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Abstract Quantum mechanics provides the physical laws governing microscopic
systems. A novel and generic framework based on quantum mechanics for image
processing is proposed in this paper. The basic idea is to map each image element to
a quantum system. This enables the utilization of the quantum mechanics powerful
theory in solving image processing problems. The initial states of the image elements
are evolved to the final states, controlled by an external force derived from the image
features. The final states can be designed to correspond to the class of the element
providing solutions to image segmentation, object recognition, and image classifi-
cation problems. In this work, the formulation of the framework for a single-object
segmentation problem is developed. The proposed algorithm based on this framework
consists of four major steps. The first step is designing and estimating the operator
that controls the evolution process from image features. The states associated with the
pixels of the image are initialized in the second step. In the third step, the system is
evolved. Finally, a measurement is performed to determine the output. The presented
algorithm is tested on noiseless and noisy synthetic images as well as natural images.
The average of the obtained results is 98.5% for sensitivity and 99.7% for specificity.
A comparison with other segmentation algorithms is performed showing the superior
performance of the proposed method. The application of the introduced quantum-
based framework to image segmentation demonstrates high efficiency in handling

B Akram Youssry
akram.youssry@eng.asu.edu.eg

Ahmed El-Rafei
ahmed.elrafei@eng.asu.edu.eg

1 Electronics and Communication Engineering Department, Faculty of Engineering, Ain Shams
University, Cairo, Egypt

2 Engineering Physics andMathematics Department, Faculty of Engineering, Ain ShamsUniversity,
Cairo, Egypt

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-015-1072-3&domain=pdf


3614 A. Youssry et al.

different types of images. Moreover, it can be extended to multi-object segmentation
and utilized in other applications in the fields of signal and image processing.

Keywords Quantum-inspired algorithms · Image processing · Image segmentation ·
Signal processing

1 Introduction

Quantummechanics is considered one of the most important fields in modern physics.
It provides a complete mathematical and conceptual framework to study systems on
the microscopic scale. The theory of quantum mechanics associates a set of allowed
states to a particle. The state that a particle occupies, determines its physical prop-
erties. However, this state could change depending on the external forces acting on
the particle. The dynamics of this process can be computed from Schrödinger’s equa-
tion by evolving the initial states. The theory postulates the existence of an operator
called the Hamiltonian which represents the total energy of the system. This operator
incorporates the information regarding the external forces and controls the dynamics
of the change. The result of this evolution is the particle existing in a superposition
of states. This superposition condition is maintained until a measurement operation
is performed. Then, the particle collapses to one of the states with a certain probabil-
ity depending also on the external forces. Thus, by manipulating the external forces
applied on a particle, the dynamics of the evolution and the probabilities of each state
can be controlled.

It should be noted that quantum mechanics only provides the framework and the
general laws that anymicroscopic-scale systemmust obey.However, it does not specify
details about particular systems. For example, the theory does not specify exactly the
form of the Hamiltonian operator for different systems. It is the role of a physicist to
determine the representation of that operator for a particular system. This is considered
a powerful point in the theory, since it provides a generic platform that could be used
to address issues in diverse disciplines. In this case, the selection of the framework
elements (such as the Hamiltonian) could be adapted, and consequently, the general
rules of quantum mechanics could be applied to solve a particular problem.

Recently, quantum mechanics-based algorithms for signal and image processing
have been proposed, motivated by the theoretical and practical progress in the fields of
quantum computing and quantum information processing. One of the earliest attempts
to use quantummechanics in signal processingwas proposed by Eldar andOppenheim
[8]. The focus in that work was on the quantum measurement operation which was
applied to solve problems in signal processing such as signal estimation and detection.
This framework was extended by Tseng and Tsung [22] and was applied in the domain
of image processing to solve some problems such as image half-toning, edge detection,
and visual cryptography. Additional image cryptography methods using the quantum
theory can be found in [25,26,31]. Quantum image representation [13,29,30] and
watermarking techniques [11,24,27,28] are among the applications of the quantum
mechanics. In [17], Nasios and Bors proposed the use of kernel-based classification
using quantum mechanics.
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Image segmentation is the process of separating the foreground of one or more
objects from the background in a digital image.Many techniques exist for accomplish-
ing such task. These techniques include edge detectors, thresholding, region-based
methods (such as region growing), morphological methods (such as watersheds), and
deformable models (such as active contours). Machine learning algorithms are also
used for image segmentation, in both the supervised schemes (such as neural net-
works) and the unsupervised schemes (such as K-means). Such methods are discussed
in [10,15] and [23]. Image segmentation was recently addressed utilizing the quantum
formulation. The authors of [21] developed an extension of Gaussian mixture models
and constructed a quantum statistical mechanical framework, and then, they applied
it to segment images. Talbi et al. [20] used a quantum-inspired genetic algorithm
approach to image segmentation. In [9], the use of quantum mechanics was proposed
to perform edge detection on medical images. The use of Schrödinger’s transform for
image analysis was proposed in [14]. This transform was used to extract boundaries
of objects in images. Another quantum mechanics-based contour extraction algo-
rithm was proposed in [12]. In [2], a different approach of using quantum mechanics
for object extraction was proposed. The method depends on solving Schrödinger’s
equation on the image, resulting in a large number of possible wave functions rep-
resenting possible segments. Casper et al. [5] used a quantum version of K-means
clustering algorithm for image segmentation. The authors in [16] presented a quan-
tum mechanics-based image segmentation based on hierarchical analysis of the 2-D
histograms.

In this work, a novel generic approach for utilizing quantum mechanics in signal
and image analysis is introduced. In order to realize this approach, an image or signal
element ismodeled by a quantum system. Thismodeling enables the usage of quantum
mechanics important principals such as the evolution of states and the superposition
property in image processing problems. Image segmentation is selected to develop the
formulation of the framework. The quantum-based algorithm for image segmentation
is implemented and tested against other existing methods from the literature.

2 Methods

This section starts with the basic postulates of quantum mechanics. These postulates
are essential to understand the theoretical basis of utilizing the quantum theory in
image processing. An overview of the framework will be discussed in the second
subsection. Next, we will demonstrate and develop a customized algorithm based on
the framework for addressing the single-object image segmentation problem. In the
following subsection, a special treatment is devoted to the two-state quantum system
because it forms an analogy to the problem of image segmentation. This analogy is
described in detail in the next part. Then, the steps of the proposed algorithm are
explained. After that, two important related issues are to be discussed separately as
they form a key role in the realization and practical usage of the algorithm. These are
the design of the Hamiltonian operator responsible for the states evolution and the
solution of the associated Schrödinger’s equation. Finally, the performance measures
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used for evaluating the algorithm as well as comparing it with other algorithms are
discussed.

2.1 Basic quantum mechanics postulates

In this part, the basic postulates of quantum mechanics are stated. These form the
foundation and the concepts necessary for constructing framework. Moreover, it will
be used in the subsequent discussions on the proposedmethodology. For further details,
see [18].

1. For every quantum mechanical system, there is an associated Hilbert space called
the state space of the system. All information about the system can be extracted by
knowing its state which is a unit vector in the state space. The state of the system
is denoted in Dirac’s notation by the “ket” |ψ〉. The adjoint of the state vector is
denoted by the “bra” 〈ψ |. The inner product of two-state vectors |ψ〉 and |φ〉 is
denoted by 〈φ|ψ〉. Since the state vector has unity norm, then 〈ψ |ψ〉 = 1.

2. A unitary transformation depending only on the initial and final time instants
describes the evolution of a closed system (system not interacting with other sys-
tems). This is represented by

|ψ(t2)〉 = U (t2, t1) |ψ(t1)〉 (1)

where U is a unitary operator. The operator U must be unitary so as to preserve
the unity norm of the state vector |ψ〉 at any time instant.

3. The state of a closed system evolves according to Schrödinger’s equation:

i h̄
∂|ψ〉
∂t

= H |ψ〉 (2)

where H is called the Hamiltonian operator, representing physically the total
energy (sum of kinetic and potential energies) of the system. This postulate
(describing the evolution of states in continuous time) is the generalization of
the previous one (describing the evolution of states in discrete time).

4. Each observable (any physical quantity that can be measured such as position,
momentum, and energy) is represented by an operator that acts on the state of the
system. The eigenvalues of the operator represent physically the expectation of
the physical quantity represented by that operator.

5. The system remains in a superposition of all its states, until a measurement occurs.
At this case, the system collapses to one of its states with a predefined probability.
A measurement is a physical operation done on the system to determine certain
outcome of an observable. Measurements in quantum mechanics are inherently
probabilistic. This means that we could get a different outcome each time we
set up the system and perform the measurement. This is opposed to the classical
picture, where identical setups must yield identical outcomes. Measurements are
represented mathematically by projection operators acting on the state vectors, for
each possible outcomem, there exists ameasurement operatorMm . The probability
of getting an outcome m is given by
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p(m) = 〈ψ | M†
mMm |ψ〉 (3)

where M† is the hermitian conjugate of M . After measurement, the state vector
becomes

Mm |ψ〉√
〈ψ | M†

mMm |ψ〉
(4)

2.2 Overview of the framework

A class of image processing problems could be modeled using the concept of the state
space. For example, image segmentation can be reduced to the task of determining the
final states of pixels or regions. Different states should be assigned to each object in
the foreground and the background. Pixels belonging to the same object should ideally
reach the same steady state regardless of the initial state. This can be applied directly
to other problems such as image classification and object recognition. Moreover, by
replacing the image element with a signal element (e.g., a sample at a time point), the
same framework can be used in signal-processing applications. The main idea behind
the proposed framework is to consider each image element (pixels,windows, or custom
shapes) a quantum particle that satisfies the postulates. This enables the association of
a multi-state quantum system to each image element. Thus, a state space is assigned
to each element having an initial state. The final state is an evolution of the initial state
governed by Schrödinger’s equation.

In quantum theory, the states change under the effect of an external force. The
effect of this force is embedded into Schrödinger’s equation in a form of an operator
to control the evolution process. In this work, features derived from the image are
used to construct the operator. The operator should satisfy certain conditions to ensure
the convergence and the cross-state transformation. According to the superposition
property, the result of the evolution is that the image element residing in a superposition
of states. The image dependent external force determines the probabilities associated
with each state. The measurement step that causes the particle to occupy a single
state is then performed. In the image domain, this could correspond to a thresholding
operation on the state probabilities.

The segmentation of a single object in an image is selected in this paper to formulate
an algorithm based on the proposed framework. Each individual pixel is treated as a
particle. In this case, the number of states is two corresponding to the foreground and
background of the image. Therefore, the two-state quantum system is considered in
the next subsection. The design of the Hamiltonian operator and the solution of the
evolution equation will be discussed in detail later in this section.

2.3 Two-state quantum system

The single-object image segmentation problem will be approached by modeling the
pixels in the image with a two-state quantum system. A physical example of such a
system is a stationary spin- 12 particle such as a stationary electron. From the postulates

123



3618 A. Youssry et al.

of quantum mechanics, we find that the state space of the system is two-dimensional
since there are only two independent states, which will be denoted by |0〉 and |1〉. The
systemwill be in a superposition of those two states until a measurement is performed.
This is represented mathematically by taking the general state of the system

|ψ〉 = α |0〉 + β |1〉 (5)

|α|2 represents the probability of the system to be found in the ground state |0〉 after
measurement, while |β|2 represents the probability of the system to be found in the
excited state |1〉 after measurement. Since the total probability must add up to unity,
then

|α|2 + |β|2 = 1 (6)

As the system evolves according to Schrödinger’s equation given in Eq. 2, these
probabilities change with time. The Hamiltonian operator (which represents the total
energy of the system) controls the evolution process. The total energy of a particle is
the sum of its kinetic and potential energy. In this case, the particle is stationary, and
thus, the kinetic energy vanishes, leaving only the potential energy which accounts
for any external forces applied on this particle. So by controlling the external forces,
we can control the evolution of the states of this system. For example in the case of
the electron, applying a magnetic field to this electron results in changing its spin
state. By carefully choosing the magnitude and the direction of the applied magnetic
field, the spin state of the electron can be driven to any desired state, starting from a
known initial state. The Hamiltonian of an electron at rest, present in a magnetic field
B = (Bx , By, Bz), is given by

H = −γ

(
Bz Bx − i By

Bx + i By −Bz

)
(7)

where γ is called the gyromagnetic ratio.

2.4 Analogy to image segmentation

In this subsection, the two-state quantum system is shown to be analogous to the prob-
lem of foreground image segmentation. The pixels will be treated individually where
each pixel in the image is represented by a two-state closed quantum system. Then,
each pixel should occupy one of the two quantum states (foreground or background).
The pixels belonging to the foreground class should evolve to the same final steady
state, while the pixels belonging to the background class should end occupying the
other steady state with higher probability. The background class will be the ground
state |0〉, while the foreground class will be the excited state |1〉. This is the convention
taken in this paper. However, the interchange of the two states will not affect the steps
of the algorithm. So, generally the pixel will be in a superposition of the two states,
since its actual classification is not yet known. This can be represented by the general
state

|ψ〉 = α |0〉 + β |1〉 (8)

123



A quantum mechanics-based framework for image processing… 3619

Table 1 Analogy between the problem of single-object segmentation and quantum mechanics

Image segmentation Quantum mechanics

Pixel Two-state system

Possible classes State space

Background class The quantum state |0〉
Foreground class The quantum state |1〉
Probability (pixel is background) |0〉-state probability |α|2
Probability (pixel is foreground) |1〉-state probability |β|2
Image-based features External force modeled by operator

Pixel-class determination Evolution process

Thresholding Measurement operation

Thus, the probability of a pixel to be in the background is |α|2, while the probabil-
ity for a pixel to belong to the foreground is |β|2. For the determination of the pixel
class, the state must evolve according to Schrödinger’s equation, to reach its final
state. The applied external force responsible for driving the system to its steady state
is constructed from a set of image-based features. These features are organized in a
vector form. Therefore, the Hamiltonian of the system must depend on this feature
vector, as the case of the external magnetic field. Finally, in order to take the decision,
a thresholding process is performed on the probability of foreground, which resem-
bles the measurement operation in the case of the quantum system. This analogy is
summarized in Table 1.

2.5 Proposed algorithm

The general procedure of the algorithm consists of the four main steps summarized
in Algorithm 1. Each pixel in the input image is considered a quantum particle and
modeled by a quantum system having two possible states as previously discussed.
The first step is to construct the Hamiltonian controlling the evolution. Theoretically,
each system can have its own operator. Nevertheless, for practical purposes, we have
decided to use a single form of the operator for all the pixels in an image or in similar
images. The parameters of the Hamiltonian are estimated from image-based features
using supervised learning from a selected image window that does not exceed 10%
of the image size. In case of segmenting many images of the same type, a small set
of the images could be used for learning and the majority for testing. Features can
be the gray levels of pixels or can be derived from a neighborhood surrounding a
pixel such as statistical features (e.g., mean, median, or variance), texture features,
or even a combination of different types. The evolution operator must satisfy certain
conditions and be carefully designed. Therefore, its design will be elaborated in detail
in Sect. 2.7. Second, the pixels are initialized to a particular state which is taken to be
the |0〉 state in this paper. However, choosing any arbitrary initial state will not affect
the results. The system evolves in time to get the probabilities of the final states in
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the third step. Since the Hamiltonian is a function of the features at a certain pixel, it
is evaluated for each pixel. Then, the computed operator is inserted in Schrödinger’s
equation, and it is solved. It is worth noting that the solution is dependent on the
type of the Hamiltonian as will be illustrated in Sect. 2.6. A form of the operator
is constructed that will lead to a closed-form solution of Schrödinger’s equation,
thus significantly reducing the processing time of the algorithm. The solution should
result in the convergence of the probabilities to particular values in order to reach a
steady state avoiding time-dependent measurement. Finally, a measurement operation
is performed using thresholding. A threshold T is specified. The pixel’s class will be
foreground if the probability of the pixel being foreground |β|2 is greater than the
threshold T , otherwise it will be classified as background. This procedure is repeated
for every pixel in the input image.

Algorithm 1 Quantum image segmentation
function SegmentImage(Image)

Select an image window W for Hamiltonian construction
ConstructHamiltonian(W ,Ground Truth segmentation of W ) (See Algorithm 2)
for each pixel p in Image do

Initialize state of p to |ψi 〉 = |0〉
Extract feature vector x at p
Evaluate Hamiltonian H as a function of x
Solve Schrödinger’s eq. for |ψ f 〉 = α |0〉 + β |1〉
Set T = Threshold
if |β|2 > T then

OutputImage(p) ← 1 � classify pixel as foreground
else

OutputImage(p) ← 0 � classify pixel as background
end if

end for
return OuputImage

end function

2.6 Solution of Schrödinger’s equation

From the postulates of quantum mechanics that was discussed earlier, the general
solution of Schrödinger’s equation given in Eq. 2, evaluated at any time instant t , is

|ψ(t)〉 = U (t, t0) |ψ(t0)〉 (9)

where |ψ(t0)〉 is the initial state and U (t, t0) is the unitary time evolution operator
(UU † = I ). There are three cases for getting the operator U according to the Hamil-
tonian.

1. The Hamiltonian is time independent:
In this case,

U (t, t0) = e− i
h̄ (t−t0)H (10)
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Taking t0 = 0, a closed-form solution can be obtained:

|ψ(t)〉 = e− i
h̄ t H |ψ(0)〉 (11)

2 The Hamiltonian is time dependent, but the operators H corresponding to different
moments of time commute.
In other words,

[H(t1), H(t2)] = H(t1)H(t2) − H(t2)H(t1) = 0 (12)

In this case,

U (t, t0) = e
− i

h̄

∫ t
t0
H(τ )dτ (13)

Taking t0 = 0, a closed-form solution can be obtained

|ψ(t)〉 = e− i
h̄

∫ t
0 H(τ )dτ |ψ(0)〉 (14)

Clearly, if theHamiltonian is time independent, then the solutionwill automatically
reduce to that of the first case.

3. The Hamiltonian is time dependent, but the operators H corresponding to different
moments of time do not commute.
In other words,

[H(t1), H(t2)] = H(t1)H(t2) − H(t2)H(t1) �= 0 (15)

In this case, no closed-form solution can be obtained.Only an infinite series (Dyson
series) or a numerical solution can be found.

2.7 Hamiltonian design

As clear from the previous discussion, the key for this algorithm to succeed is to
construct the appropriate Hamiltonian operator that allows the states to evolve leading
to correct pixel classification. The Hamiltonian operator is what determines how the
state evolves in time. The state |0〉 can be represented by the vector (

1 0
)T , while the

state |1〉 can be represented by the vector
(
0 1

)T , and thus, the general state of the

system can be represented by the vector
(
α β

)T . Since this operator acts on the state
space, then it will be represented by an n × n matrix, where n is the dimension of
the state space. The Hamiltonian operator must be a Hermitian operator (H† = H )
to ensure that its eigenvalues (which represent physically the allowed energy levels of
the system) are real. Other than the Hamiltonian’s size, and being Hermitian, no other
constraints are put on the selection of this operator from the quantum mechanics point
of view. In the case considered in this work, the Hamiltonian will be represented by a
2 × 2 Hermitian matrix.

In order to prevent using an infinite series solution or an approximate numerical
solution, the Hamiltonian should satisfy cases 1 or 2 in the previous subsection. In
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this paper, we chose the Hamiltonian matrix entries such that they all have the same
dependency on time. This condition guarantees the commutation of the operator at
different time instants. This leads to

H(t) = g(t)S (16)

where S is a 2 × 2 matrix and g is any function in t . This form of the Hamiltonian
clearly satisfies the condition in Eq. 12. This can be proven by the following equation
using direct substitution.

[H(t1), H(t2)] = g(t1)Sg(t2)S − g(t2)Sg(t1)S = 0 (17)

Now, the solution of Schrödinger’s equation should be evaluated at a certain time
instant t where the measurement operation will be performed. The problem is the
choice of this time instant. In order to solve this problem, an extra condition is imposed
on the Hamiltonian. The probability calculated from the final state of the system must
converge to a particular value. This will ensure that the longer the system evolves, the
more accurate the obtained probabilities will be. Selecting the Hamiltonian to be time
independent, (g(t) = const)will result in an oscillatory-varying probability, and thus,
this choice is refused. To ensure the convergence of probability, the function g must
be chosen such that integral in Eq. 14 converges as t → ∞. The function selected was

g(t) = e−t (18)

which satisfies the conditions and ensures that the integral is convergent.

∫ ∞

0
e−τdτ = 1 (19)

In quantum control, according to [3], given the initial and final states of a two-state
quantum mechanical system, a Hamiltonian could be obtained in a closed form that
leads to the correct evolution of this initial state to the required final state. Physically
this corresponds, for example, to how the magnitude and the direction of a magnetic
field to control the spin of a stationary electron are determined. If the initial state is
assumed to be |0〉 and the pixel is to be classified a background pixel, then the final
state should be |0〉. The Hamiltonian which could result in such evolution will be

H = 2i h̄πe−t
(
0 −1
1 0

)
(20)

On the other hand, if the initial state is |0〉 and the pixel is a foreground pixel, then the
final state should be |1〉. The Hamiltonian which could result in such evolution will be

H = 1

2
i h̄πe−t

(
0 −1
1 0

)
(21)
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This shows that for that particular initial state, the matrix part of the Hamiltonian will
not differ in either case. The difference between the two scenarios is the value of the
constant that multiplies all the matrix entries.

According to the previous results, theHamiltonian can take the same form as before,
up to a multiplicative constant. This constant obviously should depend on the features
extracted at that pixel, and it should lead to the correct evolution of the state. So, finally
the Hamiltonian will take the following form

H = i h̄e−t f (x)
(
0 −1
1 0

)
(22)

where f is a function in the feature vector x at the pixel. This form of the Hamiltonian
leads to a closed-form solution of system’s evolution equation as will be proven in
“Appendix.” This is important since the equation is solved for each pixel and the
closed-form solution highly increases the speed of the algorithm.

The function f is the only unknown in the Hamiltonian. The function f can take
several forms; however, it is chosen to be a fifth-degree polynomial. Thus, calculating
the evolution operator is then reduced to correctly find the coefficients of that poly-
nomial. A supervised learning method is proposed to estimate the coefficients. It is
important to mention that the samples used in the learning could come from a limited
size image window and its ground truth segmentation in case of segmenting a single
image. This approach is used in this work by randomly selecting a rectangular window.
This window has a size of less than 10% of the image size and should contain pixels
from both the foreground and the background of the image. If the task is to segment
an object in a dataset of images of the same type such as identifying the lung in X-
ray computed tomography images of several patients, a subset of the data containing
the entire images and the corresponding ground truth segmentation could be used for
training. In both cases, a single operator could be determined and used to segment
the rest of the pixels from a single or multi-images. The learning starts by deriving
the features from all the training pixels. The problem becomes a typical curve-fitting
problem. The target is to calculate the polynomial coefficients that minimize the total
error between the segmentation output by the algorithm and the ground truth on the
training window. The optimization is based on the steepest descent iterative proce-
dure using the gradient of the total error to update the coefficients. This procedure
terminates when either the error is below a certain value or the number of iterations
exceeds a maximum value. The Hamiltonian design algorithm is demonstrated in
Algorithm 2.

2.8 Performance measures

The problemof image segmentation is the identification of an object ormultiple objects
(foreground) on a background of an image. The object is represented as a group of
pixels assigned a class that corresponds to the foreground. The pixels comprising the
background are assigned a second class. Segmentation algorithms output either the
pixel class or the boundary of an object. Foreground pixels may be misclassified as
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Algorithm 2 Hamiltonian design
function ConstructHamiltonian(ImageWindow W ,GroundTruthOfWindow)

Initialize Hamiltonian H using a polynomial with random coefficients
repeat

Initialize TotalError = 0
for each pixel p in W do

Initialize state of p to |ψi 〉 = |0〉
Extract feature vector x at p
Evaluate current Hamiltonian H as a function of x
Solve Schrödinger’s eq. for |ψ f 〉 = α |0〉 + β |1〉
Woutput (p) ← |β|2
Calculate pixel error e = GroundTruthO f Window(p) − Woutput (p)
Update Total Error TotalError = TotalError + (e)2

end for
Use the steepest descent method based on the gradient of TotalError to modify the
polynomial coefficients in H

until targeted error tolerance is achieved or maximum number of iterations is reached
return H

end function

Table 2 Confusion matrix for performance evaluation

Ground truth

Foreground Background

Algorithm output

Foreground True positive (TP) False positive (FP)

Background False negative (FN) True negative (TN)

background pixels and vice versa resulting in segmentation errors. These errors can be
captured by comparing the obtained pixel class from the algorithm to the correspond-
ing pixel class in the ground truth. If both match, then it is a correct classification,
otherwise it is a misclassification. Therefore, the performance of the algorithms needs
to be evaluated. Two of the most widely used measures for evaluating the accuracy
of a segmentation algorithm are the sensitivity and specificity. The sensitivity and
specificity reflect the precision of identifying the foreground and background, respec-
tively. They both rely on counting the correctly classified pixels. Table 2 is often
called the confusion matrix and summarizes the four possible outcomes of the pixel
segmentation. In this table, the term “positive” refers to the foreground class, while
the term “negative” refers to the background class. The term “true” refers to a correct
classification by the algorithm, while the term “false” refers to a misclassification.
True positive and true negative are the categories of correctly classified foreground
and background pixels, respectively. False positives are the pixels wrongly classified
as foreground, while false negatives are the pixels wrongly classified as background.
Sensitivity is the true-positive rate, which is defined as the ratio of the number of pixels
correctly classified as foreground by the segmentation algorithm to the total number
of foreground pixels in the image.
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Sensitivity = TP

TP + FN
(23)

Specificity is the true-negative rate, which is defined as the ratio of the number of
pixels correctly classified as background by the segmentation algorithm to the total
number of background pixels in the image.

Specificity = TN

FP + TN
(24)

These two measures can be used to assess and compare different segmentation algo-
rithms. The perfect (ideal) segmentation algorithm should produce a sensitivity of
100% (meaning all foreground pixels are correctly classified) and a specificity of
100% (meaning all background pixels are correctly classified). However, practical
algorithms may misclassify some pixels. Consequently, as the sensitivity and speci-
ficity approach 100%, the segmentation algorithm approaches the perfect case. The
sensitivity is computed by counting the pixels that are correctly classified as foreground
as well as the total number of foreground pixels from the ground truth. The pixels cor-
rectly classified as background are counted, and the total number of background pixels
in the ground truth and the specificity is obtained.

3 Materials

For testing the proposed algorithm, two datasets were used for proving the concept.
The first one was created manually and consists of synthetic images formed of simple
geometric shapes, with different levels of noise. The noise is additive white Gaussian
with zero mean and a variance in the range from 0.1 to 0.5. This dataset resembles a
subset of the image dataset used for evaluating the level set segmentation algorithm
proposed in [6]. The other dataset utilized is from the image segmentation database
presented in [1] and made available online. This database consists of natural images of
objects together with the segmentation ground truth for assessing image segmentation
algorithms. Figures 1, 2, 3, 4, 5, and 6 show the first type of images; while Figs. 8, 9,
and 10 show the second type of images.

4 Results

The results of applying the proposed algorithm to the dataset described before is
shown in Figs. 1, 2, 3, 4, 5, 6, 7, 8, and 9. Table 3 demonstrates the sensitivities and
the specificities of the automatically segmented images using the proposed algorithm,
as well as the features used for Hamiltonian construction. In order to further evaluate
the performance of the proposed method, a comparison was made with the classical
Canny edge detector [4], active contourswithout edges [6], and normalized cuts [7,19].
The application of these methods directly to the gray-scale images yielded very poor
results, not shown. Thus, the same set of features, extracted from each image, was
used for all methods. The only exception was in the natural images in Figs. 8 and 9. In
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Segmentation of a two-level image. a Original, b ground truth, c result of proposed algorithm, d
result of Canny edge detector, e result of active contours, f result of normalized cuts

(a) (b) (c)

(d) (e) (f)

Fig. 2 Segmentation of a three-level image. a Original, b ground truth, c result of proposed algorithm, d
result of Canny edge detector, e result of active contours, f result of normalized cuts

this case, a single feature that produced the best result was utilized. The normalized
cut approach produced multiple possible segmentations, so the most accurate one was
chosen. Canny detector provided the object boundary. Therefore, region filling was
used to provide the entire set of foreground pixels corresponding to the segmented
object. The visual results of carrying out the comparison between the quantum-based
system and the other algorithms are also demonstrated in Figs. 1, 2, 3, 4, 5, 6, 7, 8,
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Segmentation of an imagewith a gradient. aOriginal, b ground truth, c result of proposed algorithm,
d result of Canny edge detector, e result of active contours, f result of normalized cuts

(a) (b) (c)

(d) (e) (f)

Fig. 4 Segmentation of an image with a texture. a Original, b ground truth, c result of proposed algorithm,
d result of Canny edge detector, e result of active contours, f result of normalized cuts

and 9. The average sensitivity and specificity of the presented methodology were 98.5
and 99.7%, respectively. The Canny edge detector produced an average of 88.5% for
sensitivity and 96% for specificity. The active contours method showed an average
sensitivity of 87% and average specificity of 99.8%. Finally, the normalized cuts
had average results of 84.9 and 98.6% for the sensitivity and specificity, respectively.
The details of this evaluation are shown in Table 4. The quantum-based algorithm
achieved higher overall segmentation accuracy compared to the other techniques.
These outcomes are discussed thoroughly in the next section.

5 Discussion

In this work, a framework for signal and image processing based on the theory of
quantum mechanics was introduced. Image or signal elements are regarded as quan-
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Segmentation of a noisy two-level image with noise variance of 0.1. a Original, b ground truth,
c result of proposed algorithm, d Result of Canny edge detector, e result of active contours, f result of
normalized cuts

(a) (b) (c)

(d) (e) (f)

Fig. 6 Segmentation of a noisy two-level image with noise variance of 0.5. a Original, b ground truth,
c result of proposed algorithm, d result of Canny edge detector, e result of active contours, f result of
normalized cuts

tum particles and accompanied by quantum systems. This allows to use important
quantum concepts such as state space, external force modeling, dynamics of evolu-
tion, and the superposition property to solve some image-related problems. The goal
is to determine the final states of the elements based on information specific to the
images under consideration. The class of the elements is obtained from the steady state.
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Segmentation of a noisy three-level image with noise variance of 0.3. a Original, b ground truth,
c result of proposed algorithm, d result of Canny edge detector, e result of active contours, f result of
normalized cuts

(a) (b) (c)

(d) (e) (f)

Fig. 8 Segmentation of a natural image (from [1]) of a flower. a Original, b ground truth, c result of
proposed algorithm, d result of Canny edge detector, e result of active contours, f result of normalized cuts

This approach is suitable for image classification, object recognition, or segmentation
applications. The suggested framework was applied to the image segmentation prob-
lem and specifically to the single-object case. The correspondence between the pixel
and two-state systems in addition to the mathematical formulation was developed.
Starting with an initial quantum state, the system evolved in time controlled by a set of
features derived from the images. The Hamiltonian operator, controlling the evolution
process, was constructed from the image-based features by supervised learning. The
class of the pixels was determined from the steady state of the evolved system by a

123



3630 A. Youssry et al.

(a) (b) (c)

(d) (e) (f)

Fig. 9 Segmentation of a natural image (from [1]) of a bird. aOriginal, b ground truth, c result of proposed
algorithm, d result of Canny edge detector, e result of active contours, f result of normalized cuts

Table 3 Summary of the results of the proposed algorithm

Image Sensitivity (%) Specificity (%) Features

Figure 1 100 100 Gray level

Figure 2 100 100 Gray level

Figure 3 99.52 99.93 7 × 7 mean

Figure 4 95.44 100 Morlet transform

Figure 5 99.99 99.68 7 × 7 median

Figure 6 99.83 99.35 12 × 12 median

Figure 7 99.94 99.24 11 × 11 median

Figure 8 98.06 99.49 11 × 11 mean and 11 × 11 median

Figure 9 93.35 99.96 20 × 20 median and gray level

Figure 10 99.30 99.07 20 × 20 median and gray level

Table 4 Comparison with other algorithms

Image Canny edge detector Active contours Normalized cuts

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Specificity
(%)

Figure 1 100 99.76 99.52 99.94 99.94 99.99

Figure 2 99.99 67.73 52.24 99.88 99.62 100

Figure 3 17.32 99.56 68.14 100 99.99 98.65

Figure 4 98.14 99.89 92.64 99.97 57.9 90.39

Figure 5 99.99 99.44 99.92 99.67 99.86 99.97

Figure 6 99.89 99.09 99.69 99.34 52.60 99.91

Figure 7 99.98 98.88 99.74 99.23 74.53 99.93

Figure 8 96.78 99.79 89.21 99.94 90.09 99.94

Figure 9 84.10 99.73 82.07 99.94 90.3 99.99
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measurement operation. The algorithm was tested on two sets of images to evaluate
the segmentation capabilities of the framework.

A set of synthetic images was created to assess different aspects of segmentation.
Noisewas added to these images to evaluate the algorithm performance in the presence
of noise. In addition, the publicly available database of natural images in [1], dedicated
for image segmentation, was used for testing. The system was able to isolate the target
object in the test images with high accuracy as evident from the results. The overall
average sensitivity and specificity were 98.5 and 99.7%, respectively. The sharp edges
of the object in Fig. 1 were perfectly captured with a 100% sensitivity and specificity.
The algorithm was also capable of identifying the unconnected object in the synthetic
image in Fig. 2 and the natural image in Fig. 8 with 100 and 98.06% sensitivities,
respectively. Segmenting the unconnected object is attributed to dealingwith eachpixel
as an individual quantum system. Therefore, the framework would also be suitable
for applications where the objects are unconnected and distributed over the image
such as skin detection. Another advantage from a computational perspective is that
parallel or distributed computation can be used to solve Schrödinger’s equation for
each individual pixel. This reduces the required runtime.

A drawback for the pixel-wise approach for segmentation is the neighborhood and
object information cannot be explicitly included. In addition, the lack of connectivity
information degrades the noise handling performance in the presence of high level
of certain types of noise such as salt and pepper noise. A possible solution to this
problem is to use features that encode the connectivity properties. For example, the
use of neighborhood mean or median as features resulted in nearly exact segmentation
of the noisy image in Fig. 6. Another solution which can be investigated in the future
is to introduce coupling between the quantum systems associated with the pixels.
The general laws of quantum mechanics provide the necessary methods for studying
coupled systems.

The external force applied to the quantum system is a powerful point that enables
the system to adapt to various types of images. This is reflected in the design of
the Hamiltonian using image-based features. This flexibility allowed the construction
of the Hamiltonian from different types of features depending on the image under
consideration. This can be noticed in the features used in Table 3. For the gradient
image in Fig. 3, the mean of a seven-by-seven window is used to achieve 99.52%
sensitivity and 99.93% specificity, while for the textured image in Fig. 4, Morlet
wavelet transform coefficients leaded to 95.44% sensitivity and 100% specificity.

The choice of theHamiltonian based on the proposedmethod providesmany advan-
tages. The necessity to numerically solve Schrödinger’s equation was avoided by
selecting the time dependence of the Hamiltonian to satisfy the condition shown in
Eq. 12. This enables us to calculate a closed-form solution of Schrödinger’s equation
given in Eq. 14. This obviates the need to numerically solve differential equations,
thus providing a significant computational speed gain in runtime. Another advantage
is that the same proposed form of the Hamiltonian given in Eq. 22 with the speci-
fied conditions can be easily adapted to different problems. Moreover, the exponential
form of time dependence and the polynomial form of the feature dependence were
arbitrary selected as examples to demonstrate the functionality of the system. The
Hamiltonian form used in this work satisfies the physical and practical conditions
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(a) (b) (c)

Fig. 10 Segmentation of the natural image of the bird after post-processing. a Original, b ground truth, c
result of proposed algorithm

imposed by quantum mechanics. However, other forms could be utilized as well. The
design and optimization of the operator to achieve the best results for different appli-
cations should be investigated in the future. In addition, there is no limitation on the
type or the number of features to be used. This makes the framework easily adaptable
to any type of images by selecting the appropriate features.

The proposed algorithm handled the added noise efficiently. The sensitivity of the
segmentation in Figs. 5 and 6, the noisy versions of Figs. 1 and 7, the noisy version of
Fig. 2 only decreased by less than 0.1%, while the specificity was almost maintained
(less than 0.8% decrease) compared to the noise-free images. Natural images were
segmented with high accuracy using simple features such as the mean and the median
of the gray values. Depending only on the gray level, a sensitivity of 93.35% and a
specificity of 99.96% were reached for the image in Fig. 9. The misclassified pixels
were due to relying only on the gray level. The dark part inside the object could not
be identified as a foreground class. A solution to this issue is to use a morphological
post-processing step to close this region. Figure 10 shows the results after the post-
processing step. The results improved greatly, and the sensitivity becomes 99.30%.

The quantum mechanics theory is inherently probabilistic. This is the result of the
superposition property which provides the likelihood that each particle occupies a
certain state. By incorporating it in the proposed framework, this property could be
beneficial. For example, the degree of membership of a pixel to a certain class could
be determined or the confidence in the results. Moreover, if a pixel contains more
than one object, the probabilistic information could help associating this pixel with all
the objects sharing this pixel. However, the final state of the system is determined by
the measurement operation. A simple hard thresholding for all the pixels in an image
produced high accuracy in this paper. Nevertheless, more sophisticated techniques
such as pixel-wise thresholding or adaptive thresholding could be used to improve the
results.

In Fig. 1, the quantum-based algorithm produced maximum sensitivity and speci-
ficity compared to the others. This is due to the fact that it is based on pixel-wise
segmentation, so the pixels on the boundary of the object were correctly segmented.
These boundary pixelswere themain reason that slightly affected the other approaches.
Figure 2 consists of simple geometrical shapes. All the objects in the image are circles
of different sizes. The circles are divided into two groups based on their color (black
or white) on a single-level gray background. The Canny edge detector failed to dif-
ferentiate between the two groups and identified all the circles as foreground. Thus,
it produced poor specificity of less than 70%. The active contour method was highly
dependent on initialization. The best results, we could achieve, for most initializations
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was segmenting almost half of the object with a sensitivity of 52.2%. The normalized
cuts obtained 100% specificity as the quantum algorithm, while the sensitivity was
slightly less. The quantum algorithm had both maximum sensitivity and specificity
at the same time among the tested algorithms. The edge detection method failed to
capture the object with a gradient foreground in Fig. 3. The active contours captured
a larger portion of the object, but still not all (sensitivity was less than 70%). The
proposed algorithm comes second and was able to capture most of the object resulting
in a sensitivity of 99.52%. The graph-based method had the highest sensitivity of
99.99% which is slightly higher than the sensitivity of the new approach. However,
in terms of specificity, the quantum mechanics-based framework resulted in a higher
specificity than the normalized cuts method. Figure 4 is composed of textured object
and background. For this image, the quantum method resulted in the best specificity
of 100% among the others. In terms of sensitivity, it comes on the second rank after
the Canny edge detector. For the noisy image in Fig. 5, the presented work produced a
sensitivity of 99.99% exactly like the edge detection. On the other hand, the specificity
was higher in this case. For the active contours, the measures were less than the quan-
tum technique. Finally, the normalized cuts method had a slightly higher specificity
but lower sensitivity. The normalized cuts method was affected by the higher noise
level in Figs. 6 and 7 as it is clear from the sensitivity of less than 75%. The quan-
tum approach had higher sensitivity and specificity than the active contours. The edge
detection method was slightly higher in sensitivity. Also, it is clear by comparing the
results for natural images shown in Figs. 8 and 9 that the framework had done a better
job in capturing the object. This is evident from the higher values of sensitivity. This
shows that the presented framework achieves higher or nearly equal results compared
to other algorithms. However, the superior average accuracy over the other algorithms
indicates the ability of the system to handle different types of images more efficiently
using a single Hamiltonian form. Moreover, the results could be further enhanced by
considering the design of the Hamiltonian.

6 Conclusion and future work

The proposed framework provides a generic formulation for applying the powerful
tools of quantummechanics to the fields of signal and image processing. All the design
aspects of the framework were considered in a quantum-based algorithm developed
for image segmentation by mapping each pixel in an image to a quantum system. The
algorithm showed high accuracy in segmenting different types of images including
noisy images. The probability that the system reaches a certain final state gives infor-
mation about the degree of confidence in the results. Various image features could be
used to guide the evolution of the algorithm making the system highly adaptable to
segment different types of objects. A form of the Hamiltonian operator was selected
for image segmentation that follows the rules of quantum mechanics and that resulted
in a closed-form solution of the differential equation governing the evolution. Thus,
the need for a numerical solution was eliminated and the execution time of the system
was highly reduced. The comparison results with three of the existing segmentation
methods demonstrated the overall higher segmentation accuracy when applied to dif-
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ferent types of images. The segmentation results were obtained using a proposed form
of the Hamiltonian for all images. Nevertheless, different forms of the Hamiltonian
could be used and optimized according to the nature and the problem under consider-
ation. This is an issue that needs further research. The two-state quantum system was
suitable for images containing single object. However, multi-state quantum system
could be incorporated to deal with multi-class image processing problems and will
be considered in the future. Moreover, this work could be extended to other areas in
signal and image processing such as recognition or classification in a straightforward
manner. Another topic that we will investigate next is the concept of coupling between
quantum systems, or equivalently image element systems, to integrate the connectivity
information and prior knowledge in the framework to improve the results.

Appendix: Additional proofs

Measurement operator

Let the general state vector of a two-state quantum system is

|ψ〉 = α |0〉 + β |1〉 (25)

Working in computational basis where

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
(26)

Then

|ψ〉 =
(

α

β

)
(27)

The Hermitian conjugate (complex conjugate transpose) of the state vector is

〈ψ | = α† 〈0| + β† 〈1| (28)

Choosing the same basis, we get:

〈ψ | = (
α† β†

)
(29)

The inner product of two states |φ〉, |ψ〉 is calculated by multiplying 〈ψ | and |φ〉. The
short-hand notation for this operation is 〈ψ |φ〉. Now, taking the inner product of the
vectors |ψ〉 and |1〉:

〈1|ψ〉 = 〈1| (α |0〉 + β |1〉) = α 〈1|0〉 + β 〈1|1〉 (30)

Since the states |0〉 and |1〉 are orthonormal as they form the basis of the Hilbert space
of the system, therefore: 〈1|0〉 = 0 and 〈1|1〉 = 1. Thus,

〈1|ψ〉 = β (31)
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Taking the Hermitian conjugate of the last equation, we get

〈ψ |1〉 = β† (32)

From the postulates of quantum mechanics, the probability of finding the system
in state |1〉 after measurement is given by

p(1) = 〈ψ | M†M |ψ〉 (33)

where M is the measurement operator for the state |1〉, taken to be

M = |1〉 〈1| (34)

We can prove that this is the correct form of the operator by substituting in the men-
tioned postulate and using the previous results:

p(1) = 〈ψ | (|1〉 〈1|)(|1〉 〈1|) |ψ〉 = 〈ψ |1〉 〈1|1〉 〈1|ψ〉 = β†1β = |β|2 (35)

Which agrees with the physical interpretation of β. This proves that this is the correct
form of the measurement operator. This operator will be needed in the next section.

Hamiltonian design

Assume now we apply the operator U on the state |ψ〉 to evolve it, where

U = e− i
h̄

∫ t
0 H(τ )dτ (36)

The probability of being in state |1〉 after measurement is:

p(1) = 〈ψ |U †M†MU |ψ〉 (37)

but
M†M = |1〉 〈1|1〉 〈1| = |1〉 〈1| (38)

So
p(1) = 〈ψ |U † |1〉 〈1|U |ψ〉 (39)

Now, in our design we took the Hamiltonian to be in the form of

H = i h̄g(t)

(
0 −1
1 0

)
(40)

so as to make sure that we are in cases 1 or 2 where we can find a closed-form solution.
This chosen form ensures the commutation of the operator at different time instants.
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We now begin calculating the matrix U . Given that the eigen decomposition of the
matrix:

S =
(
0 −1
1 0

)
(41)

is given by:

S = QDQ† = 1√
2

(
1 1
−i i

)(
i 0
0 −i

)
1√
2

(
1 i
1 −i

)
(42)

Then, we can calculate the matrix:

U = f (S) = Q f (D)Q† (43)

where

f (S) = exp

(
− i

h̄

∫ t

0
H(τ )dτ

)

= exp

(
− i

h̄
i h̄S

∫ t

0
g(τ )dτ

)

= exp (Sg̃(t))

(44)

So,

f (D) =
(
ei g̃(t) 0
0 e−i g̃(t)

)
(45)

Therefore,

U = 1

2

(
1 1
−i i

)(
ei g̃(t) 0
0 e−i g̃(t)

)(
1 i
1 −i

)
(46)

In our work, we chose the initial state |ψ〉 = |0〉. Return back to calculate the
probabilities.

〈1|U |ψ〉 = 〈1|U |0〉 (47)

So,

〈1|U |0〉 = (
0 1

) 1
2

(
1 1
−i i

)(
ei g̃(t) 0
0 e−i g̃(t)

)(
1 i
1 −i

) (
1
0

)

= 1

2

(−i i
) (

ei g̃(t) 0
0 e−i g̃(t)

) (
1
1

)

= 1

2

(−iei g̃(t) ie−i g̃(t)
) (

1
1

)

= sin(g̃(t))

(48)

Finally,
p(1) = 〈ψ |U † |1〉 〈1|U |ψ〉

= 〈0|U † |1〉 〈1|U |0〉
= sin(g̃(t))† sin(g̃(t))

= sin2(g̃(t))

(49)
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Now we see that if
g(τ ) = c (50)

then

g̃(t) =
∫ t

0
g(τ )dτ = ct (51)

and we get
p(1) = sin2(ct) (52)

which has an oscillatory behavior. This would require to choose a time instant to
perform the measurement. On the other hand, if we choose

g(τ ) = ce−τ (53)

then

g̃(t) =
∫ t

0
g(τ )dτ = c − ce−t (54)

and we get
p(1) = sin2

(
c − ce−t) (55)

Clearly, if we take the limit as t → ∞

p(1) = sin2(c) (56)

which is an exact value, that does not depend on time. If we choose c = 2π then
p(1) = 0 which means the final state is |0〉 and if we choose c = π

2 then p(1) = 1
which means the final state is |1〉. This proves that the chosen form of the Hamiltonian
can take the initial state |0〉 to either of the two states |0〉 or |1〉 depending on the value
of c. if we choose c carefully to depend on the feature vector, we can reach the final
states that correspond to the classification of the pixel. The function g(t) can be any
function such that the integral ∫ ∞

0
g(τ )dτ (57)

exists. Satisfying this condition obviates us from choosing a time instant to measure,
since we let the system evolve for sufficiently long time before measuring.
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