. By performing the n times quantum swap gates on the x coordinates
|xn−1〉 · · · |x0〉 and the first n qubits |0〉⊗n to make the first n qubits |0〉⊗n carry
the x coordinates information. At same time, executing the n times quantum swap
gates between the y coordinates |yn−1〉 · · · |y0〉 and the second n qubits |0〉⊗n .
Then the second n qubits |0〉⊗n carries the y coordinates information.
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Step 3. Choose the method for computing the gradient of the pixels. To obtain the
color information, the quantum oracle operator Ωyx is used on the first q qubits
|0〉⊗q , middle 2n qubits |0〉⊗2n and f (y, x).
Step 4. Perform the m times quantum swap gates between the yn−1, . . . y0 coordi-
nates and the second n qubits |0〉⊗n . Then the y coordinates restores the original
information |yn−1〉 · · · |y0〉. Similarly, executing the m times quantum swap oper-
ations between the xn−1, . . . x0 coordinates and the first n qubits |0〉⊗n , which
renders the x coordinates carry its original information |xn−1〉 · · · |x0〉.
Step 5. Execute the m times inverse halving operation U−1

Hx
operated on the x

coordinates to realize the aim of recovering the x ′ coordinates information of the
resulting image. Meanwhile, carry out the m times inverse halving operationU−1

Hy

operated on the y coordinates, which can recover the y′ coordinates information
of the interpolated quantum image.

The above steps can be summarized as the following Eq. (20):

∣
∣x ′

n+m−1 · · · x ′
m · · · x ′

0

〉 · · · ∣∣y′
n+m−1 · · · y′

m · · · y′
0

〉 |0〉⊗q

︸ ︷︷ ︸

the empty NEQR image

|0〉⊗n |0〉⊗n |0〉 | f (y, x)〉

→ ∣
∣x ′

0x
′
1 · · · x ′

m−1x
′
n+m−1 · · · x ′

m

〉 ∣
∣y′

0y
′
1 · · · y′

m−1y
′
n+m−1 · · · y′

m

〉 |0〉⊗q

|0〉⊗n |0〉⊗n |0〉 | f (y, x)〉
→ ∣

∣x ′
0x

′
1 · · · x ′

m−10 · · · 0〉 ∣∣y′
0y

′
1 · · · y′

m−10 · · · 0〉 |0〉⊗q

∣
∣x ′

n+m−1 · · · x ′
m

〉 ∣
∣y′

n+m−1 · · · y′
m

〉 |0〉 | f (y, x)〉
→ ∣

∣x ′
0x

′
1 · · · x ′

m−10 · · · 0〉 ∣∣y′
0y

′
1 · · · y′

m−10 · · · 0〉 q−1⊗
i=0

∣
∣
∣Ci

yx

〉

∣
∣x ′

n+m−1 · · · x ′
m

〉 ∣
∣y′

n+m−1 · · · y′
m

〉 |0〉 | f (y, x)〉
→ ∣

∣x ′
0x

′
1 · · · x ′

m−1x
′
n+m−1 · · · x ′

m

〉 ∣
∣y′

0y
′
1 · · · y′

m−1y
′
n+m−1 · · · y′

m

〉 q−1⊗
i=0

∣
∣
∣Ci

yx

〉

|0〉⊗n |0〉⊗n |0〉
→ ∣

∣x ′
n+m−1 · · · x ′

m · · · x ′
0

〉 · · · ∣∣y′
n+m−1 · · · y′

m · · · y′
0

〉 q−1⊗
i=0

∣
∣
∣Ci

yx

〉

︸ ︷︷ ︸

the interpolated NEQR image

|0〉⊗n |0〉⊗n |0〉

(20)
As shown in Fig. 9, the corresponding resulting quantum image |I 〉int is prepared.

Simply stated, the aim of the expanding quantum image using the nearest-neighbor
interpolation method is realized for NEQR.

4.2.2 Circuit Complexity and comparison with other methods

In Fig. 9, the circuit has 4n quantum swap gate, m halving operation UHx , m halving
operation UHy , m inverse halving operation U−1

Hx
, m inverse halving operation U−1

Hy

and one quantum oracle operation Ωyx .
Just as Sect. 4.1.2 has pointed out, the complexity of the m times halving operation

UHx ,UHy , U
−1
Hx

, and U−1
Hy

is not more than 3m(2n+m−1)
2 .
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Also, [9] has indicated that the complexity of the quantum oracle operation is
O (q · 2n).

Therefore, the network complexity of Fig. 9 is

O
(
3m(2n+m−1)

2 × 4 + 4n × 3 + q · 2n
)

= O (2n(6m + q + 6) + 6m(m − 1))
(21)

It is not more than O
(

2n(6m + q + 6) + 6m2
)

, which means that the complexity is
in the polynomial level.

Compared with the complexity O
(

2n+1 · q · (24n + 12m)
)

for INEQR in [26],
the complexity of constructing the nearest-neighbor interpolation has experienced an
approximately exponential decrease. In order to fully display the advantage of the cir-
cuit, the detailed comparison with the quantum circuit in [26] will be provided. Before
the discussion about comparing these two methods, a note regarding the background
assumption of the interpolation problem which is the quantum image being scaled
down from 2n+m × 2n+m to 2n × 2n is necessary.

The key of the proposed quantum circuit in [26] lies in using the 2n+m+1-control-
qubit-NOT gate to copy color value

∣
∣Cyx

〉

of the original image to the interpolated

image. However, since
∣
∣Cyx

〉

is encoded in the form of
∣
∣
∣C

q−1
yx · · ·C0

yx

〉

, in order to

copy pixel value
∣
∣Cyx

〉

, it needs to execute q times the 2n+m + 1-control-qubit-NOT

gate to copy every qubit
∣
∣
∣Ci

yx

〉

, i = 0, 1 · · · q −1 of
∣
∣Cyx

〉

. For the horizontal axis and

vertical axis, both of them have 2n pixels and every pixel has gray value
∣
∣Cyx

〉

which
corresponds to q number of 2n + m + 1-control-qubit-NOT gate. At the condition
of choosing the Control-NOT gate as the elementary unit, [21] pointed out that a t-
control-qubit-NOT gate is equivalent to (12t − 11)Control-NOTgates. Consequently,
the complexity of the 2n + m + 1-control-qubit-Not gate is 24n + 12m + 1. Hence,
the complexity of the circuit in [26] is at least O

(

2n+n · q · (24n + 12m)
)

.
The key of our designed NEQR interpolation method exists in using the quantum

halving operation, quantum swap gates and quantum oracle operator to prepare the
color information instead of using the 2n + m + 1-control-qubit-NOT gate to copy
the color information. As analyzed above, the complexity is in the level of polynomial
and the proposed method has been proven simpler than the complexity in [26].

Obviously, our designed circuit uses simple quantum gates, such as halving oper-
ation, quantum swap gates and oracle operator instead of multi-control-NOT gates to
prepare color information. It is the major reason that our designed circuit is simpler
than circuit in [26].

In addition, the relationship between the methods of our paper and the reference
[26] can be elaborated from the following aspects.

First aspect is from the angle of quantum image model. In reference [26], the
nearest-neighbor interpolation algorithm is based on INEQR (the improved NEQR)
model. INEQR deals with quantum images having 2n1 × 2n2 pixels, and the size of
interpolated image is 2m1 ×2m2 . Ourmethods are based on FRQI andNEQRwhich are
dealing with square images. These three quantum image models have the following
relationship described by Fig. 10.
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Fig. 10 The relationship between FRQI, NEQR and INEQR

Fig. 11 Example quantum circuit of nearest-neighbor interpolation method for NEQR

Obviously, when n1 = n2 = n andm1 = m2 = m, INEQRmodel becomes NEQR
model. Hence, method in [26] is suitable for NEQR.

Jiang et al. [26] start the research of quantum image interpolation method for
INEQR. We will explore the interpolation method for FRQI and NEQR in this paper.
Our work is a continuation and improvement of the previous work. Jiang et al. [26]
proposed an opening scaling method which designs circuit from the angle of copy-
ing color information. Our NEQR interpolation method is an improved method which
considers preparing color information. The improvementmainly embodies in the com-
plexity of the circuit. Jiang et al. [26] and our method have one thing in common. That
is the way of introducing additional qubit to complete the circuit.

Finally, the original NEQR expanding case from 2 × 2 to 22 × 22 is used as an
example to describe the quantum nearest-neighbor interpolation in details, which is
shown in Fig. 11.

5 Improved circuits of nearest-neighbor interpolation for FRQI and
NEQR

The feasibility and reasonability of nearest-neighbor interpolation for FRQI andNEQR
have been proven in Sect. 3. Quantum circuits of nearest-neighbor interpolation for
FRQI andNEQRhave been designed in Sect. 4. However, them times repeated halving
operations are used in the circuits to make scaling. To some extent, it is a naive
algorithm because there are many redundant quantum swap operations which will
lead to a bad performance.
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In the discussion that follows, we present more new interpolation circuits
for FRQI and NEQR. Such circuits can be obtained quite simply by employ-
ing the Control-NOT gate instead of the halving operation. Such circuits are of
interest because they are relatively low in complexity and therefore provide a
useful starting point for introducing nearest-neighbor interpolation for FRQI and
NEQR.

5.1 New FRQI interpolation circuit

The aim is to improve the quantumcircuit of Fig. 6 concerning the structure and content
of a FRQI image.

5.1.1 New FRQI circuit

Consider an array of 2n qubits which are proposed to be used as the original image’s
position storage. Each qubit in the array may be associated with two parameters,
x and y, which together represent coordinates information of the original quantum
image. Prior to putting the information into the array, a suggestion that each qubit is
initialized to state |0〉 is put forth. The initial state is therefore given by the following
expression

∣
∣x ′

n+m−1 · · · x ′
0

〉 ∣
∣y′

n+m−1 · · · y′
0

〉 |0〉 |0〉⊗n |0〉⊗n |0〉 (22)

The objective is to store color information about the resulting image in the first
|0〉 qubit. Extending color information of the original image to the first qubit |0〉, we
associate the relationship between the color information of the original image and
the interpolated image using swap gate. However, certain recovery of the interpo-
lated image’s position information is necessary to fully output a complete interpolated
image.

For a given original quantum image
∣
∣INEQR

〉

sized 2n×2n , a typical resulting image
created by nearest-neighbor interpolation is shown in Fig. 12.

In the following, the process is analyzed and a description of the state of the quantum
image interpolation circuit at each step of the computation as marked in Fig. 12 is
given.

Step 1. Obtain x = x ′
2m using the n times Control-NOT gates on

∣
∣x ′

n+m−1 · · · x ′
m

〉

coordinates. Correspondingly, obtain y = y′
2m through the n times Control-NOT

gates on
∣
∣y′

n+m−1 · · · y′
m

〉

coordinates.
Step 2. Employ C2n

(

Ry
(

2θyx
))

, yx = 0, . . . 22n − 1 to produce the color infor-
mation being carried on the final |0〉 qubit.
Step 3. Carry out the quantum swap gates between the first ancillary qubit |0〉 and
the final ancillary qubit |0〉 to make the first qubit |0〉 carry color information.
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Fig. 12 New quantum circuit of nearest-neighbor interpolation method for FRQI

The concrete procedure about Fig. 12 can be described as (23).

∣
∣x ′

n+m−1 · · · x ′
m · · · x ′

0

〉 · · · ∣∣y′
n+m−1 · · · y′

n+m−1 · · · y′
0

〉 |0〉
︸ ︷︷ ︸

the empty FRQI image

|0〉⊗n |0〉⊗n |0〉

→ ∣
∣x ′

n+m−1 · · · x ′
m · · · x ′

0

〉 · · · ∣∣y′
n+m−1 · · · y′

m · · · y′
0

〉 |0〉
∣
∣x ′

n+m−1 · · · x ′
m

〉

︸ ︷︷ ︸

x=x ′/2m

· · · ∣∣y′
n+m−1 · · · y′

m

〉

︸ ︷︷ ︸

y=y′/2m

|0〉

→ ∣
∣x ′

n+m−1 · · · x ′
m · · · x ′

0

〉 · · · ∣∣y′
n+m−1 · · · y′

m · · · y′
0

〉 |0〉
∣
∣x ′

n+m−1 · · · x ′
m

〉 ∣
∣y′

n+m−1 · · · y′
m

〉 | f (y, x)〉
→ ∣

∣x ′
n+m−1 · · · x ′

m · · · x ′
0

〉 · · · ∣∣y′
n+m−1 · · · y′

n+m−1 · · · y′
0

〉 | f (y, x)〉
︸ ︷︷ ︸

the interpolated FRQI image∣
∣x ′

n+m−1 · · · x ′
m

〉 ∣
∣y′

n+m−1 · · · y′
m

〉 |0〉

(23)

5.1.2 Circuit complexity

It is clear that Fig. 12 contains 2n Control-NOT gates, 22n control rotation gates
C2n

(

Ry
(

2θyx
))

, yx = 0, 1, . . . 22n − 1 and one quantum swap gate. Barenco et
al. [28] have pointed out that quantum operation C2n

(

Ry
(

2θyx
))

can be broken down

into 22n − 1 simple operations Ry

(
2θyx
22n−1

)

, Ry

(

− 2θyx
22n−1

)

and 22n − 2 Control-NOT

operations.
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Table 1 The circuit’s
complexity for FRQI
interpolation methods

Method Circuit’s complexity

Proposed circuit O

(

2 ·
(

22n
)2 + 12mn + 6m2 + 12n

)

Proposed
improvement
circuit

O

(

2
(

22n
)2 + 2n

)

Hence, the complexity of Fig. 12 is:

O
(

2n + 22n × (

22n − 1 + 22n − 2
) + 3 × 1

)

	 O
(

2
(

22n
)2 + 2n

) (24)

The number is quadratic to the total 22n angle values, θi , i = 0, 1, . . . 22n − 1, which
indicates the efficiency of the circuit.

Here the Control-NOT gates are used instead of the halving operation to produce
position information x = x ′

2m and y = y′
2m in qubits |0〉⊗n and |0〉⊗n . So the complexity

of Fig. 12 is lower than that of Fig. 6.
The circuit’s complexity for FRQI method is shown in Table1.

5.2 New NEQR interpolation circuit

The objective is to improve the quantum circuit in Fig. 9 concerning the structure and
content of a NEQR image.

5.2.1 New NEQR circuit

The proposed approach for designing the interpolation circuit for NEQR will use
Control-NOT gates. It also relies on the oracle operator to prepare color information
∣
∣Cq−1 · · ·C0

〉

.
Figure13 provides the quantum circuit that implements the nearest-neighbor inter-

polation method for NEQR, while Eq. (25) presents the proposed quantum procedure
for constructing the circuit of NEQR.

And the concrete steps about Fig. 13 can be described as follows.

Step 1. Obtain x = x ′
2m using the n times Control-NOTgates on the

∣
∣x ′

n+m−1 · · · x ′
m

〉

coordinates. Correspondingly, obtain y = y′
2m through the n times Control-NOT

gates on the
∣
∣y′

n+m−1 · · · y′
m

〉

coordinates.
Step 2. Employ oracle operatorΩyx to produce the color information being carried
on the final q qubits |0〉.
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Fig. 13 New quantum circuit of nearest-neighbor interpolation method for NEQR

In order to clearly display the proposed circuit, the steps about Fig. 13 are shown
in Eq. (25) .

∣
∣x ′

n+m−1 · · · x ′
m · · · x ′

0

〉 · · · ∣∣y′
n+m−1 · · · y′

n+m−1 · · · y′
0

〉 |0〉⊗q

︸ ︷︷ ︸

the empty NEQR image

|0〉⊗n |0〉⊗n | f (y, x)〉

→ ∣
∣x ′

n+m−1 · · · x ′
m · · · x ′

0

〉 · · · ∣∣y′
n+m−1 · · · y′

n+m−1 · · · y′
0

〉 |0〉⊗q

∣
∣x ′

n+m−1 · · · x ′
m

〉

︸ ︷︷ ︸

x=x ′/2m

· · · ∣∣y′
n+m−1 · · · y′

m

〉

︸ ︷︷ ︸

y=y′/2m

|0〉

→ ∣
∣x ′

n+m−1 · · · x ′
m · · · x ′

0

〉 · · · ∣∣y′
n+m−1 · · · y′

m · · · y′
0

〉 ∣
∣Cq−1 · · ·C0

〉

︸ ︷︷ ︸

the interpolated NEQR image∣
∣x ′

n+m−1 · · · x ′
m

〉 ∣
∣y′

n+m−1 · · · y′
m

〉 | f (y, x)〉
(25)

5.2.2 Circuit complexity

Now, the complexity of the proposed interpolation circuit is analyzed. It has 2n
Control-NOT gates and one oracle operator Ωyx . It is indicated that the complex-
ity of quantum oracle operator is O (q · 2n) [9] .

Consequently, the network complexity is

O (q · 2n + 2n) (26)
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Table 2 Comparison of the
circuit’s complexity for NEQR
interpolation methods

Method Circuit’s complexity

Jiang et al. [26] O
(

2n+1 · q · (24n + 12m)
)

Propsed circuit O
(

2n(6m + q + 6) + 6m2
)

Proposed
improvement
circuit

O (q · 2n + 2n)

Evidently, this number is simpler than the network complexity in [26] and the pre-
vious network of Fig. 9. However, in contrast, Control-NOT gate is used to produce
coordinates information instead of utilizing multi-control Toffoli gates in [26] or the
halving operation in the previous work. The smaller number of basic Control-NOT
gates guarantees the better performance of new NEQR circuits.

The circuit’s complexity for NEQR method in [26] and our NEQR methods is
shown in Table2.

6 Simulation-based experiments and analysis

In this section, the simulation experiment is performed to show the FRQI and NEQR
interpolated results. Also, the comparative simulations between NEQRmethod in [26]
and our NEQRmethod are carried out based on the previous network. All experiments
are simulated on the MATLAB 7.12.

6.1 FRQI and NEQR interpolation simulation results

Figure14 gives some examples to show the results of the proposed interpolation
scheme. (a) and (b) utilize “Lena” and “Cameraman” as original images of size
64 × 64. (a1) and (b1) are the correspondingly interpolated FRQI images of size
128 × 128. (a2) and (b2) are the correspondingly interpolated NEQR images of size
128 × 128.

Figure14 depicts the interpolated FRQI and NEQR images, from which we can see
that the designed nearest-neighbor interpolation scheme produces acceptable inter-
polated results. FRQI and NEQR are two different quantum image representation
models; when we execute simulation experiments, there will be the quantum mea-
surement operation, which leads to quantum images shown in the form of classical
images and that yields the interpolated FRQI and NEQR results.

6.2 Comparative simulations for NEQR interpolation methods

Figure15 gives some examples to show the comparison of the proposed NEQR inter-
polation scheme and existed method in [26]. (a) utilizes “Lena” of size 32 × 32 as
an original image. (b) and (c) are the interpolated “Lena” images of size 64 × 64
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Fig. 14 Examples using 256
gray scale for 64 × 64 image
interpolation. a, b are the
original 64 × 64 images, a1 and
b1 are the interpolated
128 × 128 FRQI images, and a2
and b2 are the interpolated
128 × 128 NEQR images

Fig. 15 Examples using 256
gray scale for 32 × 32 image
interpolation. a is the original
32 × 32 image, b to c are the
interpolated 64 × 64 and
128 × 128 images of method in
[26], d, e are the interpolated
64 × 64 and 128 × 128 images
of our proposed NEQR method

and of size 128 × 128 corresponding to method in [26]. (d) and (e) are the inter-
polated “Lena” images of size 64 × 64 and of size 128 × 128 corresponding to our
method.

Because these two methods are designed to realize the nearest-neighbor interpola-
tion for NEQR, the final interpolated results are the same. The only difference between
method in [26] and our method exists in the complexity of circuit, which has been
described in Sect. 4.2.2.

6.3 Analysis of quantum measurement on the interpolated images

The concrete interpolated FRQI image can be described as in the following form.

123



62 J. Sang et al.

|I (θ)〉int = 1

2n+m

2n+m−1
∑

y=0

2n+m−1
∑

x=0

(

cos θyx |0〉 + sin θyx |1〉) ⊗ |yx〉 (27)

Again, the interpolated NEQR image can be expressed as in the following form.

|I 〉int = 1

2n+m

2n+m−1
∑

y=0

2n+m−1
∑

x=0

∣
∣
∣c

q−1
yx · · · c1yx c0yx

〉

|y〉 |x〉 (28)

Obviously, interpolated FRQI and NEQR images are quantum superposition state and
can be seen as a composite quantum system composed by 2n + 1 qubits and 2n + q
qubits, respectively.

In practice, the quantum state cannot be practically observed in quantum system
because a measurement will destroy the superposition. And what is worse, it is not
allowed to make copies of the state and measure each one due to the non-cloning
theorem. Hence, it is necessary to repeat the construction of the interpolated image
staten (n > 1) times andmeasure eachone to summarize themeasurement results from
which we can estimate the interpolated image. We execute probability measurement
on the interpolated image. Probability measurement converts the quantum information
into classical information in form of probability distributions, i.e., it converts a single
qubit state |�〉 = α |0〉 + β |1〉 into a probability classical bit M (distinguished from
a qubit by drawing it as a double-line wire), which is 0 with probability |α|2, or 1 with
probability |β|2 as shown in Fig. 16.

In the following, we analyze the impact of quantum measurements on the inter-
polated images. The measurement results on the interpolated FRQI image of size
2n+m × 2n+m are some collection of basis states

{

s1, s2, . . . s22(n+m)+1

}

in 22(n+m)+1

dimension Hilbert space. The measurement results on the interpolated NEQR image

Fig. 16 Quantum circuit
symbol for measurement

Fig. 17 Block diagram of measurement procedure on quantum computers
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sized 2n+m × 2n+m and gray ranged
[

0, 2q − 1
]

are some collection of basis states
{

s1, s2, . . . s22(n+m)+q

}

in 22(n+m)+q dimension Hilbert space. After multiple measure-
ments, these basis states follow a probability distribution. The measurement will be
continued until the probability of every basis state is stabilized at a fixed value. Accord-
ing to law of large numbers, there is a limit for these basis states which can be used
to estimate the color information of the interpolated image. The block diagram of
measurement procedure on quantum computers is shown in Fig. 17.

7 Conclusion

In this paper, new methods of nearest-neighbor interpolation for FRQI and NEQR
are proposed. The proposed methods construct an interpolated image and mainly
consist of two steps: (1) position mapping and (2) preparation of color. In the position
mapping stage, the halving operation or Control-NOT gates are used to build the
relationship between result image’s position

(

x ′, y′) and original image’s position
(x, y). Through position mapping, the resulting image’s pixel which needs a color
value assignment is equivalent to the original image’s corresponding pixel in position
(x, y). The preparation color step exploits the control rotation gates and the oracle
operator to prepare the color of the original image in position (x, y). The empty
resulting image and original image are encoded, such that the proposed circuit is stable.
Different from existing methods, the method suggested in this paper does not rely on
copy color information,which is typically complex for usingmulti-control-NOTgates.
Complexity results and simulation results show that the proposed methods have good
performance. However, quantum realization of the interpolationmethod has just begun
and further efforts should bemade to improve the existed circuits.Applying an enlarged
quantum image which is expanded by the nearest-neighbor interpolation to the area of
quantum image information hiding will require more investigation. Other future work
will entail, analyzing the quantum realization of other classical interpolation methods
such as bilinear and bicubic because nearest-neighbor interpolation method appears
visible aliasing.
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