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Abstract Fusing the ideas of bidirectional controlled teleportation and joint remote
state preparation, we put forward a protocol for implementing five-party bidirectional
controlled joint remote state preparation (BCJRSP) by using an eight-qubit cluster
state as quantum channel. It can be shown that two distant senders can simultaneously
and deterministically exchange their states with the other senders under the control
of the supervisor. In order to extend BCJRSP, we generalize this protocol from five
participants to multi participants utilizing two multi-qubit GHZ-type states as channel
and propose two generalized BCJRSP schemes. On the other hand, we generalize
the BCJRSP to multidirectional controlled joint remote state preparation by utilizing
multi GHZ-type states of multi-qubit as quantum channel. By integrating bidirectional
quantum teleportation, quantum state sharing and joint remote state preparation, some
modified versions are discussed. Only Pauli operations and single-qubit measurements
are used in our schemes, so the scheme with five-party is easily realized in physical
experiment.
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1 Introduction

Developing quantum information science have exhibited unusual potentiality [1,2].
Much of the fascinationwith quantum information processing derives from the proper-
ties of entanglement [3]. On the one hand, quantum entanglement can give rise to non-
local correlations that defy explanation in terms of local, realistic theories [4]. On the
other hand, it is a crucial resource to implement various quantum information process-
ing tasks such as quantum teleportation [5–10], quantum dense coding [11], quantum
state preparation [12–15], quantum information concentration [16,17], and so on. A
newkindof entangled state, named as a cluster state,wasfirst introducedbyBriegel and
Raussendorf, which can be generated efficiently in any systemwith an Ising-type inter-
action [18]. Owing to their distinct advantages, e.g., their robustness against decoher-
ence, they have been applied formany quantum information processing, such as single-
qubit measurement [19], teleportation [8,9], quantum information concentration [16]
and dense coding [20]. Recently, Su et al. [21] presented experimental achievements
on producing the eight-partite linear and two-diamond shape cluster states. Moreover,
the eight-qubit cluster state has been experimentally prepared by Yao et al. [22] and
applied for quantum information splitting [23]. Muralidharan et al. [24] further pro-
vided a number of quantum state sharing schemes for splitting an arbitrary two-qubit
state among k parties using a N -qubit linear cluster state as a quantum channel.

Using shared entanglement between two parties, Bennett et al. [5] first proposed
quantum teleportation by which an unknown single-qubit state can be transmitted to
a distant node without sending any physical particles but with local operations and
classical communication. Quantum state teleportation can be linked directly to various
interrelated principles of quantum information processing, such as the impossibility of
superluminal communication, the nonincrease in entanglement under local operations
and classical communication [3], and the no-cloning theorem [5]. Subsequently, quan-
tum state sharing was presented by Hillery, Bužek and Berthiaume[25]. In original
quantum teleportation, there are only one sender and one receiver, while in quantum
state sharing, the receiver is generalized to multi sharers. Moreover, in the former, no
special security demand is needed, while in the latter, a specific security against any
inside sharer’s cheating or outsider’ attack is required. As a modification of quantum
teleportation, quantum remote control was proposed by Huelga et al. in 2001 [26]
through bidirectional quantum teleportation method to perform an arbitrary unitary
operation upon a distant quantum system. Further, the tripartite scheme of bidirectional
controlled teleportation was proposed by Zha et al. [27] by utilizing a five-qubit clus-
ter state as quantum channel, which generalized the scheme of bidirectional quantum
teleportation and improved the communication security. Since then, many schemes
for bidirectional controlled teleportation have been reported using different quantum
entangled states like five-qubit entangled state [28], six-qubit cluster state [29] and
seven-qubit entangled state [30], etc. In addition, another interesting modified telepor-
tation, called remote state preparation, was presented by Lo [31], which also utilizes
a prior shared entanglement and some classical communication to transmit a pure
quantum state. As was designed, remote state preparation includes only one sender so
all the information about the state to be prepared is disclosed to him/her. To avoid such
full leakage of information, joint remote state preparation schemes were put forward
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[12–15]. In joint remote state preparation, there are two or more senders located in dif-
ferent place, and the information of the to-be-prepared state is secretly split among the
senders in such away that neither an individual sender nor a subgroup of them can infer
the state. This feature is highly needed in secret communication between agencies.

In this paper, we propose the concept of bidirectional controlled joint remote state
preparation (BCJRSP) which is essentially a fusion of the ideas of bidirectional con-
trolled teleportation and joint remote state preparation. The aim of our protocol is as
follows. The senders Alice and Charlie want to remotely prepare a single-qubit state
at Bob’s site; meanwhile, the senders Bob and David wish to prepare another single-
qubit state at distant Alice’s site under the control of the supervisor Fred. For security
reasons, we devise a physical procedure to realize this task in such a way that the
original states can only be recreated if and only if the participants Charlie, David and
Fred can cooperate. We first employ eight-qubit cluster state as quantum channel for
implementing BCJRSP task, then generalize it to the case in which two multi-qubit
GHZ-type states are used as quantum channel, and to the multidirectional controlled
joint remote state preparation via multi GHZ-type states of multi-qubit.

The rest of this paper is organized as follows. In Sect. 2, we present a five-party
BCJRSP via eight-qubit cluster state as quantum channel. In Sect. 3, Based on analyz-
ing eight-qubit cluster state, we discuss the generalization of the five-party BCJRSP.
Finally, discussions and summary are given in Sect. 4.

2 BCJRSP with eight-qubit cluster state as quantum channel

In this section, we present a five-party BCJRSP protocol which is applicable for arbi-
trary single-qubit states. As we see, this protocol is simple fusion of bidirectional
controlled teleportation [27] and joint remote state preparation [12–15]. The specific
aim of the BCJRSP protocol is as follows. Suppose that in our scheme, there are five
legitimate participants, say, Alice, Bob, Charlie, David and Fred, located at five spa-
tially separated nodes, respectively. The quantum channel linking Alice, Bob, Charlie,
David and Fred is an eight-qubit cluster state, which has the form

|C8〉12345678 = 1

2
(|00000000〉 + |00001111〉 + |11110000〉 + |11111111〉)12345678,

(1)

where Alice holds the qubit pair (1, 8), Bob possesses the qubit pair (4, 5), Charlie
owns the qubit 2, David has the qubit 6 and the remaining qubit pair (3, 7) belongs to
Fred.

Assume that the senders Alice and Charlie want to help the receiver Bob remotely
prepare a single-qubit state written as

|τ 〉 = a|0〉 + beiα|1〉, (2)

where the real numbers a ≥ 0, b ≥ 0 andα ∈ [0, 2π ]with the normalization condition
a2 +b2 = 1, and that senders Bob and David wish to help the receiver Alice remotely
prepare a single-qubit state
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|τ ′〉 = x |0〉 + yeiβ |1〉, (3)

where the real parameters x ≥ 0, y ≥ 0 and β ∈ [0, 2π ] with the normalization
condition x2 + y2 = 1. The full information in state |τ 〉 in Eq. (2) is S = {a, b, α},
which can be somehow divided into S1 = {a, b} and S2 = {α} in such a way that
S cannot be inferred from either S1 or S2, but can be from both. Herein, the set S
is known partially to Alice and Charlie, and we also assume that S1 is given only to
Alice, S2 only to Charlie, but no information to Bob, David and Fred. Similarly, Bob
only knows {x, y}, David only knows β, but Alice, Charlie and Fred do not know the
information of state |τ ′〉 in Eq. (3). Clearly, no participant alone can help the receiver
to reconstruct the original state. Our protocol is composed of three sequential steps.

In the first step, Alice chooses the basis {|ξm〉1 : m = 0, 1} which is related to the
computation basis {|0〉1, |1〉1} as

( |ξ0〉1
|ξ1〉1

)
=

(
a b
b −a

) ( |0〉1
|1〉1

)
. (4)

Since Alice knows S1 = {a, b}, she is able to perform a projective measurement on
her particle 1 in the basis {|ξm〉1 : m = 0, 1}. When carrying out the single particle
measurement, Alice obtains a state |ξm〉1 randomly (i.e., with an equal probability
of 1/2), and then tells the result m to Bob and Charlie by classical communication.
After that, Charlie needs to measure his particle 2 in a delicately chosen basis which
is important to achieve unit success probability without adding the local operations.
Namely, Charlie not only utilizes α, which was given to him a priori, but also should
take into account Alice’s measurement outcome in terms of m. Explicitly, the basis
{|η(m)

n 〉2 : n = 0, 1} (m = 0, 1) for Charlie’s measurement on qubit 2 is determined
by {m, α} as follows:

(
|η(m)

0 〉2
|η(m)

1 〉2

)
= 1√

2
U (m)(α)

( |0〉2
|1〉2

)
(5)

with

U (0)(α) =
(
1 e−iα

1 −e−iα

)
(6)

and

U (1)(α) =
(
e−iα 1
e−iα −1

)
. (7)

For each specificm, the states {|η(m)
n 〉2 : n = 0, 1} comprise an orthonormal complete

set in a two-dimensional Hilbert space. After doing this operation, Charlie gets a state
|η(m)

n 〉2 with an equal probability of 1/2, and tells Bob of his result n via classical
communication.
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Similarly, Bob measures his particle 5 in the basis {|μs〉5 : s = 0, 1} determined
by {x, y} as

( |μ0〉5
|μ1〉5

)
=

(
x y
y −x

) ( |0〉5
|1〉5

)
, (8)

gets a state |μs〉5 with the probability of 1/2, and announces the result s to Alice and
David via classical communication. Then, David makes a single particle measurement
on his particle 6 with the basis {|ν(s)

t 〉6 : t = 0, 1} (s = 0, 1) determined by {s, β} as
(

|ν(s)
0 〉6

|ν(s)
1 〉6

)
= 1√

2
V (s)(β)

( |0〉6
|1〉6

)
(9)

with

V (0)(β) =
(
1 e−iβ

1 −e−iβ

)
, V (1)(β) =

(
e−iβ 1
e−iβ −1

)
. (10)

After that, he obtains the a state |ν(s)
t 〉6 with an equal probability of 1/2, and announces

t to Alice via classical communication.
In terms of the basis states |ξm〉1, |η(m)

n 〉2, |μs〉5 and |ν(s)
t 〉6, the whole quantum

system |C8〉12345678 consisting of the eight particles can be expressed as

|C8〉12345678 = 1

4

1∑
m,n,s,t=0

|ξm〉1|η(m)
n 〉2|μs〉5|ν(s)

t 〉6|Qmnst 〉3478, (11)

where

|Qmnst 〉3478= [(−1)max(m−n,0)a|m,m〉 + (−1)max(n−m,0)beiα|1− m, 1− m〉]34
⊗ [(−1)max(s−t,0)x |s, s〉 + (−1)max(t−s,0)yeiβ |1− s, 1− s〉]78.

(12)

After their measurements, Charlie needs to know the outcome m, David needs to
know the outcome s, and Alice and Bob need to know the outcomes mnst . What is
interesting is that it is not necessary for them to send secret massages. Instead, they
just need to broadcast their outcomes via any public media since these outcomes in
fact mean nothing to any outside parties. From Eq. (11), one can get one of the 16
kinds of possible measured results with equal probability, and the remaining qubits
3, 4, 7 and 8 may collapse into one of the 16 kinds of possible states contained in a
unified form |Qmnst 〉3478 [see Eq. (12)].

It is worth noting that in first step Charlie and David utilized the adaptive mea-
surement strategy, that is to say, the choice of bases for measuring particles 2 and
6 depends essentially on the outcomes of prior measurements on particles 1 and 5,
respectively. Obviously from Eq. (11), if the outcomes of Alice’s, Bob’s, Charlie’s and
David’s measurements are msnt , then the four unmeasured particles 3, 4, 7 and 8 are

123



4268 J.-Y. Peng et al.

projected onto the state |Qmnst 〉3478 [see Eq. (12)] with an equal probability of 1/16.
Note also that at this stage Alice and Bob are still unable to complete the task without
Fred’s participation since their particle 8 and 4 are still entangled with particles 7 and
3, respectively. The role of the controller Fred will be seen in the next step.

In the second step, let |εl〉 = 1√
2

∑1
j=0(−1)max( j+l−1,0)| j〉 (l = 0, 1) be a single

state. Clearly, |ε0〉 = 1√
2
(|0〉 + |1〉) = |+〉, |ε1〉 = 1√

2
(|0〉 − |1〉) = |−〉, and so

{|ε0〉, |ε1〉} is usual standard orthogonal basis {|+〉, |−〉} in a two-dimensional Hilbert
space. Using the basis set {|ε0〉, |ε1〉}, we can write

|l〉 = 1√
2
(|ε0〉 + (−1)l |ε1〉) (l = 0, 1), (13)

and using (13) we can express the collapsed state |Qmnst 〉3478 shared by the receivers
and controller as follows:

|Qmnst 〉3478
= 1

2

{[
(−1)max(m−n,0)a|m〉4 + (−1)max(n−m,0)beiα|1 − m〉4

]
|ε0〉3

+
[
(−1)max(m−n,0)+ma|m〉4 + (−1)max(n−m,0)+1−mbeiα|1− m〉4

]
|ε1〉3

}

⊗
{[

(−1)max(s−t,0)x |s〉8 + (−1)max(t−s,0)yeiβ |1 − s〉8
]
|ε0〉7

+
[
(−1)max(s−t,0)+s x |m〉8 + (−1)max(t−s,0)+1−s yeiβ |1 − s〉8

]
|ε1〉7

}
.

(14)

Now Fred makes two single particle measurements on his own particle 3 and 7 in
basis sets {|l〉3 : l = 0, 1} and {|l ′〉7 : l ′ = 0, 1}, and communicates the results l
and l ′ to Bob and Alice, respectively. Depending on the outcomes msntll ′ of all the
measurements described above, the state of particles 4 and 8, with an equal probability
of 1/64, collapses into one of the following forms:

[
(−1)max(m−n,0)a|m〉4 + (−1)max(n−m,0)beiα|1 − m〉4

]

⊗
[
(−1)max(s−t,0)x |s〉8 + (−1)max(t−s,0)yeiβ |1 − s〉8

]
,

(15)

[
(−1)max(m−n,0)a|m〉4 + (−1)max(n−m,0)beiα|1 − m〉4

]

⊗
[
(−1)max(s−t,0)+s x |m〉8 + (−1)max(t−s,0)+1−s yeiβ |1 − s〉8

]
,

(16)

[
(−1)max(m−n,0)+ma|m〉4 + (−1)max(n−m,0)+1−mbeiα|1 − m〉4

]

⊗
[
(−1)max(s−t,0)x |s〉8 + (−1)max(t−s,0)yeiβ |1 − s〉8

] (17)

and

[
(−1)max(m−n,0)+ma|m〉4 + (−1)max(n−m,0)+1−mbeiα|1 − m〉4

]

⊗
[
(−1)max(s−t,0)+s x |m〉8 + (−1)max(t−s,0)+1−s yeiβ |1 − s〉8

]
.

(18)
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As is evident form Eqs. (15–18), for any possible collection msntll ′ of outcomes, the
corresponding collapsed state turns out to be a product state, but it is not yet readily
in the desired form |τ 〉4 ⊗ |τ ′〉8. Thus, a find step, the third step, is needed for Alice
and Bob to locally reconstruct the target state.

In the third step, Alice and Bob should apply the proper unitary operators RA
stl ′ and

RB
mnl , if they exist, on particles 8 and 4 to transform the collapsed state corresponding

the outcomes msntll ′ to |τ ′〉8 and |τ 〉4, respectively. That is, to be successful, Alice
(Bob) needs to know not only the outcomes of Bob’s (Alice’s) and David’s (Charlie’s)
measurements in the first step, but also the outcome l ′ (l) of Fred’s measurement
in the second step, certifying the controller’s role in our scheme. Should Fred, by
some important reasons, decline to carry out the measurements or to disclose the
measurement outcomes, the task remains unfulfilled. Carefully analyzing the data in
Eqs. (15–18), we have, for any possible outcomes msntll ′, come up with the general
formulae for RA

stl ′ and RB
mnl as

RA
stl ′ = σ s

x σ
s⊕t⊕l ′
z (19)

and

RB
mnl = σm

x σm⊕n⊕l
z , (20)

where σ 0
x = σ 0

z = I is an identical operator, σx and σz are the X - and Z -Pauli
operators, respectively, and ⊕ is an addition mod 2. Since Alice and Bob are always
able to reconstruct the desired state by the operators RA

stl ′ and RB
mnl defined above, our

bidirectional controlled joint remote state preparation protocol is deterministic, i.e.,
the success probability is one.

The classical message plays an important role in remote state preparation process.
Howmany bits of classical information are required in our scheme? Nowwe calculate
classical information of our scheme using the method proposed by Dai et al. [32–35].
For the outcomes msntll ′, the classical information of bidirectional joint prepared
process can be divided into two single bidirectional prepared processes. One is the
classical information of the prepared process from the senders Alice and Charlie to the
receiver Bob, which Alice performs a projective measurement on qubit 1 and informs
Bob, Charlie and Fred of her measurement result, and one which Charlie makes a pro-
jective measurement on qubit 2 and informs Bob and Fred of his measurement result
as well as one which Fred measures the qubit 3 and informs Bob of his measurement
result. The other is the classical information of the prepared process from the senders
Bob and David to the receiver Alice. That is, it includes the classical information
which Bob implements a projective measurement on qubit 5 and informs Alice, David
and Fred of his measurement result, and one which David performs a projective mea-
surement on qubit 6 and informs Alice and Fred of his measurement result as well as
one which Fred makes a projective measurement on qubit 7 and informs Alice of his
outcome.

We first consider the former case. After projective measurement on qubit 1, Alice
obtains outcomem with the probability 1/2, so the amount of the classical information
sent from Alice to Bob is SAB = − 1

2 log2
1
2 = 0.5 bits. The amount of the classical

information fromAlice toCharlie and fromCharlie toBob is SACB = − 1
4 log2

1
4 = 0.5
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bits. The amount of the classical information from Alice to Fred and from Fred to Bob
is SAFB = − 1

4 log2
1
4 = 0.5 bits. The amount of the classical information required

in this process from Alice to Fred, from Charlie to Fred and from Fred to Bob is
SACFB = − 1

8 log2
1
8 = 0.375 bits. Therefore, the total classical communication cost

required in this case is S1 = SAB + SACB + SAFB + SACFB = 1.875 bits.
Similarly, for the latter case, the total classical communication cost is also S2 =

1.875 bits. Thus the classical communication cost for the outcomes msntll ′ is S =
S1+S2 = 3.75 bits. Obviously, there are 64 kinds of possiblemeasurement results, and
every measurement result has the same classical communication cost in the schemes,
so the total classical information needed in our scheme is 3.75 × 64 = 240 bits.

Remark Our scheme can be modified into a four-party BCJRSP protocol: there are
four legitimate participants, they have the qubit pairs (1, 8), (4, 5), (3, 7) and (2, 6),
respectively, and these qubits are derive from the eight-qubit cluster state |C8〉12345678
in Eq. (1). If a participant plays the roles of Charlie and David, the other participants
act, respectively, as Alice, Bob and Fred in the above protocol, then this scheme can
also be achieved with unit success probability.

If the ideas of bidirectional quantum teleportation, quantum state sharing and joint
remote state preparation are fused, then we have the following modified versions of
the our original protocol:

(a) In the second step of our original protocol, if Alice and Bob measure, respec-
tively, the particles 8 and 4 with the basis {|ε0〉, |ε1〉} getting the outcomes ll ′, and
communicates all measurement resultsmsntll ′ to Fred, then Fred can reconstruct two
states |τ 〉 and |τ ′〉 by using the unitary operations σm

x σm⊕n⊕l
z and σ s

x σ
s⊕t⊕l ′
z on par-

ticles 3 and 7, respectively. Clearly, the successful probability is also one. Here, each
of Alice and Bob essentially plays the roles of the controller and the sender.

(b) In the second step of our original protocol, if Alice and Fred measure, respec-
tively, the particles 8 and 3 with the basis {|ε0〉, |ε1〉} getting the outcomes ll ′, and
communicate the measurement results l and l ′ to Fred and Bob, respectively, and the
outcomes st to Fred; then, Bob and Fred can obtain |τ 〉 and |τ ′〉 (with unit success
probability) by using the unitary operations σm

x σm⊕n⊕l
z and σ s

x σ
s⊕t⊕l ′
z on particles 4

and 7, respectively. Obviously, Alice plays the sender’s and the controller’s roles, and
Fred plays the controller’s and receiver’s roles. For Bob plays the sender’s and the
controller’s roles and Fred plays the controller’s and receiver’s roles, the conclusion
is similar because of symmetry of |C8〉12345678 in Eq. (1).

For the four-party BCJRSP protocol mentioned above, we can discuss it like the
cases (a) and (b).

3 BCJRSP with two (M + N + 2)-qubit GHZ-type states as quantum
channel

Before presenting our scheme in detail, let us elaborate on the quantum channel in
the above section. In Sect. 2, the quantum channel is an eight-particle cluster state (1)
which can be written as
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|C8〉12345678 = |GHZ〉1234 ⊗ |GHZ〉5678, (21)

where |GHZ〉 = 1√
2
(|0000〉+|1111〉) is the four-qubitGHZ-type state. Essentially two

parts |GHZ〉1234 and |GHZ〉5678 can be, respectively, regarded as two systems of usual
controlled joint remote state preparation. Thus, the above BCJRSP task can be always
accomplished successfully. This idea stimulates us to generalize the scheme described
in the above section to amore general case that the (M+N ) sendersAlice1,Alice2, · · · ,
AliceM , Charlie1,Charlie2, · · · , CharlieN share the classical informationof the original
state |τ 〉 in Eq. (2) in such a way that Alicem (m = 1, 2, · · · , M) knows only the real
number pair (am, bm), andCharlien (n = 1, 2, · · · , N ) knows only the real numberαn ,
with �M

m=1am = a, �M
m=1am = b and �N

n=1αn = α. Similarly, the (M + N ) senders
Bob1, Bob2, · · · , BobM , David1, David2, · · · , DavidN share the classical information
of the original state |τ ′〉 in Eq. (3) in such a way that Bobs (s = 1, 2, · · · , M) knows
only the real number pair (xs, ys), and Davidt (t = 1, 2, · · · , N ) knows only the real
number βt , with �M

s=1xs = x , �M
s=1ys = y and �N

t=1βt = β.
Suppose that the senders Alicem (m = 1, 2, · · · , M), Bobs (s = 1, 2, · · · , M),

Charlien (n = 1, 2, · · · , N ), Davidt (t = 1, 2, · · · , N ) and the controller Fred have
shared two (M + N + 2)-qubit GHZ-type states in the following form:

|GHZ〉12···(M+N+1)B = 1√
2
(|00 · · · 0〉 + |11 · · · 1〉)12···(M+N+1)B,

|GHZ〉1′2′···(M+N+1)′A = 1√
2
(|00 · · · 0〉 + |11 · · · 1〉)1′2′···(M+N+1)′A,

(22)

where the qubit pair (1, A) belongs to Alice1, (1′, B) to Bob1, (M + N + 1, (M +
N + 1)′) to Fred, Alicem (2 ≤ m ≤ M) possesses qubit m, Charlien (1 ≤ n ≤ N )
holds qubit (M + n), Bobs (2 ≤ s ≤ M) owns qubit s′ and Davidt (1 ≤ t ≤ N ) has
qubit (M + t)′, respectively.

Now the senders Alicem (m = 1, 2, · · · , M) and Charlien (n = 1, 2, · · · , N )
wish to help the receiver Bob1 remotely prepare a single-qubit state |τ 〉 in Eq. (2);
meanwhile, the sender Bobs (s = 1, 2, · · · , M) and Davidt (t = 1, 2, · · · , N want to
help the receiver Alice1 prepare the state |τ ′〉 in Eq. (3). The initial system of the total
qubits can be written as

|T 〉 = |GHZ〉12···(M+N+1)B ⊗ |GHZ〉1′2′···(M+N+1)′A. (23)

To realize this quantum task, each sender carries out a single-qubit projective mea-
surement on his/her own qubit, respectively. First, each Alicem (m = 1, 2, · · · , M)
chooses the basis {|ξmk〉m : k = 0, 1} which is related to the computational basis
{|0〉m, |1〉m} as

( |ξm0〉m
|ξm1〉m

)
= λm

(
am bm
bm −am

) ( |0〉m
|1〉m

)
, (24)

where λm = 1/
√
a2m + b2m is the normalize factor, then measures her qubit m in this

basis and tells the outcome |ξmk〉 to Bob1 and each Charlien (n = 1, 2, · · · , N ) with
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(N +1) cbits of communication cost, 1 cbit to Bob1, and 1 cbit to each Charlien . Next,
each Bobs (s = 1, 2, · · · , M) measures his qubit s′ in the basis {|μs j 〉s′ : j = 0, 1}
determined by {xs, ys} as

( |μs0〉s′
|μs1〉s′

)
= κs

(
xs ys
ys −xs

) ( |0〉s′
|1〉s′

)
, (25)

where κs = 1/
√
x2s + y2s is also the normalize factor, and transmits his measurement

result |μs j 〉 to Alice1 and each Davidt (t = 1, 2, · · · , N ) with (N + 1) cbits, 1
cbit to Alice1, and 1 cbit to each Davidt . Only when the joint outcome is one of
|ξ1k〉|ξ2k〉 · · · |ξMk〉|μ1 j 〉|μ2 j 〉 · · · |μMj 〉, k, j = 0, 1, the original states |τ 〉 and |τ ′〉
may be reconstructed, and the |T 〉will collapse, respectively, into the following forms:

1

2

M∏
m=1

λmκm

[
M∏

m=1

am |00 · · · 0〉 +
M∏

m=1

bm |11 · · · 1〉
]

(M+1)···(M+N+1)B

⊗
[

M∏
s=1

xs |00 · · · 0〉 +
M∏
s=1

ys |11 · · · 1〉
]

(M+1)′···(M+N+1)′A

,

(26)

1

2

M∏
m=1

λmκm

[
M∏

m=1

am |00 · · · 0〉 +
M∏

m=1

bm |11 · · · 1〉
]

(M+1)···(M+N+1)B

⊗
[

M∏
s=1

ys |00 · · · 0〉 + (−1)M
M∏
s=1

xs |11 · · · 1〉
]

(M+1)′···(M+N+1)′A

,

(27)

1

2

M∏
m=1

λmκm

[
M∏

m=1

bm |00 · · · 0〉 + (−1)M
M∏

m=1

am |11 · · · 1〉
]

(M+1)···(M+N+1)B

⊗
[

M∏
s=1

xs |00 · · · 0〉 +
M∏
s=1

ys |11 · · · 1〉
]

(M+1)′···(M+N+1)′A

,

(28)

and

1

2

M∏
m=1

λmκm

[
M∏

m=1

bm |00 · · · 0〉 + (−1)m
M∏

m=1

am |11 · · · 1〉
]

(M+1)···(M+N+1)B

⊗
[

M∏
s=1

ys |00 · · · 0〉 + (−1)M
M∏
s=1

xs |11 · · · 1〉
]

(M+1)′···(M+N+1)′A

.

(29)

Otherwise, |T 〉 will collapse into the state like
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1

2

M∏
m=1

λmκm

[
bM

M−1∏
m=1

am |00 · · · 0〉 − aM

M−1∏
m=1

bm |11 · · · 1〉
]

(M+1)···(M+N+1)B

⊗
⎡
⎣ys

M∏
j 
=s

x j |00 · · · 0〉 − xs

M∏
j 
=s

y j |11 · · · 1〉
⎤
⎦

(M+1)′···(M+N+1)′A

,

(30)

which cannot be converted into the product of two original states. Therefore, Alice1
andBob1 only need to consider the cases (26), (27), (28) and (29). Hearing the classical
messages from all Alicem (m = 1, 2, · · · , M), each Charlien (n = 1, 2, · · · , N ) mea-
sures his qubitM+n in delicately chosen basis and publicly broadcasts his outcome to
Bob1. That is to say, Charlien not only use the real number αn , but should also take into
account all Alicem’s measurement outcomes |ξ1k〉|ξ2k〉 · · · |ξMk , k = 0, 1. Explicitly,
the basis {|η(k)

ln 〉M+n : l = 0, 1} (k = 0, 1) for Charlien’s measurement is given by

(
|η(k)

0n 〉M+n

|η(k)
1n 〉M+n

)
= 1√

2
U (k)(αn)

( |0〉M+n

|1〉M+n

)
(31)

with

U (0)(αn) =
(
1 e−iαn

1 −e−iαn

)
, U (1)(αn) =

(
e−iαn 1
e−iαn −1

)
. (32)

For each specific k, {|η(k)
ln 〉M+n : l = 0, 1} comprise an orthonormal com-

plete set in a two-dimension Hilbert space. Similarly, according to the outcomes
|μ1 j 〉|μ2 j 〉 · · · |μMj 〉 ( j = 0, 1) of all Bobs , each Davidt (t = 1, 2, · · · , N ) mea-

sures his qubit (M + t)′ in the basis {|ν( j)
pt 〉(M+t)′ : p = 0, 1} determined by { j, βt } as

(
|ν( j)
0t 〉(M+t)′

|ν( j)
1t 〉(M+t)′

)
= 1√

2
V ( j)(βt )

( |0〉(M+t)′
|1〉(M+t)′

)
(33)

with

V (0)(βt ) =
(
1 e−iβt

1 −e−iβt

)
, V (1)(βt ) =

(
e−iβt 1
e−iβt −1

)
, (34)

and publicly broadcasts his outcome to Alice1 with 1 cbit of communication cost.
After implementing measurements by all Charlien and all Davidt , the state of qubits
M + N + 1, (M + N + 1)′, A and B will collapse into one of the following states:
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(a|00〉 ± beiα|11〉)(M+N+1)B ⊗ (x |00〉 ± yeiβ |11〉)(M+N+1)′A,

(a|00〉 ± beiα|11〉)(M+N+1)B ⊗ (x |11〉 ± yeiβ |00〉)(M+N+1)′A,

(a|11〉 ± beiα|00〉)(M+N+1)B ⊗ (x |00〉 ± yeiβ |11〉)(M+N+1)′A,

(a|11〉 ± beiα|00〉)(M+N+1)B ⊗ (x |11〉 ± yeiβ |00〉)(M+N+1)′A.

(35)

Whether it is possible for Alice1 and Bob1 to reconstruct the original state with local
operation to the state is dependent on Fred. If Fred allows Alice1 and Bob1 to recon-
struct the initial state, then he needs to carry out two single-qubit measurements in the
basis of {|ε0〉, |ε1〉} on qubits N + M + 1 and (N + M + 1)′, and tells the outcomes
|εl〉N+M+1 and |εl ′ 〉(N+M+1)′ to Bob1 and Alice1, respectively. After doing those
measurements, the qubits B and A will collapse into one of the following 16 states:

(a|0〉 ± beiα|1〉)B ⊗ (x |0〉 ± yeiβ |1〉)A,

(a|0〉 ± beiα|1〉)B ⊗ (x |1〉 ± yeiβ |0〉)A,

(a|1〉 ± beiα|0〉)B ⊗ (x |0〉 ± yeiβ |1〉)A,

(a|1〉 ± beiα|0〉)B ⊗ (x |1〉 ± yeiβ |0〉)A.

(36)

By combining information from some senders and Fred, Bob1 and Alice1 can recon-
struct the original state by making an appropriate unitary transformation U on the
qubits B and A according to the Eq. (36), where U ∈ {I ⊗ I, I ⊗ σz, σz ⊗ I, σz ⊗
σz, I ⊗ σx , σz ⊗ σx , I ⊗ iσy, σz ⊗ iσy, σx ⊗ I, iσy ⊗ I, σx ⊗ σz, iσy ⊗ σz, σx ⊗
σx , iσy ⊗ σz, σx ⊗ iσy, iσy ⊗ iσy}. It is demonstrated that the original states |τ 〉
in Eq. (2) and |τ ′〉 in Eq. (3) can always be reconstructed at Bob1’s and Alice1’s
site, respectively, no matter what kind of the four joint measurement outcomes
|ξ1k〉|ξ2k〉 · · · |ξMk〉|μ1 j 〉|μ2 j 〉 · · · |μMj 〉, k, j = 0, 1. So, the successful probability
of our protocol is 4 × ( 12

∏M
m=1 λmκm)2 = ∏M

m=1(λmκm)2.
Now we discuss classical communication of the scheme about multi-partite case.

Similar method as in the former section. At first, we consider the single direction from
Alice1 to Bob1. In the process, without loss of generality, there exists a classical infor-
mation transmitted sequence:Alice1,Alicei1 , Alicei2 ,...,Aliceis ,Charlie j1 ,...,Charlie jt ,
Fredk , Bob1. According to the former ,we know the probability obtained |ξmk〉
by Alicei is λi , the probability obtained |η(k)

ln 〉 by Charlie j is 1
2 and the proba-

bility obtained |εl〉 is also 1
2 . The corresponding probability of the sequence is

p(s, t, k) = λ1λi1 · · · λis ( 12 )t+k , where s = 0, 1, ..., M − 1; t = 0, 1, ..., N , k = 0, 1
and s = 0, t = 0 and k = 0 means that Alicei , Charlie j and Fred are disap-
peared in the sequence, respectively, 1 < i ≤ M − 1, 1 ≤ j ≤ N . Therefore, the
amount of classical information in the former sequence is −p(s, t, k) log2 p(s, t, k).
So the total classical information of single direction from Alice1 to Bob1 is

−
1∑

k=0

M−1∑
s=0

N∑
t=0

p(s, t, k) log2 p(s, t, k). Similarly, the total classical information of sin-

gle direction from Bob1 to Alice1 is −
1∑

k=0

M−1∑
s=0

N∑
t=0

p′(s, t, k) log2 p′(s, t, k), where
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p′(s, t, k) = κ1κi1 · · · κis ( 12 )t+k . Therefore, the number of bits of total classical com-
munication cost in this scheme is

− 4
1∑

k=0

M−1∑
s=0

N∑
t=0

[p(s, t, k) log2 p(s, t, k) + p′(s, t, k) log2 p′(s, t, k)]. (37)

According to the above equation, we know the classical communication cost is decided
by the number of the senders (M, N ) and the coefficients x, y, a, b. When the coef-
ficients a, b, x, y are deterministic, the larger the number M + N is, the larger the
classical communication cost is. It is consistent with the physical facts.

Remark If M = 1, then the successful probability of our scheme is
∏M

m=1(λmκm)2 =
1

(a2+b2)(x2+y2)
= 1, i.e., our scheme is deterministic. Similar to the remark in Sect. 2,

we can obtain some modified versions about BCJRSP with two (M + N + 2)-qubit
GHZ-type states as quantum channel.

4 Discussion and conclusion

Obviously, the scheme in Sect. 2 has been generalized in Sect. 3. In fact, when M =
N = 1 in Sect. 3, the protocol described in Sect. 3 is same as that one in Sect. 2. In
Sect. 3, the number of senders sharing the state |τ 〉 in Eq. (2) equals to that of senders
sharing the state |τ ′〉 in Eq. (3). Indeed, the numbers of a part of senders sharing the
information about the modulus of the coefficients of two original states need not be
the same. Likewise, the numbers of the other part of senders sharing the information
for arguments of the coefficients of two original states also do not have to be equal.
Further, The number of the controllers can be more than one. In this situation, we can
employ two multi-qubit GHZ-type states as follows

|GHZ〉12···(M+N+S)B = 1√
2
(|00 · · · 0〉 + |11 · · · 1〉)12···(M+N+S)B,

|GHZ〉1′2′···(K+L+S)′A = 1√
2
(|00 · · · 0〉 + |11 · · · 1〉)1′2′···(K+L+S)′A,

(38)

where there are M senders sharing the real number pair (a, b) and a part of the N
senders share the real number α. Similarly, another part of the K senders and the other
part of the L senders share the real number pair (x, y) and β, respectively, and there
are S controllers in this situation. Similar to the method in Sect. 3, Alice1 and Bob1
can, respectively, reconstruct the original states |τ ′〉 in Eq. (3) and |τ 〉 in Eq. (2) with
successful probability of

∏M
m=1 λ2m

∏K
j=1 κ2

j under the control of the S controllers.
In addition, we can easily generalize our protocols to the circumstance that p-

directional controlled joint state preparation by employing p multi-qubit GHZ-type
states |GHZ〉k :

|GHZ〉k = 1√
2
(|00 · · · 0〉 + |11 · · · 1〉)1k ···(M(k)+N (k)+2)k , k = 1, · · · , p (39)

are used as quantum channel
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|T ′〉 = ⊗p
k=1|GHZ〉k . (40)

where p ≥ 2. Similar to the above method, every sender performs a single-qubit
measurement on his/her particle using delicately chosen basis in two-dimension
Hilbert space and publicly announces the outcome, then the controller makes sev-
eral single-qubit measurements with the basis {|+〉, |−〉} and tells his/her outcomes
to the receivers. The receivers can reconstruct the desired original state with certain
probability by using local operations.

In summary, by integrating the ideas of bidirectional controlled teleportation and
joint remote state preparation, we have studied the bidirectional controlled joint state
preparation (BCJRSP) in this paper. Firstly, by employing eight-qubit cluster state
as quantum channel for implementing BCJRSP, two senders can simultaneously
exchange their quantum states securely, deterministically, with the cooperation of
the other senders and under the control of the controller using only local operations
and classical communication. However, if one agent does not cooperate, the receiver
cannot recover the original state of each qubit. Fusing the ideas of bidirectional quan-
tum teleportation, quantum state sharing and joint remote state preparation, we have
discussed some modified BCJRSP schemes. Secondly, in the intending quantum net-
works, more users may participate to solve some common quantum tasks due to some
special demands, such as multiparty BCJRSP. So we have generalized the four sharers
in BCJRSP to multi sharers, and proposed two generalized schemes for performing
multiparty BCJRSP via twomulti-qubit GHZ-type states as quantum channel. Finally,
in order to realize authentically controlled joint remote preparation from the multi-
party to the multiparty, we have further generalized the BCJRSP to multidirectional
controlled joint state preparation by using multi GHZ-type states of multi-qubit. We
would like to emphasize that the total success probability is not only determined by
the normalization factors of the senders’ projective measurement basis vectors which
depend on the coefficients of the two original states, but also depends on the adaptive
measurement strategy, where chosen adaptive measurement strategy is that in order
to construct a measurement operator, the sender not only utilize his/her own shared
information for argument of the original state, but should also take into account the
measurement outcomes of the former part of senders who share the information about
the modulus of the coefficients of the original state. In all schemes, it is necessary
for single-qubit measurement and local operation as well as classical communica-
tion. Moreover, with the development of research on the multi-partite entangled state,
there are several experimental schemes for the generation of the eight-partite entan-
gled state[22–24]. On the other hand, the two-qubit controlled-NOT gate and the
single-qubit gates regarding photon qubits, ofwhich arbitrarymulti-qubit unitary oper-
ation can be expressed as composition, have been realized by using optical element
[36]. Therefore, our scheme with five party might be realizable with current tech-
niques.
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