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Abstract The aim of the paper was to propose a bounded-error quantum polynomial-
time algorithm for the max-bisection and the min-bisection problems. The max-
bisection and the min-bisection problems are fundamental NP-hard problems. Given
a graph with even number of vertices, the aim of the max-bisection problem is to
divide the vertices into two subsets of the same size to maximize the number of edges
between the two subsets, while the aim of the min-bisection problem is to minimize
the number of edges between the two subsets. The proposed algorithm runs in O(m2)

for a graph with m edges and in the worst case runs in O(n4) for a dense graph with
n vertices. The proposed algorithm targets a general graph by representing both prob-
lems as Boolean constraint satisfaction problems where the set of satisfied constraints
are simultaneously maximized/minimized using a novel iterative partial negation and
partial measurement technique. The algorithm is shown to achieve an arbitrary high
probability of success of 1 − ε for small ε > 0 using a polynomial space resources.

Keywords Quantum algorithm · Graph bisection · Max-bisection · Min-bisection ·
Amplitude amplification · BQP · NP-hard

1 Introduction

Given an undirected graph G = (V, E) with a set V of even number of vertices and
a set E of unweighted edges, two graph bisection problems will be considered in
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the paper: the max-bisection problem and the min-bisection problem. The goal of the
max-bisection problem is to divide V into two subsets A and B of the same size so
as to maximize the number of edges between A and B, while the goal of the min-
bisection problem is to minimize the number of edges between A and B. In theory,
both bisection problems are NP-hard for general graphs [9,14].

These classical combinatorial optimization problems are special cases of graph
partitioning [13]. The graph partitioning has many applications, for example divide-
and-conquer algorithms [24], compiler optimization [21], VLSI circuit layout [5], load
balancing [17], image processing [30], computer vision [22], distributed computing
[25] and route planning [7]. In practice, there are many general-purpose heuristics
for graph partitioning, e.g., [18,31,32] that handle particular graph classes, such as
[6,26,32]. There are also many practical exact algorithms for graph bisection that use
the branch-and-bound approach [8,23]. These approaches make expensive usage of
time and space to obtain lower bounds [1,2,8,16].

On conventional computers, approximation algorithms have gained much attention
to tackle the max-bisection and the min-bisection problems. The max-bisection prob-
lem, for example, has an approximation ratio of 0.7028 due to [10] which is known
to be the best approximation ratio for a long time by introducing the RPR2 rounding
technique into semidefinite programming (SDP) relaxation. In [12], a poly-time algo-
rithm is proposed that given a graph admitting a bisection cutting, a fraction 1 − ε of
edges finds a bisection cutting an (1 − g(ε)) fraction of edges where g(ε) → 0 as
ε → 0. A 0.85-approximation algorithm for the max-bisection is obtained in [28]. In
[33], the SDP relaxation and the RPR2 technique of [10] have been used to obtain a
performance curve as a function of the ratio of the optimal SDP value over the total
weight through finer analysis under the assumption of convexity of the RPR2 function.
For the min-bisection problem, the best-known approximation ratio is O(log n) [27]
with some limited graph classes have known polynomial-time solutions such as grids
without holes [11] and graphs with bounded tree width [20].

The aim of the paper was to propose an algorithm that represents the two bisection
problems as Boolean constraint satisfaction problems where the set of edges are rep-
resented as set of constraints. The algorithm prepares a superposition of all possible
graph bisections using an amplitude amplification technique, then evaluates the set
of constraints for all possible bisections simultaneously and then amplifies the ampli-
tudes of the best bisections that achieve the maximum/minimum satisfaction to the set
of constraints using a novel amplitude amplification technique that applies an iterative
partial negation and partial measurement. The proposed algorithm targets a general
graph where it runs in O(m2) for a graph with m edges and in the worst case runs
in O(n4) for a dense graph with number edges close to m = n(n−1)

2 with n vertices
to achieve an arbitrary high probability of success of 1 − ε for small ε > 0 using a
polynomial space resources.

The paper is organized as follows: Sect. 2 shows the data structure used to repre-
sent a graph bisection problem as a Boolean constraint satisfaction problem. Section 3
presents the proposed algorithm with analysis on time and space requirements. Sec-
tion 4 concludes the paper.
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Fig. 1 a A random graph with 8 vertices and 12 edges, b a max-bisection instance for the graph in a with
10 edges connecting the two subsets, and c. b A min-bisection instance for the graph in a with 3 edges
connecting the two subsets

2 Data structures and graph representation

Several optimization problems, such as the max-bisection and the min-bisection prob-
lems, can be formulated as Boolean constraint satisfaction problems [3,4] where a
feasible solution is a solution with as many variables set to 0 as variables set to 1,
i.e., balanced assignment, as follows: For a graph G with n vertices and m edges,
consider n Boolean variables v0, . . . , vn−1 andm constraints by associating with each
edge (a, b) ∈ E the constraint cl = va ⊕ vb, with l = 0, 1, . . . ,m − 1, then the max-
bisection is the problem that consists of finding a balanced assignment tomaximize the
number of constraints equal to logic-1 from them constraints, while the min-bisection
is the problem that consists of finding a balanced assignment to maximize the number
of constraints equal to logic-0 from the m constraints, such that if a Boolean variable
is set to 0, then the associated vertex belongs to the first partition, and if a Boolean
variable is set to 1, then the associated vertex belongs to the second partition.

For example, consider the graph G shown in Fig. 1a. Let G = (V, E), where,

V = {0, 1, 2, 3, 4, 5, 6, 7},
E = {(0, 1), (0, 2), (0, 3),

(1, 2), (1, 7), (2, 3),
(3, 4), (3, 6), (4, 5),
(4, 6), (5, 7), (6, 7)}.

(1)
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Assume that each vertex a ∈ V is associated with a Boolean variable va , then the
set of vertices V can be represented as a vector X of Boolean variables as follows,

X = (v0, v1, v2, v3, v4, v5, v6, v7), (2)

and if each edge (a, b) ∈ E is associated with a constraint cl = va ⊕ vb, then the set
of edges E can be represented as a vector Z of constraints as follows,

Z = (c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11), (3)

such that,

c0 = (v0 ⊕ v1), c1 = (v0 ⊕ v2), c2 = (v0 ⊕ v3),

c3 = (v1 ⊕ v2), c4 = (v1 ⊕ v7), c5 = (v2 ⊕ v3),

c6 = (v3 ⊕ v4), c7 = (v3 ⊕ v6), c8 = (v4 ⊕ v5),

c9 = (v4 ⊕ v6), c10 = (v5 ⊕ v7), c11 = (v6 ⊕ v7). (4)

In general, a bisection GP for the graph G can be represented as Gp = (x, z(x))
such that each vector x ∈ {0, 1}n of variable assignments is associated with a vector
z(x) ∈ {0, 1}m of constraints evaluated as functions of the variable assignment x . In the
max-bisection and the min-bisection problems, the vector x of variable assignments is

restricted to be balanced so there are M =
(
n
n
2

)
possible variable assignments among

the N = 2n possible variable assignments, and the solution of the max-bisection prob-
lem is to find the variable assignment that is associated with a vector of constraints that
contains the maximum number of 1’s, and the solution for the min-bisection problem
is to find the variable assignment that is associated with a vector of constraints that
contains the maximum number of 0’s. For example, for the graph G shown in Fig. 1a,
a max-bisection for G is ((0, 1, 0, 1, 0, 1, 1, 0), (1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1)) with
10 edges connecting the two partitions as shown in Fig. 1b, and a min-bisection for G
is ((0, 0, 0, 0, 1, 1, 1, 1), (0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0)) with 3 edges connecting the
two partitions as shown in Fig. 1c. It is important to notice that a variable assignment
x = (0, 1, 0, 1, 0, 1, 1, 0) is equivalent to x = (1, 0, 1, 0, 1, 0, 0, 1), where x is the
bit-wise negation of x .

3 The algorithm

Given a graph G with n vertices and m edges, the proposed algorithm is divided into
three stages: The first stage prepares a superposition of all balanced assignments for
the n variables. The second stage evaluates the m constraints associated with the m
edges for every balanced assignment and stores the values of constraints in constraint
vectors entangled with the corresponding balanced assignments in the superposition.
The third stage amplifies the constraint vector with maximum (minimum) number of
satisfied constraints using a partial negation and iterative measurement technique.
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3.1 Balanced assignments preparation

To prepare a superposition of all balanced assignments of n qubits, the proposed
algorithm can use any amplitude amplification technique, e.g., [15,34,35]. An extra
step should be added after the amplitude amplification to create an entanglement
between the matched items and an auxiliary qubit |ax1〉, so that the correctness of
the items in the superposition can be verified by applying measurement on |ax1〉
without having to examine the superposition itself. So, if |ax1〉 = |1〉 at the end of this
stage, then the superposition contains the correct items, i.e., the balanced assignments,
otherwise, repeat the preparation stage until |ax1〉 = |1〉. This is useful for not having
to proceed to the next stages until the preparation stage succeeds.

The preparation stage to have a superposition of all balanced assignments of n qubits
will use the amplitude amplification technique shown in [35] since it achieves the
highest known probability of success using fixed operators and it can be summarized
as follows, prepare a superposition of 2n states by initializing n qubits to state |0〉 and
apply H⊗n on the n qubits

|�0〉 = (
H⊗n) |0〉⊗n

= 1√
N

N−1∑
j=0

| j〉, (5)

where H is the Hadamard gate and N = 2n . Assume that the system |�0〉 is rewritten
as follows,

|�0〉 = 1√
N

N−1∑
j=0
j∈XT

| j〉 + 1√
N

N−1∑
j=0
j∈XF

| j〉, (6)

where XT is the set of all balanced assignments of n bits and XF is the set of all

unbalanced assignments. Let M =
(
n
n
2

)
be the number of balanced assignments

among the 2n possible assignments, sin(θ) =
√
M

/
N and 0 < θ ≤ π/2, then the

system can be rewritten as follows,

|�0〉 = sin(θ) |ψ1〉 + cos(θ) |ψ0〉 , (7)

where |ψ1〉 = |τ 〉 represents the balanced assignments subspace and |ψ0〉 represents
the unbalanced assignments subspace.

Let D = WR0 (φ)W †Rτ (φ) , R0 (φ) = I − (1− eiφ) |0〉 〈0| , Rτ (φ) = I − (1−
eiφ) |τ 〉 〈τ |, where W = H⊗n is the Walsh–Hadamard transform [19]. Iterate the
operator D on |�0〉 for q times to get,

|�1〉 = Dq |�0〉 = aq |ψ1〉 + bq |ψ0〉 , (8)
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such that,

aq = sin(θ)
(
eiqφUq (y) + ei(q−1)φUq−1 (y)

)
, (9)

bq = cos(θ)ei(q−1)φ (
Uq (y) +Uq−1 (y)

)
, (10)

where y = cos(δ), cos (δ) = 2 sin2(θ) sin2(φ
2 ) − 1, 0 < θ ≤ π/2, and Uq is the

Chebyshev polynomial of the second kind [29] defined as follows,

Uq (y) = sin ((q + 1) δ)

sin (δ)
. (11)

Setting φ = 6.02193 ≈ 1.9168π, M =
(
n
n
2

)
, N = 2n and, q =

⌊
φ

sin(θ)

⌋
, then

∣∣aq ∣∣2 ≥ 0.9975 [35]. The upper bound for the required number of iterations q to reach
the maximum probability of success is,

q =
⌊

φ
sin(θ)

⌋
≤ 1.9168π

√
N

M
, (12)

and using Stirling’s approximation,

n! ≈ √
2πn

(n
e

)n
, (13)

then, the upper bound for required number of iterations q to prepare the superposition
of all balanced assignments is,

q ≈ 1.9168
4

√
π5

2
n = O

(
4
√
n
)
. (14)

It is required to preserve the states in |ψ1〉 for further processing in the next stage.
This can be done by adding an auxiliary qubit |ax1〉 initialized to state |0〉 and have
the states of the balanced assignments entangled with |ax1〉 = |1〉, so that, the cor-
rectness of the items in the superposition can be verified by applying measurement
on |ax1〉 without having to examine the superposition itself. So, if |ax1〉 = |1〉, then
the superposition contains the balanced assignments, otherwise, repeat the preparation
stage until |ax1〉 = |1〉. This is useful to be able to proceed to the next stage when the
preparation stage succeeds. To prepare the entanglement, let

|�2〉 = |�1〉 ⊗ |0〉
= aq |ψ1〉 ⊗ |0〉 + bq |ψ0〉 ⊗ |0〉 , (15)
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and apply a quantum Boolean operator U f on |�2〉, where U f is defined as follows,

U f |x, 0〉 =
{ |x, 0〉 , if |x〉 ∈ |ψ0〉 ,

|x, 1〉 , if |x〉 ∈ |ψ1〉 ,
(16)

and f : {0, 1}n → {0, 1} is an n inputs single output Boolean function that evaluates
to true for any x ∈ XT and evaluates to false for any x ∈ XF ; then,

|�3〉 = U f |�2〉
= aq |ψ1〉 ⊗ |1〉 + bq |ψ0〉 ⊗ |0〉 . (17)

Apply measurement M1 on the auxiliary qubit |ax1〉 as shown in Fig. 2. The prob-
ability of finding |ax1〉 = |1〉 is,

Pr(M1 = 1) = ∣∣aq ∣∣2 ≥ 0.9975, (18)

and the system will collapse to,

∣∣∣�(M1=1)
3

〉
= |ψ1〉 ⊗ |1〉 . (19)

3.2 Evaluation of constraints

There are M states in the superposition
∣∣∣�(M1=1)

3

〉
, each state has an amplitude 1√

M
,

and then let |�4〉 be the system after the balanced assignment preparation stage as
follows,

|�4〉 = α

M−1∑
k=0

|xk〉, (20)

where |ax1〉 is dropped from the system for simplicity andα = 1√
M
. For a graphG with

n vertices and m edges, every edge (a, b) connecting vertcies a, b ∈ V is associated
with a constraint cl = va⊕vb, where va and vb are the corresponding qubits for vertices
a and b in |�4〉, respectively, such that 0 ≤ l < m, 0 ≤ m ≤ n(n−1)

2 , 0 ≤ a, b ≤ n−1

and a �= b, where n(n−1)
2 is the maximum number of edges in a graph with n vertices.

To evaluate the m constraints associated with the edges, add m qubits initialized to
state |0〉,

|�5〉 = |�4〉 ⊗ |0〉⊗m

= α

M−1∑
k=0

|xk〉 ⊗ |0〉⊗m . (21)

For every constraint cl = va ⊕ vb, apply two Cont_σX gates, Cont_σX (va, cl)
and Cont_σX (vb, cl), so that |cl〉 = |va ⊕ vb〉. The collection of all Cont_σX gates
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Fig. 2 A quantum circuit for the proposed algorithm

applied to evaluate the m constraints is denoted Cv in Fig. 2, and then the system is
transformed to,

|�6〉 = α

M−1∑
k=0

(
|xk〉 ⊗

∣∣∣ck0ck1 . . . ckm−1

〉)
, (22)

where σX is the Pauli-X gate which is the quantum equivalent to the NOT gate. It can
be seen as a rotation of the Bloch Sphere around the X-axis by π radians as follows,

σX =
[
0 1
1 0

]
, (23)

and Cont_U (v, c) gate is a controlled gate with control qubit |v〉 and target qubit |c〉
that applies a single qubit unitary operator U on |c〉 only if |v〉 = |1〉, so every qubit∣∣ckl 〉 carries a value of the constraint cl based on the values of va and vb in the balanced
assignment |xk〉, i.e., the values of vka and vkb , respectively. Let |zk〉 = ∣∣ck0ck1 . . . ckm−1

〉
,

then the system can be rewritten as follows,

|�6〉 = α

M−1∑
k=0

(|xk〉 ⊗ |zk〉), (24)

where every |xk〉 is entangled with the corresponding |zk〉. The aim of the next stage
is to find |zk〉 with the maximum number of |1〉’s for the max-bisection problem or to
find |zk〉 with the minimum number of |1〉’s for the min-bisection problem.

3.3 Maximization of the satisfied constraints

Let |ψc〉 be a superposition on M states as follows,

|ψc〉 = α

M−1∑
k=0

|zk〉, (25)
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where each |zk〉 is an m-qubit state and let dk = 〈zk〉 be the number of 1’s in state |zk〉
such that |zk〉 �= |0〉⊗m , i.e., dk �= 0. This will be referred to as the 1-distance of |zk〉.

The max-bisection graph |xmax〉 is equivalent to find the state |zmax〉 with dmax =
max{dk, 0 ≤ k ≤ M−1} and the state |zmin〉with dmin = min{dk, 0 ≤ k ≤ M−1} is
equivalent to themin-bisection graph |xmin〉. Finding the state |zmin〉with theminimum
number of 1’s is equivalent to finding the state with the maximum number of 0’s, so, to
clear ambiguity, let dmax 1 = dmax be the maximum number of 1’s and dmax 0 = dmin
be the maximum number of 0’s, where the number of 0’s in |zk〉 will be referred to as
the 0-distance of |zk〉.

To find either |zmax〉 or |zmin〉, when |ψc〉 is measured, add an auxiliary qubit |ax2〉
initialized to state |0〉 to the system |ψc〉 as follows,

|ψm〉 = |ψc〉 ⊗ |0〉

= α

M−1∑
k=0

|zk〉 ⊗ |0〉 . (26)

The main idea to find |zmax〉 is to apply partial negation on the state of |ax2〉
entangled with |zk〉 based on the number of 1’s in |zk〉, i.e., more 1’s in |zk〉, gives
more negation to the state of |ax2〉 entangled with |zk〉. If the number of 1’s in |zk〉
is m, then the entangled state of |ax2〉 will be fully negated. The mth partial negation
operator is the mth root of σX and can be calculated using diagonalization as follows,

V = m
√

σX = 1

2

[
1 + t 1 − t
1 − t 1 + t

]
, (27)

where t = m
√−1, and applying V for d times on a qubit is equivalent to the operator,

V d = 1

2

[
1 + td 1 − td

1 − td 1 + td

]
, (28)

such that if d = m, then Vm = σX . To amplify the amplitude of the state |zmax〉, apply
the operator MAX on |ψm〉 as will be shown later, whereMAX is an operator onm+1
qubits register that applies V conditionally for m times on |ax2〉 based on the number
of 1’s in |c0c1 . . . cm−1〉 as follows (as shown in Fig. 3a),

MAX = Cont_V (c0, ax2)Cont_V (c1, ax2) . . .Cont_V (cm−1, ax2), (29)

so, if d1 is the number of cl = 1 in |c0c1 . . . cm−1〉, then,

MAX (|c0c1...cm−1〉 ⊗ |0〉) = |c0c1...cm−1〉 ⊗
(
1 + td1

2
|0〉 + 1 − td1

2
|1〉

)
. (30)

Amplifying the amplitude of the state |zmin〉 with the minimum number of 1’s is
equivalent to amplifying the amplitude of the state with the maximum number of 0’s.
To find |zmin〉, apply the operator MIN on |ψm〉 as will be shown later, where MIN is
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Fig. 3 Quantumcircuits for a theMAXoperator and b theMINoperator, followed by a partialmeasurement
then a negation to reset the auxiliary qubit |ax2〉

an operator on m + 1 qubits register that applies V conditionally for m times on |ax2〉
based on the number of 0’s in |c0c1 . . . cm−1〉 as follows (as shown in Fig. 3b),

MIN = Cont_V (c0, ax2)Cont_V (c1, ax2) . . .Cont_V (cm−1, ax2), (31)

where cl is a temporary negation of cl before and after the application of
Cont_V (cl , ax2) as shown in Fig. 3, so, if d0 is the number of cl = 0 in |c0c1 . . . cm−1〉
then,

MIN (|c0c1...cm−1〉 ⊗ |0〉) = |c0c1...cm−1〉 ⊗
(
1 + td0

2
|0〉 + 1 − td0

2
|1〉

)
. (32)

For the sake of simplicity and to avoid duplication, the operator Q will denote either
the operator MAX or the operator MIN, d will denote either d1 or d0, |zs〉 will denote
either |zmax〉 or |zmin〉, and ds will denote either dmax 1 or dmax 0, so,

Q (|c0c1...cm−1〉 ⊗ |0〉) = |c0c1...cm−1〉 ⊗
(
1 + td

2
|0〉 + 1 − td

2
|1〉

)
, (33)

and the probabilities of finding the auxiliary qubit |ax2〉 in state |0〉 or |1〉 when
measured is, respectively, as follows,

Pr(ax2 = 0) =
∣∣∣∣1 + td

2

∣∣∣∣
2

= cos2
(
dπ

2m

)
,

Pr(ax2 = 1) =
∣∣∣∣1 − td

2

∣∣∣∣
2

= sin2
(
dπ

2m

)
. (34)

To find the state |zs〉 in |ψm〉, the proposed algorithm is as follows, as shown in
Fig. 3:

1- Let |ψr 〉 = |ψm〉.
2- Repeat the following steps for r times,

i- Apply the operator Q on |ψr 〉.
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ii- Measure |ax2〉, if |ax2〉 = |1〉, then let the system post-measurement is |ψr 〉,
apply σX on |ax2〉 to reset to |0〉 for the next iteration and then go to Step (i),
otherwise restart the stage and go to Step (1).

3- Measure the first m qubits in |ψr 〉 to read |zs〉.
For simplicity and without loss of generality, assume that a single |zs〉 exists in

|ψv〉, although such states will exist in couples since each |zs〉 is entangled with
a variable assignment |xs〉 and each |xs〉 is equivalent to |xs〉; moreover, different
variable assignments might give rise to constraint vectors with maximum distance,
but such information is not known in advance.

Assuming that the algorithm finds |ax2〉 = |1〉 for r times in a row, then the
probability of finding |ax2〉 = |1〉 after Step (2-i) in the first iteration, i.e., r = 1 is
given by,

Pr(1)(ax2 = 1) = α2
M−1∑
k=0

sin2
(
dkπ

2m

)
. (35)

The probability of finding |ψr 〉 = |zs〉 after Step (2-i) in the first iteration, i.e.,
r = 1 is given by,

Pr(1)(ψr = zs) = α2sin2
(
dsπ

2m

)
. (36)

The probability of finding |ax2〉 = |1〉 after Step (2-i) in the r th iteration, i.e., r > 1
is given by,

Pr(r)(ax2 = 1) =
∑M−1

k=0 sin2r
(
dkπ
2m

)
∑M−1

k=0 sin2(r−1)
(
dkπ
2m

) . (37)

The probability of finding |ψr 〉 = |zs〉 after Step (2-i) in the r th iteration, i.e., r > 1
is given by,

Pr(r)(ψr = zs) =
sin2r

(
dsπ
2m

)
∑M−1

k=0 sin2(r−1)
(
dkπ
2m

) . (38)

Toget the highest probability of success for Pr(ψr = zs), Step (2) should be repeated
until,

∣∣Pr(r)(ax2 = 1) − Pr(r)(ψr = zs)
∣∣ ≤ ε for small ε ≥ 0 as shown in Fig. 4. This

happens when
∑M−1

k=0,k �=s sin
2r

(
dkπ
2m

)
≤ ε. Since the Sine function is a decreasing

function then for sufficient large r ,

M−1∑
k=0,k �=s

sin2r
(
dkπ

2m

)
≈ sin2r

(
dnsπ

2m

)
, (39)

where dns is the next maximum distance less than ds . The values of ds and dns are
unknown in advance, so let ds = m be the number of edges, then in the worst case
when ds = m, dns = m − 1 and m = n(n − 1)/2, the required number of iterations r
for ε = 10−λ and λ > 0 can be calculated using the formula,
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Fig. 4 The probability of
success for a max-bisection
instance of the graph shown in
Fig. 1 with n = 8 and m = 12
where the probability of success
of |ax2〉 is 0.6091 after the first
iteration and with probability of
success of 0.7939 after iterating
the algorithm where the
probability of success of |zmax〉,
is amplified to reach the
probability of success of |ax2〉
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0 < sin2r
(

(m − 1)π

2m

)
≤ ε, (40)

r ≥ log (ε)

2 log
(
sin

(
(m−1)π

2m

))

= log
(
10−λ

)
2 log

(
cos

(
π
2m

))

≥ λ

(
2m

π

)2

= O
(
m2

)
, (41)

where 0 ≤ m ≤ n(n−1)
2 . For a complete graphwherem = n(n−1)

2 , then the upper bound
for the required number of iterations r is O

(
n4

)
. Assuming that a single |zs〉 exists

in the superposition will increase the required number of iterations, so it is important
to notice here that the probability of success will not be over-cooked by increasing
the required number of iteration r similar to the common amplitude amplification
techniques.

3.4 Adjustments on the proposed algorithm

During the above discussion, two problems will arise during the implementation of the
proposed algorithm. The first one is to finding |ax2〉 = |1〉 for r times in a row which a
critical issue in the success of the proposed algorithm to terminate in polynomial time.
The second problem is that the value of ds is not known in advance, where the value
of Pr(1)(ax2 = 1) shown in Eq. 35 plays an important role in the success of finding
|ax2〉 = |1〉 in the next iterations, this value depends heavily on the density of 1’s, i.e.,
the ratio ds

m .
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Consider the case of a complete graph with even number of vertices, where the
number of egdes m = n(n−1)

2 and all |zk〉’s are equivalent and each can be taken as
|zs〉 then,

Pr(1)(ax2 = 1) = Mα2sin2
(
dsπ

2m

)
. (42)

This case is an easy case where setting m = ds in mth root of σX will lead to a
probability of success of certainty after a single iteration. Assuming a blind approach
where ds is not known, then this case represents theworst ratio

ds
m where the probability

of success will be≈ 0.5 for sufficient large graph. Iterating the algorithm will not lead
to any increase in the probability of both |zs〉 and |ax2〉.

In the following, adjustments on the proposed algorithm for the max-bisection and
the min-bisection graph will be presented to overcome these problems, i.e., to be able
to find |ax2〉 = |1〉 after the first iteration with the highest probability of success
without a priori knowledge of ds .

3.4.1 Adjustment for the max-bisection problem

In an arbitrary graph, the density of 1’s will be dmax 1
m . In the case of a complete graph,

there are M states with 1-distance (dk) equals to n2
4 . This case represents the worst

density of 1’s where the density will be n2
2n(n−1) slightly greater than 0.5 for arbitrary

large n. Iterating the proposed algorithmwill not amplify the amplitudes after arbitrary
number of iterations. To overcome this problem, addμmax temporary qubits initialized
to state |1〉 to the register |c0c1...cm−1〉 as follows,

|c0c1...cm−1〉 → ∣∣c0c1 . . . cm−1cmcm+1 . . . cm+μmax−1
〉
, (43)

so that the extended number of edgesmext will bemext = m+μmax and V = mext
√

σX

will be used instead of V = m
√

σX in the MAX operator, then the density of 1’s will

be n2+4μmax
2n(n−1)+4μmax

. To get a probability of success Prmax to find |ax2〉 = |1〉 after the
first iteration,

Pr(1)(ax2 = 1) = Mα2 sin2

⎛
⎝ π

(
n2
4 + μmax

)

2
(
n(n−1)

2 + μmax

)
⎞
⎠ ≥ Prmax, (44)

then the required number of temporary qubits μmax is calculated as follows,

μmax ≥ 1

1 − ω

(
n2

2
(2ω − 1) − n

2
ω

)
, (45)

where ω = 2
π
sin−1

(√
Prmax
Mα2

)
and Prmax < Mα2, with Mα2 = 1 so let Prmax

= δMα2 such that 0 < δ < 1. For example, if δ = 0.9, then Pr(1) (ax2 = 1) will be at
least 90% as shown in Fig. 5. To conclude, the problem of low density of 1’s can be
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Fig. 5 The probability of
success for a max-bisection
instance of the graph shown in
Fig. 1 with
n = 8,m = 12, μmax = 31 and
δ = 0.9, where the probability of
success of |ax2〉 is 0.9305 after
the first iteration and with
probability of success of 0.9662
after iterating the algorithm
where the probability of success
of |zmax〉 is amplified to reach
the probability of success of
|ax2〉
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solved with a polynomial increase in the number of qubits to get the solution |zmax〉
in O

(
m2

ext

) = O
(
n4

)
iterations with arbitrary high probability δ < 1 to terminate in

poly-time, i.e., to read |ax2〉 = |1〉 for r times in a row.

3.4.2 Adjustment for the min-bisection problem

Similar to the above approach, in an arbitrary graph, the density of 0’s will be dmax 0
m .

In the case of a complete graph, there are M states with 0-distance (dk) equals to
n(n−1)

2 − n2
4 . This case represents the worst density of 0’s where the density will be

n−2
2(n−1) slightly less than 0.5 for arbitrary large n. Iterating the proposed algorithm will
not lead to any amplification after arbitrary number of iterations. To overcome this
problem, addμmin temporary qubits initialized to state |0〉 to the register |c0c1...cm−1〉
as follows,

|c0c1...cm−1〉 → ∣∣c0c1 . . . cm−1cmcm+1 . . . cm+μmin−1
〉
, (46)

so that the extended number of edgesmext will bemext = m+μmin and V = mext
√

σX

will be used instead of V = m
√

σX in the MIN operator, then the density of 0’s will be
n2−2n+4μmin
2n(n−1)+4μmin

. To get a probability of success Prmax to find |ax2〉 = |1〉 after the first
iteration,

Pr(1) (ax2 = 1) = Mα2 sin2

⎛
⎝π

(
n(n−1)

2 − n2
4 + μmin

)

2
(
n(n−1)

2 + μmin

)
⎞
⎠ ≥ Prmax, (47)

then the required number of temporary qubits μmin is calculated as follows,

μmin ≥ n2

4

(
2ω − 1

1 − ω

)
+ n

2
, (48)
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where ω = 2
π
sin−1

(√
Prmax
Mα2

)
and Prmax < Mα2, with Mα2 = 1 so let Prmax

= δMα2 such that 0 < δ < 1. For example, if δ = 0.9, then Pr(1) (ax2 = 1) will be
at least 90%. To conclude similar to the case of the max-bisection graph, the problem
of low density of 0’s can be solved with a polynomial increase in the number of
qubits, larger than the case of the max-bisection graph, to get the solution |zmin〉 in
O

(
m2

ext

) = O
(
n4

)
iterations with arbitrary high probability δ < 1 to terminate in

poly-time, i.e., to read |ax2〉 = |1〉 for r times in a row.

4 Conclusion

Given an undirected graphG with even number of vertices n andm unweighted edges,
the paper proposed a bounded-error quantum polynomial-time (BQP) algorithm to
solve the max-bisection problem and the min-bisection problem, where a general
graph is considered for both problems.

The proposed algorithm uses a representation of the two problems as a Boolean
constraint satisfaction problem, where the set of edges of a graph are represented as a
set of constraints. The algorithm is divided into three stages: The first stage prepares a
superposition of all possible equally sized graph partitions in O

(
4
√
n
)
using an ampli-

tude amplification technique that runs in O

(√
N
M

)
, for N = 2n and M is the number

of possible graph partitions. The algorithm, in the second stage, evaluates the set of
constraints for all possible graph partitions. In the third stage, the algorithm amplifies
the amplitudes of the best graph bisection that achieves maximum/minimum satisfac-
tion to the set of constraints using an amplitude amplification technique that applies
an iterative partial negation where more negation is given to the set of constrains with
more satisfied constrains and a partial measurement to amplify the set of constraints
with more negation. The third stage runs in O(m2) and in the worst case runs in O(n4)
for a dense graph. It is shown that the proposed algorithm achieves an arbitrary high
probability of success of 1 − ε for small ε > 0 using a polynomial increase in the
space resources by adding dummy constraints with predefined values to give more
negation to the best graph bisection.
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