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Abstract We present a new scheme for high-efficiency three-dimensional (3D) atom
localization in a three-level atomic system via spontaneous emission. Owing to the
space-dependent atom–field interaction, the position probability distribution of the
atom can be directly determined by measuring the spontaneous emission. It is found
that, by properly varying the parameters of the system, the probability of finding the
atom at a particular position can be almost 100%. Our scheme opens a promising way
to achieve high-precision and high-efficiency 3D atom localization, which provides
some potential applications to spatially selective single-qubit phase gate, entangling
gates, and quantum error correction for quantum information processing.
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1 Introduction

In the past few years, the precision position measurement of an atom has been the
subject of many recent studies because of its potential applications in laser cooling and
trapping of neutral atoms [1], atom nano-lithography [2], Bose–Einstein condensation
[3], and quantum information science [4]. In some pioneering works, Thomas and
colleagues have suggested and experimentally demonstrated subwavelength position
localization of atoms using spatially varying energy shifts [5,6]. Walls and coworkers
have discussed subwavelength atom localization using the measurement of the phase
shift [7] after the passage of the atom through an off-resonant standing-wave field.
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On the other hand, it is well known that atomic coherence can give rise to some
interesting phenomena [8–12]. Based on atomic coherence, a variety of schemes for
the precise localization of the atom in one dimension have been proposed. For exam-
ple, Paspalakis and Knight proposed a quantum-interference-induced subwavelength
atomic localization, a three-level�-type atom, and they found that the atomic position
with high precision can be achieved via the measurement of the upper-state popula-
tion of the atom [13]. Zubairy and coworkers have discussed atom localization using
resonance fluorescence and phase and amplitude control of the absorption spectrum
[14–16], and Agarwal and Kapale presented a scheme [17] based on coherent popu-
lation trapping (CPT). Also, one-dimensional (1D) atom localization can be realized
via dual measurement of the field and the atomic internal state [18], double-dark
resonance effects [19], phase and amplitude control of the driving field [20,21], coher-
ent manipulation of the Raman gain process [22], or spontaneous emission [23,24].
Recently, atom localization has been demonstrated in a proof-of-principle experi-
ment using the technique of electromagnetically induced transparency (EIT) [25].
Apart from the above-mentioned 1D atom localization, some schemes have been
put forward for two-dimensional (2D) atom localization by applying two orthogo-
nal standing-wave laser fields. For instance, a scheme for 2D atom localization was
proposed by Ivanov and Rozhdestvensky using the measurement of the population in
the upper state or in any ground state in a four-level tripod system [26]. Subsequently,
related 2D localization schemes [27–33] have been studied byWan, Ding, Qamar, and
their coworkers via controlled spontaneous emission, probe absorption and gain, and
interacting double-dark resonances, and Raman-driven coherence. In addition, atom
nano-lithography based on 2D atom localization has been achieved by Jin et al. in
[34].

More recently, two schemes [35,36] have also been discussed about the three-
dimensional (3D) atom localization in five-level and four-level atomic systems,
respectively. However, to the best of our knowledge, the maximum probability of
finding an atom at a particular position in a wavelength domain is very low in these
schemes; see, e.g., in the recent work [34], the maximum probability of finding an
atom at a particular position in a wavelength domain is 1/8. In order to deal with the
above problem, here we put forward a scheme to realize efficient 3D atom localization
based on the measurement of spontaneous emission in a three-level atomic system.
The work is mainly based on [35,36]; however, our scheme shows more advantages
that the two schemes do not have. First, we show that efficient 3D localization is
realistically possible with only three atomic levels, and that one obtains interesting
patterns around points of localization by a simple tuning of the parameters of the
system. Second, owing to the space-dependent atom–field interaction, the atom can
be localized at a particular position, and the maximal probability of finding the atom
in one period of the standing-wave fields reaches 100%, which is the main advantage
compared with the previous schemes [35,36]. Third, we can improve the localization
precision and spatial resolution of the atom under certain conditions, which provide
a possibility of making the atom localized at a given position by varying the system
parameters in 3D space.
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2 The model and dynamic equations

We consider a three-level atomic system as shown in Fig. 1a, which has one ground
state |0〉, and two excited states |1〉 and |2〉. The transition from the |1〉 to |0〉 is assumed
to be coupled by the vacuum modes in the free space, while a composite field E with
Rabi frequency 2Ω is applied to couple transition |1〉 ↔ |2〉. In our scheme, the
composite field E is the superposition of a controlling field Ωc and three standing
waves with the same frequency, and its Rabi frequency is

2Ω = 2Ω1 sin(kx) + 2Ω2 sin(ky) + 2Ω3 sin(kz) + 2Ωc. (1)

We assume that the center-of-mass position of the atom is nearly constant along
the directions of the laser waves and neglect the kinetic part of the atom from the
Hamiltonian in the Raman–Nath approximation. Then, under electric–dipole and
rotating-wave approximations, the Hamiltonian for the system can be written as

H = Ω[exp(iΔt) |2〉 〈1| + H.c.] +
∑

m

[gm exp(iδmt) |1〉 〈0| bm + H.c.], (2)

Fig. 1 Schematic diagram of a
three-level atomic system

(a)

(b)
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where Δ = ω21 − ω and δm = ω10 − ωm are the detunings of the composite field and
the vacuum mode, respectively. bm is the annihilation operator for the mth vacuum
modewith frequencyωm . gm stands for the coupling constant between themth vacuum
mode and the atomic transition |1〉 ↔ |0〉.

The dynamics of this system can be described by using the probability amplitude
equations. Then, the wave function of the system at time t can be expressed in terms
of the state vectors as

|�(t)〉 =
∫

dxdydz f (x, y, z) |x〉 |y〉 |z〉 [
A1,0m (x, y, z; t) |1, 0m〉

+A2,0m (x, y, z; t) |2, 0m〉 +
∑

m

A0,1m (x, y, z; t) |0, 1m〉
]

, (3)

where the probability amplitude Ai,0m (x, y, z; t) (i = 1, 2) represents the state of
atom at time t when there is no spontaneously emitted photon in the mth vacuum
mode, A0,1m (x, y, z; t) is the probability amplitude that the atom is in level |0〉 with
one photon emitted spontaneously in the mth vacuum mode, and f (x, y, z) is the
center-of-mass wave function of the atom.

The atom localization in our scheme is based on the fact that the spontaneously
emitted photon carries information about the position of atom in 3D space as a result
of the spatial position-dependent atom–field interaction. When we have detected at
time t a spontaneously emitted photon in the vacuummode of wave vectorm, the atom
is in its internal state |0〉 and the state vector of the system, after making appropriate
projection over |�(t)〉, is reduced to

∣∣ψ0,1m

〉 = N 〈0, 1m |�(t)〉 = N

∫
dxdydz f (x, y, z)A0,1m (x, y, z; t) |x〉 |y〉 |z〉 ,

(4)
where N is a normalization factor. Thus, the conditional position probability distribu-
tion, i.e., the probability of finding the atom in the (x, y) position at time t , is

W (x, y, z; t |0, 1m)=|N|2 ∣∣〈x | 〈y| 〈z|ψ0,1m

〉∣∣2=|N|2 | f (x, y, z)|2 ∣∣A0,1m (x, y, z; t)∣∣2 ,

(5)
which follows from the probability amplitude A0,1m (x, y, z; t).

Wenowderive an analytical expression for the probability amplitude A0,1m(x,y, z; t)
by solving the time-dependent Schrödinger wave equation i

∣∣�̇(t)
〉 = H |�(t)〉 with

the interaction Hamiltonian [Eq. (2)] and the atom–field state vector [Eq. (3)]. With
the Weisskopf–Wigner theory, the dynamical equations for the atomic probability
amplitudes are given by

i
∂A1,0m (x, y, z; t)

∂t
= −i

Γ

2
A1,0m (x, y, z; t) + Ω exp(−iΔt)A2,0m (x, y, z; t), (6)

i
∂A2,0m (x, y, z; t)

∂t
= Ω exp(iΔt)A1,0m (x, y, z; t), (7)

i
∂A0,1m (x, y, z; t)

∂t
= g∗

m exp(−iδmt)A3,0m (x, y, z; t), (8)
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where Γ = 2π |gm |2D(ωm) is the spontaneous decay rate from level |1〉 to level |0〉,
and D(ωm) is the density of mode at frequency ωm in the vacuum.

Byutilizing theLaplace transformation Ã(x, y, z; s)=∫ ∞
0 exp(−st)A(x, y, z; t)dt

(s is the time Laplace transform variable) and the final value theorem, we obtain the
probability amplitude A0,1m (x, y, z; t) in the long time limit, i.e., Γ t >> 1, as

A0,1m (x, y, z; t → ∞) = −ig∗
m Ã0,1m (s = −iδm)

= g∗
m

Δ + δm

Ω2 − δ2m − Δδm + i Γ
2 (Δ + δm)

, (9)

where Ã0,1m (s = −iδm) is the Laplace transformation of A0,1m (x, y, z; t) with s =
−iδm . Finally, the conditional probability of finding the atom in level |0〉 with a
spontaneously emitted photon of frequency ωm in the vacuum mode m is then given
by

W (x, y, z; t → ∞|0, 1m) = |N|2 | f (x, y, z)|2 ∣∣A0,1m (x, y, z; t → ∞)
∣∣2

= |N|2 | f (x, y, z)|2 |gm |2
∣∣∣ Ã0,1m (x, y, z; s = −iδm)

∣∣∣
2

= |N|2 | f (x, y, z)|2 |gm |2 × (Δ + δm)2

(Ω2 − δ2m − Δδm)2 + Γ 2

4 (Δ + δm)2
.

(10)

As the center-of-mass wave function of the atom f (x, y, z) is assumed to be nearly
constant over many wavelengths of the standing-wave fields, the conditional position
probability distribution W (x, y, z; t → ∞|0, 1m) is determined by the filter function
defined as

F(x, y, z) = (Δ + δm)2

(Ω2 − δ2m − Δδm)2 + Γ 2

4 (Δ + δm)2
. (11)

3 Results

In this section, we analyze the conditional position probability distribution of the
atom via a few numerical calculations based on the filter function F(x, y, z) in the
Eq. (11) and then address how the system parameters can be used to achieve 3D
atom localization by measuring spontaneous emission. In the following numerical
calculations, the spontaneous decay rate from level |1〉 to level |0〉 is set as Γ = 2γ .
All the parameters used in this paper are in units of γ , which should be in the order of
MHz for rubidium atoms.

The isosurfaces for the filter function F(x, y, z) = 0.1 versus positions (−1 �
kx/π � 1, −1 � ky/π � 1, −1 � kz/π � 1) for different values of the detuning
of spontaneously emitted photon are plotted in Fig. 2. When the δm = 10γ , it can
be seen that the filter function F(x, y, z) exhibits two big spheres in the subspaces
(−1 � kx/π � 0, −1 � ky/π � 0, −1 � kz/π � 0) and (0 � kx/π � 1,
0 � ky/π � 1, 0 � kz/π � 1), respectively, as shown in Fig. 2a. For the case
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Fig. 2 Isosurfaces for the filter function F(x, y, z) = 0.1 versus positions (−1 � kx/π � 1, −1 �
ky/π � 1, −1 � kz/π � 1) for different values of δm . a δm = 10γ , b δm = 12γ , c δm = 13γ and
d δm = 13.5γ . The other parameters are Δ = 0, Ω1 = Ω2 = Ω3 = 4γ , Ωc = 0, and Γ = 2γ

that δm = 12γ , the filter function F(x, y, z) is also situated in two subspaces of the
3D space (see Fig. 2b), but the volume of sphere in each subspace becomes small.
Furthermore, when the detuning is detected at an appropriate value (i.e., δm = 13γ in
Fig. 2c or δm = 13.5γ in Fig. 2d), the volumeof sphere in each subspace becomesmore
and more small. In such a case, we can achieve high-precision and high-resolution 3D
atom localization by measuring the frequency of the spontaneously emitted photon
under corresponding conditions.

In order to understand the physical mechanisms of the above results in Fig. 2, we
will turn our attention to the dressed-state picture, generated by the composite field
E , namely the |1〉 → |2〉 transition together with the composite field are treated as a
whole “atom + field” system and the energy levels of the dressed states as shown in
Fig. 1b. It is obvious that the bare-state level |1〉 should be split into two dressed-state
sublevels |+〉 and |−〉. The energy eigenvalues of the two dressed states read

ε± = 1

2
(Δ ±

√
4Ω2 + Δ2). (12)

The corresponding energy eigenstates are written as

|+〉 = sin θ |2〉 + cos θ |1〉 , (13)

|−〉 = − cos θ |2〉 + sin θ |1〉 , (14)
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Fig. 3 Isosurfaces for the filter function F(x, y, z) = 0.1 versus positions (−1 � kx/π � 1, −1 �
ky/π � 1 , −1 � kz/π � 1) for different intensities of the controlling field. a Ωc = 0.2γ , b Ωc = 0.5γ ,
c Ωc = γ and d Ωc = 3γ . The other parameters are Δ = 0, δm = 13γ , Ω1 = Ω2 = Ω3 = 4γ , and
Γ = 2γ

with sin θ = ε+/

√
Ω2 + ε2+ and cos θ = −ε−/

√
Ω2 + ε2−.

From Eqs. 13 and 14, it is straightforward to show that there exists quantum inter-
ference between two different spontaneous emission pathways (see Fig. 1b) |+〉 ↔ |0〉
and |−〉 ↔ |0〉. Quantum interference among these two pathways results in the
spectral-line narrowing and the quenching of spontaneous emission. Consequently,
we can observe different localization structures in the 3D space in Fig. 2.

In Fig. 3, we study the effect of the intensity of the controlling field Ωc on the
3D atom localization. In the case of Ωc = 0.2γ , the maxima of the filter function are
distributed in the subspaces (−1 � kx/π � 0,−1 � ky/π � 0,−1 � kz/π � 0) and
(0 � kx/π � 1, 0 � ky/π � 1, 0 � kz/π � 1)with different localization precisions,
in which the filter function in the subspace (−1 � kx/π � 0, −1 � ky/π � 0,
−1 � kz/π � 0) displays a small-diameter sphere-like pattern with a high precision,
and the filter function in the subspace (0 � kx/π � 1, 0 � ky/π � 1, 0 � kz/π � 1)
exhibits a large-diameter sphere-like pattern with a low precision, which leads to
the localization of the atom at these spheres (see Fig. 3a). Under the condition of
Ωc = 0.5γ , as shown in Fig. 3b, it is easy to see that the volume of sphere in the
subspace (−1 � kx/π � 0,−1 � ky/π � 0,−1 � kz/π � 0) becomes small, while
the sphere in the subspace (0 � kx/π � 1, 0 � ky/π � 1, 0 � kz/π � 1) becomes
big. Most interestingly, as we further increase the coupling field Ωc to γ , the sphere
( −1 � kx/π � 0, −1 � ky/π � 0, −1 � kz/π � 0) is completely disappeared,
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Fig. 4 Isosurfaces for the filter function F(x, y, z) = 0.1 versus positions (−1 � kx/π � 1, −1 �
ky/π � 1, −1 � kz/π � 1) for different values of Δ. a Δ = −3.5γ , b Δ = −2γ , c Δ = 2γ and
d Δ = 3.8γ . The other parameters are Ωc = 0.2γ , δm = 12γ , Ω1 = Ω2 = Ω3 = 4γ , and Γ = 2γ

and the maxima of the filter function only situated in the subspace (0 � kx/π � 1,
0 � ky/π � 1, 0 � kz/π � 1) with a sphere-like pattern (see Fig. 3c). In such a
condition, the probability of finding the atom in one period of the standing-wave fields
is increased to 100%, that is to say, the atomcan be localized at a particular position and
the 3D atom localization is indeed achieved efficiently. This is a significant advantage
of our proposed scheme. Of course, on the condition of Ωc = 3γ , the sphere in the
subspace (0 � kx/π � 1, 0 � ky/π � 1, 0 � kz/π � 1) becomes bigger (see
Fig. 3d), which implies that the increasing controlling field will bring a destructive
effect to the precision of 3D atom localization when large detuning of spontaneously
emitted photon is considered.

Finally, a new way for realizing the efficient 3D atom localization is shown in
Fig. 4. Here, we investigate the influence of detuning Δ on the 3D atom localization
when small intensity of the controlling field Ωc is considered. For the detuning Δ,
i.e., Δ = −3.5γ or −2γ , the filter function F(x, y, z) exhibits two big spheres
in the subspaces (−1 � kx/π � 0, −1 � ky/π � 0, −1 � kz/π � 0) and
(0 � kx/π � 1, 0 � ky/π � 1, 0 � kz/π � 1), respectively, as shown in Fig. 4a,
b. In the case that Δ = 2γ , the filter function F(x, y, z) is also situated in two
subspaces with different localization precision (see Fig. 4c), and the volume of sphere
in each subspace becomes small. Interestingly, when the detuning Δ is increased to
Δ = 3.8γ , the atom is localized in only the subspace (0 � kx/π � 1, 0 � ky/π � 1,
0 � kz/π � 1 ), and the position information of the atom in the 3D space is clear
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(see Fig. 4d). Obviously, the precision of 3D atom localization can be enhanced via
the detuning Δ. In fact, in the presence of the strong perturbation of the controlling
field, quantum interference among these two pathways bring a constructive effect to
the precision of 3D atom localization. Therefore, this fact can be exploited to atom
localization in three dimensions.

4 Conclusions

To sum up, we have investigated the three-dimensional atom localization via spon-
taneous emission in a three-level atomic system. It is found that the precision and
resolution of the 3D atom localization can be significantly improved due to the space-
dependent atom–field interaction.More importantly, the 3D atom localization patterns
reveal that the maximal probability of finding an atom within the sub-half-wavelength
domain of the standing waves can reach 100%, which is increased by a factor of 4
or 8 compared with the previous proposed schemes [35,36]. As a result, our scheme
may be helpful in realizing spatially selective single-qubit phase gate, entangling gates
between cold atoms, and error budget for the single-qubit phase gate in three dimen-
sions.
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