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Abstract We study quantum state sharing (QSTS) with noisy environment in this
paper. As an example, we present a QSTS scheme of a known state whose information
is hold by the dealer and then investigate the noisy influence process of the scheme.
Taking the amplitude-damping noise and the phase-damping noise as typical noisy
channels, we show that the secret state can be shared among agents with some infor-
mation lost. Our research connects the areas of quantum state sharing and remote state
preparation.

Keywords Quantum state sharing · Amplitude-damping noise · Phase-damping
noise · Fidelity

1 Introduction

Entanglement is a special resource in quantum information processing, and one of the
most astonishing applications is quantum teleportation [1]. Bennett et al. [1] demon-
strated that an unknown quantum state can be teleported to a spatially separated place
via Einstein–Podolsky–Rosen channels. If a quantum state is known to the sender,
there is another way to transfer the quantum state without qubit transmission, which
is known as remote state preparation (RSP) [2–4]. With shared quantum resource and
additional classical information, RSP can be performed with simpler measurements
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and less classical communication costs than quantum teleportation. Since its first
appearance, different kinds of RSP schemes have been proposed, such as oblivious
RSP [5], continuous variable RSP [6], RSP in higher dimension space [7]. In recent
years, RSP schemes that include many participants have also been proposed, like joint
RSP (JRSP) [8–10] and controlled RSP (CRSP) [11,12]. The difference between JRSP
and CRSP is what the roles did the preparers played. In a JRSP scheme, each sender is
a information carrier who holds partial information of a prepared state and all senders
jointly prepare the state for a remote receiver. While in a CRSP scheme, there is a
controller who does not know the information of the state, but the scheme will not be
completed without the controller’s consent.

Besides, quantum entanglement has also been used to extend the scope of crypto-
graph. Applications like quantum key distribution [13], quantum data hiding [14–17]
and quantumauthentication [18,19] have been proposed based on shared entanglement
resource. Quantum secret sharing (QSS) [20] is another application of entanglement
resource which enhances the secure level of classical secret sharing. The pioneering
work of QSS was introduced by Hillery et al. [20] in 1999. After that, various QSS
schemes have been proposed both theoretically [21–26] and experimentally [27–29].
According to the type of shared secret, QSS schemes can be divided into two classes,
i.e., QSS of a classical secret and QSS of a quantum state. The latter one is also known
as quantum state sharing (QSTS) named by Lance et al. in [30], where a secret state is
shared among a set of agents, and only qualified agents groups can cooperate to recon-
struct the state. QSTS has strong relationships with quantum teleportation and RSP.
Many of the existing QSTS schemes can be regarded as quantum teleportation among
multiparty who located at spatially separated places [20,24,31–34], where the secret
state is unknown to the dealer. However, if the dealer already known the information
of the secret state, the scheme can be performed in a simpler way. In 2014, we pointed
out that the application of QSTS can also be achieved by using the idea of RSP [35].

Generally, most applications of entanglement were considered in an ideal condi-
tion; i.e., the entangled resources were perfectly generated and transmitted without
any interaction with the outside environment. But in real world, a quantum systemwill
unavoidably be affected by the environment. And these interactions are considered as
noises. In recent years, some entanglement-based schemes with noisy environments
have been studied. Adhikari et al. [36] proposed a QSS protocol of classical informa-
tion with noisy channels. Xiang et al. [37] presented a RSP protocol for mixed state
in depolarizing and dephasing channel. Chen et al. [38] investigated remote prepa-
ration of an entangled state through a mixed-state channel in nonideal conditions.
Guan et al. [39] investigate the JRSP of an arbitrary two-qubit quantum state in noisy
environments.

As is mentioned, we have shown that a QSTS scheme can be achieved by using
the idea of RSP in Ref. [35], which is simpler and more efficient than by the idea
of quantum teleportation. But like most of other QSTS schemes, our schemes were
discussed with ideal environment and no outside noise was considered. One may ask
how a QSTS scheme will be affected by the noise and how much information will
be lost in the process? In this paper, we are going to discuss these problems. The
organization of the paper is as follows. In Sect. 2, we present our multiparty QSTS
scheme of an arbitrary known qubit state with ideal environment. Then, we investigate
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our QSTS scheme with the amplitude-damping noise and the phase-damping noise in
Sects. 3 and 4, respectively. We discuss their security issues and their relationships
with quantum teleportation and RSP in Sect. 5. The paper is concluded in Sect. 6.

2 State sharing scheme with ideal environment

To begin with, we are going to present amultiparty state sharing scheme of an arbitrary
qubit state, which is a specific instance of our schemes in Ref. [35]. Let us suppose
that Alice wants to distribute a secret state between two agents Bob and Charlie in
such a way that only if two agents work together can they recover the state. Generally,
an arbitrary single-qubit state has the form

|φ〉 = a0e
iθ0 |0〉 + a1e

iθ1 |1〉, (1)

where a0, a1 ∈ R, θ0, θ1 ∈ [0, 2π ], with a20 + a21 = 1. The parameters a0, a1, θ0 and
θ1 of the secret state are known by Alice. She need not hold the state.

Our state sharing scheme of an arbitrary known qubit state in ideal environment
can be described as follows.

(1) Secret splitting phase
(a) The dealer Alice prepares a GHZ state as shared quantum resource, which can

be written as

|Φ〉 = 1√
2
(|000〉 + |111〉)ABC , (2)

where subscripts denote qubits of the state. Alice keeps qubit A in her lab-
oratory. She sends qubit B to Bob and qubit C to Charlie through two ideal
quantum channels, which means the outside environment will not affect qubits
B and C . After qubits transmissions, Alice holds qubit A, Bob holds qubit B,
and Charlie holds qubit C .

(b) Alice prepares an ancilla state R in |0〉, and then, she performs a unitary
operation U on qubits AR where

U =
(
U0 0
0 U1

)
, with Ui =

⎛
⎝ ai

√
1 − a2i√

1 − a2i −ai

⎞
⎠ ; i = 0, 1. (3)

Then, the quantum system becomes

UAR ⊗ IBC |Φ〉ABC |0〉R
= 1√

2
(a0|000〉ABC + a1|111〉ABC )|0〉R

+ 1√
2

(√
1 − a20 |000〉ABC +

√
1 − a21 |111〉ABC

)
|1〉R .

(4)
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(c) Alice measures qubit R in the computational basis. If she gets the result |0〉,
the quantum system becomes

a0|000〉ABC + a1|111〉ABC . (5)

While if Alice gets the result |1〉, she can use the recursive method proposed
by Jiang et al. [40,41] to get the above state.

(d) Alice performs a projectivemeasurement on qubit A under the basis {|�k〉; k ∈
{0, 1}} where

|�0〉 = 1√
2

(
e−iθ0 |0〉 + e−iθ1 |1〉

)
, (6)

|�1〉 = 1√
2

(
e−iθ0 |0〉 − e−iθ1 |1〉

)
. (7)

Then, the quantum system can be rewritten as

a0|000〉ABC + a1|111〉ABC
= 1√

2

[
|�0〉A

(
a0e

iθ0 |00〉 + a1e
iθ1 |11〉

)
BC

+ |�1〉A
(
a0e

iθ0 |00〉 − a1e
iθ1 |11〉

)
BC

]
.

(8)

(e) After the measurement of qubit A, the secret state is distributed between two
agents. Here, Alice announces her measurement result |�k〉 as k publicly.

(2) Secret recovery phase
(a) In the secret recovery phase, either Bob or Charlie can recover the shared secret

state with the help of the other. As an example, suppose that Bob wants to help
Charlie to recover the state. Here, Bob performs a single-qubit measurement on

qubit B under the basis {
∣∣∣0̂〉, ∣∣∣1̂〉} where ∣∣∣0̂〉 = 1√

2
(|0〉 + |1〉),

∣∣∣1̂〉 = 1√
2
(|0〉 −

|1〉). Then, the resource shared among two agents becomes

a0e
iθ0 |00〉BC + (−1)ka1e

iθ1 |11〉BC

= 1√
2

1∑
k1=0

|k̂1〉B
(
a0e

iθ0 |0〉 + (−1)k+k1a1e
iθ1 |1〉

)
C

.
(9)

(b) For recovering the secret state, Bob sends his measurement result |k̂1〉 as k1 to
Charlie. After receiving k1, Charlie can recover the secret state |φ〉 by perform-
ing the unitary operation σ

k+k1
z on qubit C . Noted that Bob can also recover

the secret state if Charlie agrees to help him, and each agent has the same
power for recovering the secret state in the scheme, which means our scheme
is symmetric.
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3 State sharing scheme with amplitude-damping noisy environment

In the following, we are going to show our scheme with two specific noisy environ-
ments. And we start with the amplitude-damping noisy environment.

3.1 The amplitude-damping noise

The amplitude-damping noise is one of the most important decoherence noise which
describes the energy-dissipation effects due to loss of energy from a quantum system.
The action of amplitude-damping noise can be presented by a set of Kraus operators
as follows [42]

E0 =
(
1 0
0

√
1 − λ

)
, E1 =

(
0

√
λ

0 0

)
, (10)

where 0 ≤ λ ≤ 1 indicates the decoherence rate of the amplitude-damping noisy
environment. When a quantum state passes through the noisy channel, there is a
probability λ that the state will be affected.

3.2 The scheme with amplitude-damping noise

(1) Secret splitting phase
(a) Still, Alice prepares the GHZ state |Φ〉 as shared quantum resource. The state

can be represented in the form of density matrix as

ρABC = |Φ〉〈Φ|. (11)

Alice keeps qubit A and sends qubits B and C to Bob and Charlie through two
identical amplitude-damping noisy channels, respectively. The effect of noisy
environment canbedescribedbyoperator sum representation.This processwill
convert the pure channel state into a mixed one. After qubits transmissions
through amplitude-damping noisy channels, the quantum resource used for
state sharing becomes

ε(ρ) =
∑

i, j=0,1

EB
i EC

j ρ(EB
i )†(EC

j )†

= 1

2

[
(|000〉 + (1 − λ)|111〉)(〈000| + (1 − λ)〈111|)

+ (1 − λ)λ|110〉〈110| + (1 − λ)λ|101〉〈101| + λ2|100〉〈100|
]
,

(12)
where superscripts B and C indicate that noise operators act on qubits B and
C , respectively. And “†′′ means the conjugate transpose of a matrix.

(b) Alice prepares an ancilla state R in |0〉, and she performs a unitary operation
U on particles AR. Then, the quantum system becomes

ρ1 = UAR ⊗ IBC {ε(ρ)ABC ⊗ |0〉〈0|R}U †
AR ⊗ IBC , (13)
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where each subscript indicates a qubit.
(c) Alice measures qubit R in the computational basis. If she gets the result |0〉,

the quantum system becomes

ρ2 = trR

(
M0ρ1M

†
0

tr(M0M
†
0ρ1)

)

= (a0|000〉 + a1(1 − λ)|111〉)(a0〈000| + a1(1 − λ)〈111|)
+ a21(1 − λ)λ|110〉〈110| + a21(1 − λ)λ|101〉〈101| + a21λ

2|100〉〈100|.
(14)

where M0 = |0〉〈0| is the measurement operator. While if Alice gets the result
|1〉, she needs to use the recursive procedure.

(d) Alice performs a projectivemeasurement on qubit A under the basis {|�k〉; k ∈
{0, 1}}. Suppose the measurement result is |�k〉, the quantum system will be
rewritten as

ρ3 = M�kρ2M
†
�k

tr(M�k M
†
�k

ρ2)

= 1

2

[(
a0|000〉+(−1)ka1(1 − λ)e−iθ0eiθ1 |011〉 + (−1)ka0e

iθ0e−iθ1 |100〉
+ a1(1 − λ)|111〉) ×

(
a0〈000| + (−1)ka1(1 − λ)eiθ0e−iθ1〈011|

+ (−1)ka0e
−iθ0eiθ1〈100| + a1(1 − λ)〈111|

)

+ a21(1 − λ)λ((−1)ke−iθ0eiθ1 |010〉 + |110〉)((−1)keiθ0e−iθ1〈010|
+ 〈110|) + a21(1 − λ)λ((−1)ke−iθ0eiθ1 |001〉 + |101〉)((−1)keiθ0e−iθ1

〈001| + 〈101|) + a21λ
2((−1)ke−iθ0eiθ1 |000〉

+ |100〉)((−1)keiθ0e−iθ1〈000| + 〈100|)
]
,

(15)
where M�k = |�k〉〈�k | with k ∈ {0, 1} is the measurement operator, which
means the quantum system of Bob and Charlie becomes

ρ4 = trA(ρ3)

= a20 |00〉〈00| + (−1)ka0e
iθ0a1e

−iθ1(1 − λ)|00〉〈11|
+ (−1)ka0e

−iθ0a1e
iθ1(1 − λ)|11〉〈00| + a21(1 − λ)2|11〉〈11|

+ a21(1 − λ)λ|01〉〈01| + a21(1 − λ)λ|10〉〈10| + a21λ
2|00〉〈00|.

(16)

(2) Secret recovery phase
(a) In the beginning of this phase, Bob and Charlie’s quantum system is ρ4. Sup-

pose that Bob agrees to help Charlie to recover the secret state. Here, Bob

performs a single-qubit measurement under the basis {
∣∣∣0̂〉, ∣∣∣1̂〉}. Bob’s mea-

surement result |k̂1〉 is represented as a cbit k1. Then, the state shared by
Charlie becomes
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ρC = trB

⎛
⎝ MBk1

ρ4M
†
Bk1

tr(MBk1
M†

Bk1
ρ4)

⎞
⎠

= (a20+a21λ)|0〉〈0|+a21(1−λ)|1〉〈1|+(−1)k+k1a0e
iθ0a1e

−iθ1(1−λ)|0〉〈1|
+ (−1)k+k1a0e

−iθ0a1e
iθ1(1 − λ)|1〉〈0|,

(17)
where MBk1

= |k̂1〉〈k̂1| with k1 ∈ {0, 1} is Bob’s measurement operator.
(b) Bob sends his measurement result k1 to Charlie. Then, Charlie recover the

secret state by performing σ
k+k1
z on qubit C . The recovery state has the form

ρout = σ k+k1
z ρC (σ k+k1

z )†

= (a20 + a21λ)|0〉〈0| + a21(1 − λ)|1〉〈1| + a0e
iθ0a1e

−iθ1(1 − λ)|0〉〈1|
+ a0e

−iθ0a1e
iθ1(1 − λ)|1〉〈0|.

(18)

3.3 Fidelity

Since the shared quantum resource has been affected by the noisy environment and
become a mixed state in the secret splitting phase. The recovered state ρout will not
be the same as |φ〉. Generally, the difference between the two states can be measured
by the fidelity as follows

FAD = 〈φ|ρout |φ〉
= a40 + a20a

2
1(2 − λ) + a41(1 − λ).

(19)

As is shown in the above, the fidelity FAD for the amplitude-damping noise depends
on the amplitude factors of the prepared state a0, a1 and the decoherence rate λ, but
has nothing to do with the phase parameters θ0 and θ1. When FAD = 1, it is means
that ρout = |φ〉〈φ|; i.e., the noise has no effect on the output shared state, and there
is no information lost (in ideal condition that λ = 0 or sharing a specific state eiθ0 |0〉
where a0 = 1). While if FAD < 1, it means that ρout 	= |φ〉〈φ|; i.e., some information
has been lost since the affection of noise. The relationship among FAD, λ and a0 is
shown in Fig. 1 (noted that a21 = 1 − a20).

4 State sharing scheme with phase-damping noisy environment

4.1 The phase-damping noise

The phase-damping noise is another important decoherence noise which describes
the loss of quantum information without energy dissipation. The Kraus operators of a
phase-damping noisy channel are [42]
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Fig. 1 Relationship among FAD, λ and a0

E0 = √
1 − ηI, E1 = √

η

(
1 0
0 0

)
, E2 = √

η

(
0 0
0 1

)
, (20)

where 0 ≤ η ≤ 1 is the error probability of the phase-damping noisy environment.

4.2 The scheme with phase-damping noise

(1) Secret splitting phase
(a) Alice prepares the GHZ state ρ = |Φ〉〈Φ|. She keeps particle A and sends

particle B to Bob and particle C to Charlie through two phase-damping noisy
channels. After interactions with the noises, the quantum system becomes

ε(ρ) =
2∑

i, j=0

EB
i EC

j ρ(EB
i )†(EC

j )†

= 1

2

[
|000〉〈000| + |111〉〈111| + (1 − η)2(|000〉〈111| + |111〉〈000|)

]
.

(21)
(b) Alice prepares an ancilla state R in |0〉, and then, she performs a unitary

operation U on particles AR. The quantum system becomes

ρ1 = UAR ⊗ IBC {ε(ρ)ABC ⊗ |0〉〈0|R}U †
AR ⊗ IBC . (22)

(c) Alice measures qubit R in the computational basis. If she gets the result |0〉,
the quantum system becomes

ρ2 = trR

(
M0ρ1M

†
0

tr(M0M
†
0ρ1)

)
= 1

2

[
a20 |000〉〈000|

+ a21 |111〉〈111|+a0a1(1−η)2(|000〉〈111|+|111〉〈000|)
]
.

(23)
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While if Alice gets the result |1〉, she performs the recursive procedure.
(d) Alice measures qubit A under the basis {|�k〉; k ∈ {0, 1}}. Suppose the mea-

surement result is |�k〉, the quantum system can be rewritten as

ρ3 = M�kρ2M
†
�k

tr(M�k M
†
�k

ρ2)

= 1

2

[
a20

(
|000〉 + (−1)keiθ0e−iθ1 |100〉

) (
〈000| + (−1)ke−iθ0eiθ1〈100|

)

+ a21

(
(−1)ke−iθ0eiθ1 |011〉 + |111〉

) (
(−1)keiθ0e−iθ1〈011| + 〈111|

)

+ a0a1(1 − η)2
(
|000〉 + (−1)keiθ0e−iθ1 |100〉

)

×
(
(−1)keiθ0e−iθ1〈011| + 〈111|

)

+ a0a1(1 − η)2
(
(−1)ke−iθ0eiθ1 |011〉 + |111〉

)

×
(
〈000| + (−1)ke−iθ0eiθ1〈100|

)]
.

(24)
And Bob and Charlie’s quantum system becomes

ρ4 = trA(ρ3)

= a20 |00〉〈00| + a21 |11〉〈11| + (−1)ka0e
iθ0a1e

−iθ1(1 − η)2|00〉〈11|
+ (−1)ka0e

−iθ0a1e
iθ1(1 − η)2|11〉〈00|.

(25)

(2) Secret recovery phase

(a) Here, Bob performs a single-qubit measurement under the basis {
∣∣∣0̂〉, ∣∣∣1̂〉}.

Bob’s measurement result |k̂1〉 is represented as a cbit k1. Then, the resource
hold by Charlie becomes

ρC = trB

⎛
⎝ MBk1

ρ4M
†
Bk1

tr(MBk1
M†

Bk1
ρ4)

⎞
⎠

= a20 |0〉〈0| + a21 |1〉〈1| + (−1)k+k1a0e
iθ0a1e

−iθ1(1 − η)2|0〉〈1|
+ (−1)k+k1a0e

−iθ0a1e
iθ1(1 − η)2|1〉〈0|.

(26)

(b) Bob sends k1 to Charlie. After receiving k1, Charlie performs σ
k+k1
z on qubit

C . Then, the secret state in Charlie’s side has the form

ρout = σ k+k1
z ρC (σ k+k1

z )†

= a20 |0〉〈0| + a21 |1〉〈1| + a0e
iθ0a1e

−iθ1(1 − η)2|0〉〈1|
+ a0e

−iθ0a1e
iθ1(1 − η)2|1〉〈0|.

(27)
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Fig. 2 Relationship among FPD , η and a0

4.3 Fidelity

The fidelity of the output state can be calculated as

FPD = 〈φ|ρout |φ〉
= a40 + a41 + 2(1 − η)2a20a

2
1 .

(28)

As is shown in the above, the fidelity FPD for phase-damping noise depends on the
amplitude factors a0, a1 and the decoherence rate η, but has nothing to do with the
phase parameters. The relationship among FPD , λ and a0 is shown in Fig. 2. As is
shown, the Fidelity is 1 when η = 0 (no noise) or a0 = 1, 0 (sharing a specific state
eiθ0 |0〉 or eiθ1 |1〉). The minimum fidelity is FPD = 1

2 when η = 1 and a0 = 1√
2
.

5 Discussions

5.1 Security

There are two kinds of threats in a QSS scheme. The first is that some dishonest agents
may try to obtain the secret state without the cooperation of others from a qualified
agents group, which is also called “participant attack.” The second is that an outside
eavesdropper Eve may attempt to find the secret without being detected. Participant
attack, firstly proposed by Gao et al [43], emphasizes that the attacks from dishonest
users are generally more powerful since they can obtain more information than the
eavesdropper Eve. This attack has attracted much attention in the cryptanalysis of
quantum cryptography [44–46]. Qin and Gao [47] have pointed out that a QSS scheme
is secure against the outside Eve if it is secure against inside dishonest agents, which
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means we only need to pay our attention to participant attack when studying the
security of a QSS scheme.

A key security issue of our QSTS schemes is that the message carrier GHZ states
have to be securely distributed among the dealer Alice and all the agents. The ways for
sharing a sequence of GHZ states securely among remote players have been discussed
in Refs. [20,21,26,47,48]. Alice can prepare the GHZ states and then use these meth-
ods to securely share the GHZ states with all the agents in the first step of the secret
splitting phase. But noted that the error rate caused by the noise have to be lower than
the detection probability, so that a malicious attack can be distinguished from noise.
In other words, honest participants will not find the attack if the noise rate is too large
since they cannot distinguish the attack from the noise; i.e., the attack is covered by
the noise.

There is no qubit transmission in the recovery phase of our scheme. One may worry
about that some dishonest agents may try to recover the secret state privately before
the recovery phase. As is shown in Eq. (9), the system of Bob and Charlie has the form

a0e
iθ0 |00〉BC + (−1)ka1e

iθ1 |11〉BC , (29)

which means the partial trace of Bob has the form

trC (a0e
iθ0 |00〉 + (−1)ka1e

iθ1 |11 . . . 1〉) = a20 |0〉〈0|B + a21 |1〉〈1|B, (30)

while the partial trace of Charlie has the same form. From the above equation, we
conclude that any unqualified agents group cannot recover the secret state by any
general operations on their sides. Though they have the amplitude information, it is
not sufficient since the phase information is not available. All in all, this QSTS scheme
can be made to be secured.

5.2 State sharing of a known state

By a “known” quantum state, we mean that the information of the state is already
known to the dealer. But noted that the secret information of the state is unknown
to all the agents in the beginning of the schemes, which means our schemes meet
the definition of the secret sharing. Each agent will get a share of the secret in the
distribution phase, and authorized agents can cooperatively recover the secret state in
the recovery phase. QSTS of a known qubit is similar to the QSS of classical bits. As
is shown in Eq. (1), a general qubit |φ〉 state has four parameters a0, a1, θ0 and θ1.
The task of QSTS of |φ〉 is to share these four parameters. Usually, a QSS of classical
bits usually shares a real number secret, while our proposed protocols can share four
real numbers each time, which means our quantum protocols have more information
capacity.

It is interesting to discuss the relationships among QSTS, RSP and quantum tele-
portation. Firstly, QSTS is usually defined as sharing an unknown quantum state as a
secret among a group of agents, which is similar to multiparty or controlled teleporta-
tion [49–51]. Secondly, RSP can be performed with simpler quantum operations and
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less classical communication costs than teleportation. Our QSTS schemes are similar
to multiparty RSP (MRSP), and they have the same advantages as RSP to teleporta-
tion. Thirdly, there are two types of MRSP, which are JRSP [8–10,52–54] and CRSP
[11,12,55], and they have close relationships with our QSTS schemes. For one thing,
JRSP is similar to the recovery phase of QSTS, where the secret share is already dis-
tributed in each of the agents and they can cooperate to reconstruct the secret state. For
the other thing, CRSP can be regarded as a specific type of QSTS, i.e., secret sharing of
a known state of the dealer. In secret splitting phase, all agents perform measurement
or unitary operation on their side to get the classical share. While in recovery phase,
authorized agents cooperate to recover the secret state.

6 Conclusions

In summary, we have studied a multiparty QSTS scheme of an arbitrary known qubit
with two noisy environments. Starting with the scheme in an ideal condition, we inves-
tigated the QSTS scheme with the amplitude-damping noise and the phase-damping
noise, respectively. The detailed process of each QSTS is presented. As is shown in
our schemes, some information is lost through the noise channels. We use fidelity to
describe how close is the final state to the original state, and how much information
has been lost in the process. Our study indicates that the fidelity in both two schemes
depends on the amplitude factor of the initial state and the decoherence rate, but is
independent of the phase parameter.

Our QSTS scheme is symmetric since any agent is able to recover the state with
the help of others. Different from a traditional QSTS scheme that shares an unknown
quantum state among agents, our results showed that if a quantum state is already
known to the dealer, it can be shared among agents in a simpler way by using the idea
of RSP. We pointed out that the researches of quantum state sharing and remote state
preparation have strong connection with each other.

In this paper, we have presented the impact of noise for the process of a QSTS
scheme. To show our method, we consider the case that three participants share a qubit
state. For multiparticipants that share a multiqubit or a multiqudit state, this method
can also be used. But the calculation seems too tedious to present here. Besides the
amplitude-damping noise and the phase-damping noise, it is also possible to consider
other noises like depolarizing, bit-flip and bit-phase flip as noisy channels.

Acknowledgments The project is supported byNatural Science Basic Research Plan in Shaanxi Province
of China (Program No. 2014JQ2-6030), the Scientific Research Program Funded by Shaanxi Provin-
cial Education Department (Program No. 15JK1316), the Priority Academic Program Development of
JiangsuHigher Education Institutions (PAPD), the Jiangsu Collaborative InnovationCenter onAtmospheric
Environment and Equipment Technology (CICAEET), the National Natural Science Foundation of China
(61201118), and the PhD Start-up Foundation of Xi’an Polytechnic University (No. BS1331).

References

1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A.,Wootters,W.K.: Teleporting an unknown
quantum state via dual classical andEinstein–Podolsky–Rosen channels. Phys.Rev. Lett. 70(13), 1895–
1899 (1993)

123



Secret sharing of a known arbitrary quantum state with... 4223

2. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generaliza-
tion of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

3. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A
63(1), 14302–14304 (2000)

4. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state
preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

5. Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003)
6. Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A

72(5), 052315 (2005)
7. Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold

Sn−1. Phys. Rev. A 65(2), 022316 (2002)
8. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B: At. Mol. Opt. Phys.

40(18), 3719–3724 (2007)
9. Nguyen, B.A., Kim, J.: Joint remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 41(9), 095501

(2008)
10. Wang, M.M., Chen, X.B., Yang, Y.X.: Deterministic joint remote preparation of an arbitrary two-qubit

state using the cluster state. Commun. Theor. Phys. 59(5), 568–572 (2013)
11. Luo, M.X., Chen, X.B., Ma, S.Y., Yang, Y.X., Hu, Z.M.: Remote preparation of an arbitrary two-qubit

state with three-party. Int. J. Theor. Phys. 49(6), 1262 (2010)
12. Wang, Z.Y.: Controlled remote preparation of a two-qubit state via an asymmetric quantum channel.

Commun. Theor. Phys. 55(2), 244 (2011)
13. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)
14. Terhal, B.M., DiVincenzo, D.P., Leung, D.W.: Hiding bits in Bell states. Phys. Rev. Lett. 86(25), 5807

(2001)
15. Qu, Z.G., Chen, X.B., Zhou, X.J., Niu, X.X., Yang, Y.X.: Novel quantum steganography with large

payload. Opt. Commun. 283(23), 4782–4786 (2010)
16. Xia, Z., Wang, X., Sun, X., Wang, B.: Steganalysis of least significant bit matching using multi-order

differences. Secur. Commun. Netw. 7(8), 1283–1291 (2014)
17. Xia, Z.,Wang,X., Sun, X., Liu, Q., Xiong, N.: Steganalysis of LSBmatching using differences between

nonadjacent pixels. Multimed. Tools Appl. pp. 1-16 (2014). doi:10.1007/s11042-014-2381-8
18. Curty, M., Santos, D.J.: Quantum authentication of classical messages. Phys. Rev. A 64(6), 062309

(2001)
19. Guo, P., Wang, J., Li, B., Lee, S.: A variable threshold-value authentication architecture for wireless

mesh networks. J. Internet Technol. 15(6), 929–936 (2014)
20. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)
21. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting.

Phys. Rev. A 59(1), 162–168 (1999)
22. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651

(1999)
23. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)
24. Bandyopadhyay, S.: Teleportation and secret sharing with pure entangled states. Phys. Rev. A 62(1),

012308 (2000)
25. Karimipour,V., Bahraminasab,A., Bagherinezhad, S.: Entanglement swapping of generalized cat states

and secret sharing. Phys. Rev. A 65(4), 042320 (2002)
26. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes.

Phys. Rev. A 69(5), 052307 (2004)
27. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev.

A 63(4), 042301 (2001)
28. Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommuni-

cation fiber. Phys. Rev. A 78(6), 062307 (2008)
29. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Zukowski, M., Weinfurter, H.: Experimental

single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)
30. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing.

Phys. Rev. Lett. 92(17), 177903 (2004)
31. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary

two-particle state with Einstein–Podolsky–Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)

123

http://dx.doi.org/10.1007/s11042-014-2381-8


4224 M.-M. Wang et al.

32. Li, X.H., Zhou, P.: Efficient symmetric multiparty quantum state sharing of an arbitrary m -qubit state.
J. Phys. B: At. Mol. Opt. Phys. 39(8), 1975 (2006)

33. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding
through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

34. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-
qubit state with Bell states. Quantum Inf. Process. 10(2), 231–239 (2011)

35. Wang,M.M., Chen,X.B., Chen, J.G., Yang,Y.X.:Quantum state sharing of arbitrary knownmulti-qubit
and multi-qudit states. Int. J. Quantum Inf. 12(03), 1450014 (2014)

36. Adhikari, S., Chakrabarty, I., Agrawal, P.: Probabilistic secret sharing through noisy quantum channel.
Quantum Inf. Comput. 12(3–4), 253–261 (2012)

37. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement.
Phys. Rev. A 72(1), 012315 (2005)

38. Ai-Xi, C., Li, D., Jia-Hua, L., Zhi-Ming, Z.: Remote preparation of an entangled state in nonideal
conditions. Commun. Theor. Phys. 46(2), 221 (2006)

39. Guan, X.W., Chen, X.B., Wang, L.C., Yang, Y.X.: Joint remote preparation of an arbitrary two-qubit
state in noisy environments. Int. J. Theor. Phys. 53(7), 2236–2245 (2014)

40. Jiang, M., Zhou, L.L., Chen, X.P., You, S.H.: Deterministic joint remote preparation of general multi-
qubit states. Opt. Commun. 301–302, 39–45 (2013)

41. Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett.
A 377(38), 2524–2530 (2013)

42. Xian-Ting, L.: Classical information capacities of some single qubit quantumnoisy channels. Commun.
Theor. Phys. 39(5), 537 (2003)

43. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the brádler–dušek protocol.
Quantum Inf. Comput. 7(4), 329 (2007)

44. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum
protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101(20), 208901 (2008)

45. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing
against an attack with a fake signal. Phys. Lett. A 2(357), 101–103 (2006)

46. Wang, M.M., Chen, X.B., Yang, Y.X.: Comment on “High-dimensional deterministic multiparty quan-
tum secret sharing without unitary operations”. Quantum Inf. Process. 12(2), 785–792 (2013)

47. Qin, S.J., Gao, F.,Wen,Q.Y., Zhu, F.C.: Cryptanalysis of theHillery–Buzcaronek–Berthiaumequantum
secret-sharing protocol. Phys. Rev. A 76(6), 062324 (2007)

48. Yu, I.C., Lin, F.L., Huang, C.Y.: Quantum secret sharing with multilevel mutually (un)biased bases.
Phys. Rev. A 78, 12344–12348 (2008)

49. Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of multiple output ports.
Phys. Rev. A 79(4), 42306–42318 (2009)

50. Man, Z.X., Xia, Y.J., An, N.B.: Economical and feasible controlled teleportation of an arbitrary
unknown N-qubit entangled state. J. Phys. B: At. Mol. Opt. Phys. 40(10), 1767–1774 (2007)

51. Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret
sharing of classical message. Phys. Lett. A 352(1–2), 55–58 (2006)

52. Hou, K., Wang, J., Lu, Y.L., Shi, S.H.: Joint Remote Preparation of a Multipartite GHZ-class State.
Int. J. Theor. Phys. 48(7), 2005–2015 (2009)

53. Zhan, Y.B.: Joint remote preparation of a four-dimensional quantum state (2010). arXiv:1006.4204v1
54. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary

three-qubit state. Opt. Commun. 283(23), 4796–4801 (2010)
55. Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary

two and three qubit states via the Brown state. Quantum Inf. Process. 11(6), 1653–1667 (2012)

123

http://arxiv.org/abs/1006.4204v1

	Secret sharing of a known arbitrary quantum state with noisy environment
	Abstract
	1 Introduction
	2 State sharing scheme with ideal environment
	3 State sharing scheme with amplitude-damping noisy environment
	3.1 The amplitude-damping noise
	3.2 The scheme with amplitude-damping noise
	3.3 Fidelity

	4 State sharing scheme with phase-damping noisy environment
	4.1 The phase-damping noise
	4.2 The scheme with phase-damping noise
	4.3 Fidelity

	5 Discussions
	5.1 Security
	5.2 State sharing of a known state

	6 Conclusions
	Acknowledgments
	References




