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Abstract Using aGHZ-class state as quantumchannel,we investigate the joint remote
preparation of a qubit state in Pauli noise environments. By analytically solving the
master equation in Lindblad form, we calculate the time evolution of the GHZ-class
channel under different noisy conditions and then obtain the fidelity of the joint remote
state preparation (JRSP) process and the corresponding average fidelity. We find that
the fidelity depends on the noise type, the GHZ-class state, the initial state to be
remotely prepared, and the Pauli decoherence rate. We also find that how two senders
share the polar angle information of initial state plays an important role in the fidelity,
and information sharing reduces the ability to resist the influence of Pauli noises in
our JRSP protocol. Furthermore, how the two senders share the phase information
affects the intensity of the bit-phase flip noise and the bit flip noise acting on the
average fidelity. Besides, the fidelity of our JRSP protocol achieved via the maximally
entangled channel is larger than that achieved via the partially entangled channel.
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1 Introduction

Quantum communication, a novel method of transmitting information safely and
rapidly, has attracted much attention in the field of quantum information. In quantum
communication process, quantum entanglement plays a fundamental and key role. By
far, great progress has been made on quantum communication, and there are many
branches of quantum communication requiring entanglement, such as quantum key
distribution [1–4], quantum teleportation (QT) [5–7], controlled teleportation [8–12],
remote state preparation (RSP) [13–18], controlled remote state preparation [19–22],
quantumsecret sharing [23–26], quantumstate sharing [27–29], quantumdense coding
[30,31], quantum secure direction communication [32–34]. Furthermore, entangle-
ment is also an essential resource for entanglement purification [35–39], entanglement
concentration [40,41], and several quantum computing schemes [42–45].

As we know, QT and RSP are two typical protocols of quantum communication.
Teleportation enables the sender to transfer an unknown quantum state to a remote
receiver, while in RSP a known quantum state is transferred from the sender to the
receiver. Due to knowing the initial state to be teleported in advance, it is possible in
RSP to have a trade-off between entanglement cost and classical communication cost.
Until now, RSP has been extensively investigated both in theory and in experiment
[13–22]. Subsequently, a new generalization of remote state preparation called joint
remote state preparation (JRSP) [46,47] has been proposed. Different from standard
RSP [13–15], in the JRSP protocols each sender shares partial information of the
initial state, and only if all the senders cooperate with each other, the initial state
can be remotely prepared at the side of the receiver [46,47]. Recently, researchers
have presented various JRSP protocols, such as JRSP with higher success probability
[48], joint remote preparation of a multipartite state [49,50], probabilistic joint remote
preparation of a high-dimensional equatorial quantum state [51–53], joint remote
preparation of cluster-type states [54–56], deterministic JRSP [57–61].

Note that the above-mentioned RSP protocols are implemented in ideal conditions,
namely the RSP protocols were not taken into account any environmental noises. In
general, an actual quantum system inevitably interacts with its surrounding environ-
ment, which leads to the loss of the system’s coherent property. Thus, how to efficiently
transmit quantum information and to overcome the influence of noises are significant
problems for realistic quantum communication network. In recent years, much atten-
tion has been paid on the noise effects on the quantum state transmission including QT
and RSP [62–65]. For example, Oh et al. [62] investigated QT through noisy quantum
channels by solving analytically a master equation in the Lindblad form. Jung et al.
[63] analyzed the effect of the noises on the process of QT via the noisy GHZ and W
channels and discussed the capacity of the quantum channel to resist the influence of
the noisy environment. Liang et al. [65] examined the remote preparation of a qubit
state and an entangled state in noisy environments, respectively.

Generally, in JRSP protocols several senders locate in different nodes of quantum
network and the priorly shared entanglement resource needs to be distributed through
different paths.Moreover, each sender needs to implement proper unitary operators and
to transfer some classical information. Thus, the noise effects on the JRSP protocols
is relatively complex when compared to previous RSP protocols, and more factors
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affecting the JRSP process should be taken into account. On the other hand, GHZ-
class state is a useful quantum resource for information processing. By means of
GHZ-class states as entangled resource, many protocols of quantum communication
were studied [12,45,46,49,64,65]. And the experimental implementation of GHZ
states has been reported in some physical systems including optical systems [66–
68], trapped ions [69], superconducting circuit [70], and nuclear magnetic resonance
system [71]. Recently, by using two tripartite GHZ states as quantum channel, Chen
et al. [72] examined the deterministic joint remote preparation of an arbitrary two-
qubit state in the presence of Pauli noises. To our knowledge, seldom studies [72]
have involved with JRSP via noisy quantum channels. In this paper, we study the joint
remote preparation of a qubit state via a noisyGHZ-class state. The influence of various
types of Pauli noises on the fidelity and the average fidelity of the JRSP protocol is
discussed in detail. Furthermore, we analyze the difference between the maximally
entangled GHZ channel and partially entangled GHZ-class channel for their ability
to resist the influence of the Pauli noises. In addition, we devote to finding something
new for the Pauli noise affecting the JRSP process and shedding light on quantum
state transmission for enhancing the ability to resist the influence of environmental
noises.

This paper is arranged as follows. In Sect. 2, we first briefly describe the joint
remote preparation of a qubit state via a GHZ-class state in close quantum system.
Then, the influence of four types of Pauli noises on the fidelity of the JRSP protocol
is analyzed in detail in Sect. 3. Finally, we give a brief discussion and conclusions.

2 JRSP via an ideal GHZ-class channel

Firstly, we briefly describe the protocol of the joint remote preparation of a qubit
state via the GHZ-class quantum channel in ideal condition [46,47]. Suppose that the
tripartite GHZ-class state shared by the two senders (Alice and Bob) and the receiver
(Charlie) takes the form

|GHZ〉ABC = α |000〉ABC + β |111〉ABC, (1)

in which particles A, B, and C belong to Alice, Bob, and Charlie, respectively, and α

and β are assumed to be real which satisfy α2 + β2 = 1 and α2 ≥ β2 > 0. When
α = β = 1√

2
and α2 > β2 > 0, the state |GHZ〉ABC corresponds to the maximally

entangled state and the partially entangled one, respectively.
The initial state to be jointly prepared is assumed to take the form

|q〉 = cos
θ

2
|0〉 + sin

θ

2
eiφ |1〉, (θ ∈ [0, π ], φ ∈ [0, 2π)) , (2)

where θ and φ are the polar and azimuthal angles of the initial state, respectively. In
this paper, we assume

cos
θ

2
= a · c, sin

θ

2
= b · d, and φ = γ + δ, (3)
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where a, c, b, d, γ , and δ are real. The complete classical information of the state |q〉
is independently shared between Alice and Bob through the following method: The
coefficients a, b, γ are only known to Alice and c, d, δ are only known to Bob.

To jointly prepare the state forCharlie,Alice performs a vonNeumannmeasurement
(vNM) on qubit A with the basis

{|ϕ〉A , |ϕ⊥〉A
}

|ϕ〉A = a |0〉 + beiγ |1〉√
a2 + b2

,
∣
∣ϕ⊥

〉
A = be−iγ |0〉 − a |1〉√

a2 + b2
. (4)

Then, Bob performs a vNM on qubit B with the basis
{|ϕ〉B , |ϕ⊥〉B

}

|ϕ〉B = c |0〉 + deiδ |1〉√
c2 + d2

,
∣
∣ϕ⊥

〉
B = de−iδ |0〉 − c |1〉√

c2 + d2
. (5)

So the GHZ-class channel can be rewritten as

|GHZ〉ABC = 1√
a2 + b2

√
c2 + d2

·
[
|ϕ〉A |ϕ〉B

(
acα |0〉 + bde−iγ e−iδβ |1〉

)

C

+ |ϕ〉A |ϕ⊥〉B
(
adeiδα |0〉 − bce−iγ β |1〉

)

C

+ |ϕ⊥〉A |ϕ〉B
(
bceiγ α |0〉 − ade−iδβ |1〉

)

C

+ |ϕ⊥〉A |ϕ⊥〉B
(
bdeiγ eiδα |0〉 + acβ |1〉

)

C

]
. (6)

After measuring the GHZ-class state with the operator MAB = |ϕ⊥〉A 〈ϕ⊥| ⊗
|ϕ⊥〉B 〈ϕ⊥| and calculating the partial trace over particles A and B, particle C is
collapsed to

|ψ〉C = bdei(γ+δ)α |0〉 + acβ |1〉 = bdeiφα |0〉 + acβ |1〉, (7)

the corresponding success probability is α2b2d2+β2a2c2

(a2+b2)(c2+d2)
. If α = β = 1√

2
, the success

probability reduces to 1
2(a2+b2)(c2+d2)

.

In order to retrieve the initial state from the state |ψ〉C, Charlie introduces an
auxiliary particle D with the state |0〉D. In this case, the total state at Charlie’s side can
be expressed as

|ψ〉CD = bdeiφα |00〉CD + acβ |10〉CD. (8)

Then, Charlie makes a unitary transformation UCD on the state |ψ〉CD which reads

UCD |ψ〉CD = β
(
bdeiφ |0〉C + ac |1〉C

)
|0〉D +

√
α2 − β2bd |0〉C |1〉D, (9)
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where the normalization constant 1√
α2b2d2+β2a2c2

is omitted, and UCD is given by

UCD = β

α
|00〉 〈00| −

√

1 − β2

α2
|00〉 〈01| +

√

1 − β2

α2
|01〉 〈00|

+ β

α
|01〉 〈01| + |10〉 〈10| + |11〉 〈11| . (10)

Charlie then measures the state of the auxiliary particle D with the projective mea-
surement {|0〉 , |1〉}. When he obtains the result |0〉D, the particle C will be collapsed
to the state ∣

∣ψ ′〉
C = bdeiφ |0〉C + ac |1〉C , (11)

and the corresponding success probability is β2

α2b2d2+β2a2c2
. After performing σx on

the particle C, the state
∣
∣ψ ′〉

C can be changed into the desired state, i.e.,

|ψ〉out = σx
∣
∣ψ ′〉

C = σx

(
bdeiφ |0〉C + ac |1〉C

)
= cos

θ

2
|0〉 + sin

θ

2
eiφ |1〉 . (12)

Thus, the total success probability for the JRSP via the ideal GHZ-class channel is
α2b2d2+β2a2c2

(a2+b2)(c2+d2)
· β2

α2b2d2+β2a2c2
= β2

(a2+b2)(c2+d2)
. Based on the above calculations, the

output state at Charlie’s side for the JRSP process can be expressed as

ρout = σx trD
{
MDUCD

[
trAB

(
MABρGHZM

†
AB

)
⊗ (|0〉D 〈0|)

]
U †
CDM

†
D

}
σ †
x , (13)

where ρGHZ = |GHZ〉ABC 〈GHZ| and MD = |0〉D 〈0|. Here MD is the projective
measurement on the auxiliary particle D.

3 JRSP via a GHZ-class channel subject to Pauli noise

Now we investigate the above JRSP process through noisy channel. It is well known
that the time evolution of an open quantum system in Markovian environment can be
described by a master equation in Lindblad form [73]

∂ρ

∂t
=

∑

j,α

(
L j,αρL†

j,α − 1

2
L†
j,αL j,αρ − 1

2
ρL†

j,αL j,α

)
, (14)

where the Lindblad operator L j,α = √
k j,ασ

j
α describes the coupling of the system to

its environment with σ
j

α (α = x, y, z) denoting the Pauli operator of the j-th qubit,
and k j,α being the strength of decoherence rates acting on the j-th qubit (here j = 1,
2, 3). For simplicity, we assume that the Pauli noise acting in the same direction (say
σx , σy , and σz) has the identical strength.

123



3862 H.-Q. Liang et al.

Because the GHZ-class quantum channel is influenced by noises, Eq. (13) should
be rewritten as

ρout = σx trD
{
MDUCD

[
trAB

(
MABρevo

GHZM
†
AB

)
⊗ (|0〉D 〈0|)

]
U †
CDM

†
D

}
σ †
x , (15)

where ρevo
GHZ is the time evolution of density matrix of the GHZ-class channel. In terms

of the fact that Alice, Bob, and Charlie are in different nodes in the JRSP process, we
assume that the Pauli noises affecting the quantum channel take the following four
cases: Only particle A is affected by Pauli noises, only particle B is affected by Pauli
noises, only particle C is affected by Pauli noises, and particles A, B, and C are all
affected by Pauli noises.

3.1 Only particle A is affected by Pauli noises

Firstly, we assume that only particle A of the GHZ-class state |GHZ〉ABC is affected
by Pauli noises. In this case, the Lindblad operators can be written as L1,x =√
k1σx , L1,y = √

k2σy , and L1,z = √
k3σz . According to Eqs. (1) and (14), the density

matrix of the time evolution of the GHZ-class quantum channel can be calculated as

ρevo
11 = 1

2
α2

[
1 + e−2(k1+k2)t

]
,

ρevo
44 = 1

2
β2

[
1 − e−2(k1+k2)t

]
,

ρevo
55 = 1

2
α2

[
1 − e−2(k1+k2)t

]
,

ρevo
88 = 1

2
β2

[
1 + e−2(k1+k2)t

]
,

ρevo
18 = ρevo

81 = 1

2
αβ

[
e−2(k1+k3)t + e−2(k2+k3)t

]
,

ρevo
45 = ρevo

54 = 1

2
αβ

[
−e−2(k1+k3)t + e−2(k2+k3)t

]
,

ρevo
m,n = 0 for other values of m, n. (16)

In terms of Eqs. (15) and (16), the output state obtained by Charlie is given by

ρout,1

CN ,1
= 1

2

{
cos2

θ

2

[
1 + e−2(k1+k2)t

]
+ b2

a2
cos2

θ

2

[
1 − e−2(k1+k2)t

]}
|0〉3 〈0|

+ 1

4
sin θe−iδ

{
eiγ

[
−e−2(k1+k3)t + e−2(k2+k3)t

]

+ e−iγ
[
e−2(k1+k3)t + e−2(k2+k3)t

]}
|0〉3 〈1|

+ 1

4
sin θeiδ

{
e−iγ

[
−e−2(k1+k3)t + e−2(k2+k3)t

]

+ eiγ
[
e−2(k1+k3)t + e−2(k2+k3)t

]}
|1〉3 〈0|
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+ 1

2

{
a2

b2
sin2

θ

2

[
1 − e−2(k1+k2)t

]

+ sin2
θ

2

[
1 + e−2(k1+k2)t

]}
|1〉3 〈1| , (17)

where 1
CN ,1

= 1
2

[
1 + e−2(k1+k2)t

] + 1
2

(
a2

b2
sin2 θ

2 + b2

a2
cos2 θ

2

) [
1 − e−2(k1+k2)t

]
.

From Eq. (17), we find that the final state Charlie obtained is independent of the
parameters of quantum channel (say, α and β). In order to measure the quality of JRSP
via the noisy channel, we need to calculate the fidelity between the output and initial
states. Generally, fidelity is defined as

F ≡ 〈q| ρout |q〉 . (18)

Here we only consider the case for successful JRSP process. If the JRSP is failure, i.e.,
Alice does not find |ϕ⊥〉A or Bob does not find |ϕ⊥〉B after Alice performs a vNM on
qubit Awith the basis

{|ϕ〉A , |ϕ⊥〉A
}
andBob on qubit Bwith the basis

{|ϕ〉B , |ϕ⊥〉B
}
,

we then give up the quantum state transmission and try once more until it is successful.
According to Eqs. (2), (17), and (18), through some direct calculations, the fidelity

can be obtained as

F1
CN ,1

= 1

2

(
1 − 1

2
sin2 θ

)[
1 + e−2(k1+k2)t

]

+ 1

2

(
a2

b2
sin4

θ

2
+ b2

a2
cos4

θ

2

) [
1 − e−2(k1+k2)t

]

+ 1

4
sin2 θ

[
e−2(k1+k3)t + e−2(k2+k3)t

]

+ 1

4
sin2 θ cos 2γ

[
−e−2(k1+k3)t + e−2(k2+k3)t

]
. (19)

From above expression, we can see that the fidelity F1 is a function of θ, b
a , γ (say,

γ is only known to Alice), and independent of φ and δ (δ is only known to Bob). When
θ = 0 or π , i.e., the initial state to be jointly prepared is |q〉 = |0〉 or |1〉, the fidelity
F1 will be 1.

In order to measure how much quantum information can be transferred through the
JRSP process, we need to calculate the average fidelity. Commonly, average fidelity
is defined as

Fav ≡ 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θF(θ, φ). (20)

Figure 1 depicts the average fidelity as the functions of b
a and γ with kt = 0.1 in the

presence of Pauli noises. FromFig. 1a, particle A is subject to bit flip noise (k1 = k and
k2 = k3 = 0), and three peaks can be observed. When b

a = 1 and γ = 0, π or 2π , the
average fidelity F1av,amax equals 1. In Fig. 2b, particle A is affected by the bit-phase
flip noise (k2 = k and k1 = k3 = 0), and two peaks can be observed. When b

a = 1
and γ = π

2 or 3
2π , the average fidelity F1av,bmax is equal to 1. Average fidelity being
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Fig. 1 (Color online) Average fidelity as the functions of b
a and γ with kt = 0.1 for different noise types,

where a k1 = k and k2 = k3 = 0, b k2 = k and k1 = k3 = 0, c k3 = k and k1 = k2 = 0, and
d k1 = k2 = k3 = 1

3 k

1 means that the qubit can be accurately transmitted in those special circumstances.
The situation b

a = 1 indicates that Bob shares the complete information of the polar
angle of initial state to be remotely prepared. When b

a and γ deviates from the above
special values ( ba = 1 and γ = 0, π , or 2π for bit flip noise, b

a = 1 and γ = π
2 or

3
2π for bit-phase flip noise), the average fidelity decreases from 1. Figure 1c indicates
that the average fidelity remains a steady value F1av,c = 0.9396 under the phase flip
noise (k3 = k and k1 = k2 = 0) when kt = 0.1. In this case, the average fidelity is
independent of b

a and γ . From Fig. 1d, where particle A is affected by the isotropic
noises (k1 = k2 = k3 = 1

3k), we can see that the average fidelity is only the function
of b

a and independent of γ . When b
a = 1, F1av,d max becomes 0.9584. It should be

pointed out that it is invalid for too small or too large value of b
a in the JRSP process

due to its small success probability.
Next, we study the average fidelity varying with the decoherence time kt . Figure 2

plots the average fidelity versus b
a and kt with γ = π

3 . From the figure, it can be
seen that the average fidelity F1av = 1 when kt = 0. Thus, the JRSP process has not
been affected by the noises in the initial time. Comparing Fig. 2a, b, d, the quantum
channel is influenced by bit flip noise, bit-phase noise, and isotropic noise, and we can
see that the influence of bit-phase flip noise on the average fidelity is the weakest and
that of isotropic noise is the strongest. Figure 2c shows that when the JRSP process is
influenced by the phase flip noise, the average fidelity F1av,c is independent of b

a and
decreases monotonically with kt . From Fig. 2a, b, d, the average fidelity has a strong
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Fig. 2 (Color online)Average fidelity versus b
a and kt with γ = π

3 for different noise types, where a k1 = k

and k2 = k3 = 0, b k2 = k and k1 = k3 = 0, c k3 = k and k1 = k2 = 0, and d k1 = k2 = k3 = 1
3 k

dependence on b
a . When b

a = 1, Bob has the polar angle information of quantum state
to be transmitted, and the average fidelity reaches the maximal value. But the fidelity
decays if b

a deviates from 1.
When γ �= π

3 , we can find the similar character for the average fidelity varying with
b
a and kt except that the strength of noise is different. For example,when γ = π

4 , F1av,a
is equal to F1av,b for the same condition, indicating that the bit flip noise has the same
strength as the bit-phase flip noise. When γ = π

6 , the average fidelity F1av,a ≥ F1av,b,
indicating the strength of the bit-phase flip noise is stronger than that of the bit flip
noise, this is different from the case when γ = π

3 . In case we are asked which noise
is stronger between the bit flip noise and bit-phase flip noise in the process of JRSP,
the answer will be that sometimes bit flip noise is stronger, and sometimes bit-phase
flip noise is stronger. Thus, the parameter γ (or δ) may affect which noise is stronger;
i.e., how the two senders share the phase information in the JRSP process may affect
which noise is stronger between the bit-phase flip noise and bit flip noise.

3.2 Only particle 2 is affected by Pauli noises

In this situation, only particle 2 of the GHZ-class quantum channel is affected by Pauli
noises; i.e., the Lindblad operators can be expressed as L2,x = √

k1σx , L2,y = √
k2σy ,

and L2,z = √
k3σz . According to Eqs. (1) and (14), we can obtain the time evolution

of the density matrix for the GHZ-class channel
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ρevo
11 = 1

2
α2

[
1 + e−2(k1+k2)t

]
,

ρevo
33 = 1

2
α2

[
1 − e−2(k1+k2)t

]
,

ρevo
66 = 1

2
β2

[
1 − e−2(k1+k2)t

]
,

ρevo
88 = 1

2
β2

[
1 + e−2(k1+k2)t

]
,

ρevo
18 = ρevo

81 = 1

2
αβ

[
e−2(k1+k3)t + e−2(k2+k3)t

]
,

ρevo
36 = ρevo

36 = 1

2
αβ

[
−e−2(k1+k3)t + e−2(k2+k3)t

]
,

ρevo
m,n = 0 for the other values of m, n. (21)

Similarly, the output state at Charlie’s side can be calculated as

ρout,2

CN ,2
= 1

2

{
cos2

θ

2

[
1 + e−2(k1+k2)t

]
+ a2

b2
sin2

θ

2

[
1 − e−2(k1+k2)t

]}
|0〉3 〈0|

+ sin θ

4

{
ei(−γ−δ)

[
e−2(k1+k3)t + e−2(k2+k3)t

]

+ ei(−γ+δ)
[
−e−2(k1+k3)t + e−2(k2+k3)t

]}
|0〉3 〈1|

+ sin θ

4

{
ei(γ+δ)

[
e−2(k1+k3)t + e−2(k2+k3)t

]

+ ei(γ−δ)
[
−e−2(k1+k3)t + e−2(k2+k3)t

]}
|1〉3 〈0|

+ 1

2

{
sin2

θ

2

[
1 + e−2(k1+k2)t

]
+ b2

a2
cos2

θ

2

[
1 − e−2(k1+k2)t

]}
|1〉3 〈1| ,

(22)

where 1
CN ,2

= 1
2

[
1 + e−2(k1+k2)t

] + 1
2

(
a2

b2
sin2 θ

2 + b2

a2
cos2 θ

2

) [
1 − e−2(k1+k2)t

]
, or

1
CN ,2

= 1
2

[
1 + e−2(k1+k2)t

] + 1
2

(
c2

d2
sin2 θ

2 + d2

c2
cos2 θ

2

) [
1 − e−2(k1+k2)t

]
.

When only particle 2 is subject to noises, with similar method, the fidelity can be
calculated as

F2
CN ,2

= 1

2

(
1 − 1

2
sin2 θ

) [
1 + e−2(k1+k2)t

]

+ 1

8
sin2 θ

(
a2

b2
+ b2

a2

) [
1 − e−2(k1+k2)t

]

+ 1

4
sin2 θ

[
e−2(k1+k3)t + e−2(k2+k3)t

]

+ 1

4
sin2 θ cos 2δ

[
−e−2(k1+k3)t + e−2(k2+k3)t

]
, (23a)
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or
F2

CN ,2
= 1

2

(
1 − 1

2
sin2 θ

) [
1 + e−2(k1+k2)t

]

+ 1

2

(
c2

d2
sin4

θ

2
+ d2

c2
cos4

θ

2

)[
1 − e−2(k1+k2)t

]

+ 1

4
sin2 θ

[
e−2(k1+k3)t + e−2(k2+k3)t

]

+ 1

4
sin2 θ cos 2δ

[
−e−2(k1+k3)t + e−2(k2+k3)t

]
. (23b)

Because Bob has the same situation as Alice in the JRSP protocol, as we expected,
we can find that Eq. (23b) is similar to Eq. (19). Therefore, the variance tendency of
fidelity F2 is similar to that of F1.

3.3 Only particle 3 is affected by Pauli noises

Next, we study the case when only particle 3 of the GHZ-class quantum channel
is affected by Pauli noises. In this case, the Lindblad operators can be expressed as
L3,x = √

k1σx , L3,y = √
k2σy , and L3,z = √

k3σz . In the beginning of the JRSP, the
GHZ-class channel is expressed as Eq. (1). By solving the master equation, we obtain

ρevo
11 = 1

2
α2

[
1 + e−2(k1+k2)t

]
,

ρevo
22 = 1

2
α2

[
1 − e−2(k1+k2)t

]
,

ρevo
77 = 1

2
β2

[
1 − e−2(k1+k2)t

]
,

ρevo
88 = 1

2
β2

[
1 + e−2(k1+k2)t

]
,

ρevo
18 = ρevo

81 = 1

2
αβ

[
e−2(k1+k3)t + e−2(k2+k3)t

]
,

ρevo
27 = ρevo

72 = 1

2
αβ

[
−e−2(k1+k3)t + e−2(k2+k3)t

]
,

ρevo
m,n = 0 for the other values of m, n. (24)

Similarly, we can calculate the final output state at Charlie’s side
ρout,3

CN ,3
= 1

β2

(
cos2

θ

2
ρevo
88 + sin2

θ

2
ρevo
22

)
|0〉3 〈0|

+ 1

2αβ
sin θ

(
e−iφρevo

81 + eiφρevo
27

)
|0〉3 〈1|

+ 1

2αβ
sin θ

(
eiφρevo

18 + e−iφρevo
72

)
|1〉3 〈0|

+ 1

α2

(
sin2

θ

2
ρevo
11 + cos2

θ

2
ρevo
77

)
|1〉3 〈1| , (25)
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where 1
CN ,3

= 1
2

[
1 + e−2(k1+k2)t

]+ 1
2

(
α2

β2 sin
2 θ
2 + β2

α2 cos
2 θ
2

) [
1 − e−2(k1+k2)t

]
. By

applying the analogous method, the fidelity can be calculated as

F3
CN ,3

= 1

2

(
1 − 1

2
sin2 θ

) [
1 + e−2(k1+k2)t

]

+ 1

8
sin2 θ

(
α2

β2 + β2

α2

) [
1 − e−2(k1+k2)t

]

+ 1

4
sin2 θ

[
e−2(k1+k3)t + e−2(k2+k3)t

]

+ 1

4
sin2 θ cos 2φ

[
−e−2(k1+k3)t + e−2(k2+k3)t

]
. (26)

From above expression, we can find that the fidelity is the function of θ, φ, α (or
β), and t . Because particles A and B are not disturbed by those noises, the fidelity
is independent of a

b (or c
d ) and γ (or δ). In the following, we turn our attention to

analyzing the average fidelities decaying with the decoherence time kt in the JRSP
process.

Figure 3 plots the average fidelity versus β and kt under the influence of different
Pauli noises. Figure 3c shows that the averagefidelity decreasesmonotonicallywith the
increase of kt and does not depend on β when the quantum channel is influenced by the
phase flip noise. FromFig. 3a, b, d, we find that when the quantum channel is subjected
to the bit flip noise, the bit-phase flip noise, and the isotropic noise, respectively, the
average fidelities decrease monotonically with the increase in kt when β is a given
value. On the other hand, if kt is set to be a fixed value, the average fidelities increase

monotonically as β goes from 0 to
√
2
2 for the bit flip noise, the bit-phase flip noise,

and the isotropic noise, while the average fidelity remains invariable for the phase flip
noise. Comparing Fig. 3a, b, we find that the average fidelity affected by the bit flip
noise decays with the same speed as that affected by the bit-phase flip noise. When
kt = 0, F3av = 1 indicating that the quantum channel is not affected by the noisy
environment in the initial time. When kt → ∞ and α = β = 1√

2
, F3av,a, F3av,b, and

F3av,d will approach to 2
3 ,

2
3 , and

1
2 , respectively. Moreover, when kt → ∞, F3av,c is

close to 2
3 . Therefore, the influence of the phase flip noise on the average fidelity is the

weakest, while that of the isotropic noise is the strongest. Besides, to some extent the
maximally entangled quantum channel has the strongest ability to resist the influence
of Pauli noises.

3.4 Particles 1, 2, and 3 are all affected by Pauli noises

In this section, we assume that particles 1, 2, and 3 of the GHZ-class state are all
subject to Pauli noises at the same time, and the strength of Pauli noises acting on
the same direction is identical. Therefore, the Lindblad operators are given by L1,x =√
k1σx , L1,y = √

k2σy, L1,z = √
k3σz, L2,x = √

k1σx , L2,y = √
k2σy, L2,z =√

k3σz, L3,x = √
k1σx , L3,y = √

k2σy , and L3,z = √
k3σz . By solving the master

equation, the time evolution of the GHZ-class channel can be expressed as
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Fig. 3 (Color online) Average fidelity as the functions of β and kt via the noisyGHZ-class channel, where a
k1 = k and k2 = k3 = 0, b k2 = k and k1 = k3 = 0, c k3 = k and k1 = k2 = 0, and d k1 = k2 = k3 = 1

3 k

ρevo
11 = 1

8
+ 3

8

(
α2 − β2

)
e−2(k1+k2)t + 3

8
e−4(k1+k2)t + 1

8

(
α2 − β2

)
e−6(k1+k2)t ,

ρevo
22 = ρevo

33 = ρevo
55 = 1

8
+ 1

8

(
α2 − β2

)
e−2(k1+k2)t − 1

8
e−4(k1+k2)t

− 1

8

(
α2 − β2

)
e−6(k1+k2)t ,

ρevo
44 = ρevo

66 = ρevo
77 = 1

8
− 1

8

(
α2 − β2

)
e−2(k1+k2)t − 1

8
e−4(k1+k2)t

+ 1

8

(
α2 − β2

)
e−6(k1+k2)t ,

ρevo
88 = 1

8
− 3

8

(
α2 − β2

)
e−2(k1+k2)t + 3

8
e−4(k1+k2)t − 1

8

(
α2 − β2

)
e−6(k1+k2)t ,

ρevo
18 = ρevo

81 = 1

4
αβ

(
e−6k2t−6k3t + 3e−4k1t−2k2t−6k3t

)
,

ρevo
27 = ρevo

36 = ρevo
45 = ρevo

54 = ρevo
63 = ρevo

72

= 1

4
αβ

(
e−6k2t−6k3t − e−4k1t−2k2t−6k3t

)
,

ρevo
m,n = 0 for the other values of m, n. (27)
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By using the same method for calculations, we obtain

ρout,4

CN ,4
= 1

β2

(
cos2

θ

2
ρevo
88 + a2

b2
sin2

θ

2
ρevo
66 + b2

a2
cos2

θ

2
ρevo
44 + sin2

θ

2
ρevo
22

)
|0〉 〈0|

+ sin θ

2αβ

[
e−i(γ+δ)ρevo

81 + ei(γ+δ)ρevo
27 + ei(γ−δ)ρevo

45 + ei(−γ+δ)ρevo
63

]
|0〉 〈1|

+ sin θ

2αβ

[
e−i(γ+δ)ρevo

72 + ei(γ+δ)ρevo
18 + ei(γ−δ)ρevo

36 + ei(−γ+δ)ρevo
54

]
|1〉 〈0|

+ 1

α2

(
cos2

θ

2
ρevo
77 + a2

b2
sin2

θ

2
ρevo
55 + b2

a2
cos2

θ

2
ρevo
33 +sin2

θ

2
ρevo
11

)
|1〉 〈1| ,

(28)

where

1

CN ,4
= 1

β2

(
cos2

θ

2
ρevo
88 + a2

b2
sin2

θ

2
ρevo
66 + b2

a2
cos2

θ

2
ρevo
44 + sin2

θ

2
ρevo
22

)

+ 1

α2

(
cos2

θ

2
ρevo
77 + a2

b2
sin2

θ

2
ρevo
55 + b2

a2
cos2

θ

2
ρevo
33 + sin2

θ

2
ρevo
11

)
.

Following the preceding procedures, we are able to calculate the fidelity as

F4
CN ,4

= sin2 θ
2

α2

[
cos2

θ

2
ρevo
77 +

(
a2

b2
sin2

θ

2
+ b2

a2
cos2

θ

2

)
ρevo
33 + sin2

θ

2
ρevo
11

]

+ cos2 θ
2

β2

[
cos2

θ

2
ρevo
88 +

(
a2

b2
sin2

θ

2
+ b2

a2
cos2

θ

2

)
ρevo
44 + sin2

θ

2
ρevo
22

]

+ sin2 θ

2αβ

[
ρevo
18 + cos 2φρevo

63 + cos 2 (φ − γ ) ρevo
63 + cos 2γρevo

63

]
. (29)

According to Eqs. (27) and (29), clearly the fidelity F4 is the function of parameters
β (or α), b

a , θ, φ, and λ(or δ). Next we turn to analyze the variation behavior of both
the fidelity F4 and the average fidelity F4av.

When the GHZ-class channel is maximally entangled (α = β =
√
2
2 ), Eq. (29) can

be simplified as

F4
CN ,4

= 1

8
+ 3

8
e−4(k1+k2)t − 1

4
sin2 θ · e−4(k1+k2)t

+ 1

8

(
b2

a2
cos2

θ

2
+ a2

b2
sin2

θ

2

) [
1 − e−4(k1+k2)t

]

+ 1

16
sin2 θ

[
e−6(k2+k3)t + 3e−(4k1+2k2+6k3)t

]
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+ 1

16
sin2 θ

[
cos 2(φ − γ ) + cos 2γ + cos 2φ

]

·
[
e−6(k2+k3)t − e−(4k1+2k2+6k3)t

]
, (30a)

or

F4
CN ,4

= 1

8
+ 3

8
e−4(k1+k2)t − 1

4
sin2 θ · e−4(k1+k2)t

+ 1

8

(
c2

d2
sin2

θ

2
+ d2

c2
cos2

θ

2

)[
1 − e−4(k1+k2)t

]

+ 1

16
sin2 θ

[
e−6(k2+k3)t + 3e−(4k1+2k2+6k3)t

]

+ 1

16
sin2 θ [cos 2(φ − δ) + cos 2δ + cos 2φ]

·
[
e−6(k2+k3)t − e−(4k1+2k2+6k3)t

]
, (30b)

where CN ,4 is the normalization constant given by

1

CN ,4
= 1

4
+ 1

4
e−4(k1+k2)t + 1

4

(
b2

a2
cos2

θ

2
+ a2

b2
sin2

θ

2

) [
1 − e−4(k1+k2)t

]
,

or

1

CN ,4
= 1

4
+ 1

4
e−4(k1+k2)t + 1

4

(
c2

d2
sin2

θ

2
+ d2

c2
cos2

θ

2

) [
1 − e−4(k1+k2)t

]
.

When the JRSP process is influenced by the isotropic noise, we can find from Eq.
(30) that F4 is close to 0.5 if kt → ∞.

In terms of Eqs. (20) and (30), Fig. 4 exhibits the average fidelity of the JRSP
protocol via the maximally entangled channel against b

a and γ with kt = 0.1. When
particles A, B, and C are all subject to noises simultaneously, it can be seen that Fig. 4
reveals the similar character as Fig. 1 except that the value of average fidelity F4av is
correspondingly smaller than F1av in Fig. 1. First, from Fig. 4a, all three particles are
subject to bit flip noise (k1 = k and k2 = k3 = 0). There exists three peaks in the
case that b

a = 1 and γ = 0, π , or 2π , and the average fidelity reaches its maximum
F4av,amax = 0.8901. Then, all particles are affected by the bit-phase flip noise (k2 = k
and k1 = k3 = 0) from Fig. 4b. There exists two peaks in the case that b

a = 1 and
γ = π

2 or 3π
2 , and the average fidelity reaches its maximum F4av,bmax = 0.8846. It

can be seen from Fig. 4c that the average fidelity does not vary with b
a and γ under

the phase flip noise (k3 = k and k1 = k2 = 0); i.e., the fidelity is only the function
of kt but independent of b

a and γ . When kt = 0.1, F4av,c equals 0.8497. Finally, from
Fig. 4d, all three particles are affected by the isotropic noises (k1 = k2 = k3 = 1

3k),
the average fidelity is only the function of b

a and independent of γ . When b
a = 1, the

average fidelity reaches its maximum F4av,d max = 0.8511. Because Eq. (30a) with
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Fig. 4 (Color online) Average fidelity versus b
a and γ with kt = 0.1 for different noise types, where a

k1 = k and k2 = k3 = 0, b k2 = k and k1 = k3 = 0, c k3 = k and k1 = k2 = 0, and d k1 = k2 = k3 = 1
3 k

Fig. 5 (Color online) Average fidelity as the functions of β and kt with γ = π
3 and b

a = 1, where a k1 = k

and k2 = k3 = 0, b k2 = k and k1 = k3 = 0, c k3 = k and k1 = k2 = 0, and d k1 = k2 = k3 = 1
3 k
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respect to b
a and γ as well as Eq. (30b) with respect to d

c and δ are the identical, thus
the character of average fidelity varying with d

c and δ have also the similar results.
When the quantum channel is partially entangled (e.g., β = 0.6 and α = 0.8),

according to Eq. (29), we can find some similar properties of the fidelity and the
average fidelity as the case when the quantum channel is maximally entangled, except
that the corresponding value of the average fidelity is different.

Nowwe analyze the average fidelity versus kt and β with γ = π
3 and b

a = 1, which
is plotted in Fig. 5. It can be seen that Fig. 5 exhibits similar behaviors as Fig. 3, and
the average fidelity do not depend on β when the quantum channel is influenced by
the phase flip noise (see Figs. 3c, 5c). Moreover, when kt is given and the quantum
channel is maximally entangled, the average fidelity reaches its maximal value for the
bit flip channel, the bit-phase flip channel, and the isotropic noisy channel. Besides,
when kt → ∞ and α = β = 1√

2
, F ′

4av,a, F
′
4av,b, F

′
4av,c, and F ′

4av,d are approximate

to 0.5416, 0.5000, 0.6667, and 0.5000, respectively.

4 Conclusions

In summary, we have investigated the effects of Pauli noises on the joint remote
preparation of a qubit state via a GHZ-class quantum channel. By solving the master
equation in the Lindblad form, we obtain the time evolution of the GHZ-class quantum
channel infected by the bit flip noise, the phase flip noise, the bit-phase flip noise, and
the isotropic noise corresponding to the case that each particle A, B, C, or all three
particles are noisy, respectively. Then, the fidelity and the corresponding average
fidelity of the JRSP process have been analytically or numerically calculated. Our
results show that the fidelity depends on the types of noises, the GHZ-class state, the
initial state to be remotely prepared, the decoherence rate, and the manner of the initial
state information sharing by the senders. By comparing with the traditional RSP, we
find the characteristics of noises for the JRSP are more complex, and the fidelities in
the JRSP process exhibit some new features in Pauli noise environments: (1) Fidelity
and average fidelity decay with the decoherence time kt with various speeds, and b

a
is an important factor for the JRSP protocol. When b

a is close to 1, meaning that one
sender almost has the whole polar angle information of the initial state, the fidelity
and the average fidelity approach to the maximal values. Thus, to some extent the
initial state information sharing in the JRSP process may reduce the ability to resist
the influence of Pauli noises. (2) The influence of the bit-phase flip noise on the average
fidelity is sometimes stronger than that of the bit flip noise and sometimes weaker.
How the two senders share the phase information of the initial state can affect which
noise is stronger between the bit-phase flip noise and the bit flip noise. (3) The fidelity
of the JRSP process through the maximally entangled channel is larger than that
through the partially entangled channel. Therefore, maximally entangled channel not
only provides more success probability for the JRSP protocol, but also has a relatively
stronger ability to resist the influence of Pauli noises. This result is similar to that
achieved in traditional RSP protocols [65]. Different from the JRSP protocol of Ref.
[72], here we have only adopted one GHZ-class state to achieve the probabilistic JRSP
process and have introduced an auxiliary qubit to retrieve the initial state to be remotely
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prepared at Charlie’s side. Moreover, in the present paper, we have mainly focused the
relationship between the fidelity and the senders’ information sharing manner, and the
ability of the entanglement amount of the GHZ-class channel to resist the influence
of the Pauli noises.

From the above analysis, we find that to enhance the fidelity of our JRSP protocol,
one of the two senders owning the whole polar angle information of the state to be
transferred and using the maximally entangled GHZ state as quantum channel are two
good choices. Thus, we had better applied the maximally entangled state as the entan-
gled resource. It deserves mentioning that to overcome the influence of the collective
noises in quantum state transmission, researchers put forward some good techniques
such as with decoherence-free subspaces [74], the addition of ancillary qubits [75],
and with quantum error rejection and correction [76,77]. Here we concentrated on
the influence of the Pauli noises and the initial state sharing manner on the fidelity of
the JRSP process. In addition, the Pauli noises acting on the respective particles of
the GHZ-class state examined in our paper are different and can thus be regarded as
independent noises, not the collective noises.We hope that our results might be helpful
to design some JRSP protocols for improving their ability to resist the influence of
noises.
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