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1 Introduction and preliminaries

Polynomial time algorithms for prime factorization and discrete logarithms on quan-
tumcomputerswere given byShor in 1994 [42]. Thus, if an efficient quantumcomputer
existed (see [5,45], for recent advances), most popular cryptographic systems could
be broken and much computational work could be done much faster. Unlike classical
information, quantum information cannot be cloned [12,49], despite this fact quan-
tum (error-correcting) codes do exist [43,46]. The above facts explain why, in the
last decades, the interest in quantum computations and, in particular, in quantum cod-
ing theory grew dramatically. There exists an extensive literature on quantum codes,
see for instance [3,4,8–10,26,28] for the binary case and [2,6,16,29,33,38] for the
general case.

Classical linear codes and Hermitian and Euclidean inner products are useful tools
to construct codes in a class of quantum codes named stabilizer codes. In this paper, we
introduce J -affine variety codes and use them, together with the Hamada’s general-
ization [30] of the Steane’s enlargement procedure, to derive new stabilizer codes. The
main procedures in the literature we use are collected in Theorems 1 and 2. Further-
more, we introduce and consider a new enlargement that we state in Theorem 3. This
result extends the mentioned Hamada’s generalization and is proved in the “Appen-
dix.” With the above ideas, we obtain binary stabilizer codes which are records in [27]
and nonbinary codes that exceed the Gilbert–Varshamov bounds.

Set q = pr a positive power of a prime number p and letC be the complex numbers.
A stabilizer code C �= {0} is the common eigenspace of an abelian subgroup Δ of the
error group Gn generated by a nice error basis on the space C

qn , n being a positive
integer. The code C has minimum distance d whenever all error inGn with weight less
than d can be detected or have no effect on C but some error of weight d cannot be
detected. In addition, C is called to be pure ifΔ has not nonscalar matrices with weight
less than d. Finally, a code as above is an [[n, k, d]]q -code when it is a qk-dimensional
subspace of C

qn and has minimum distance d (see for instance [9,32]). Recall that the
Hermitian inner product of two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
in the vector space F

n
q2

is defined as x ·h y = ∑
xi y

q
i and the Euclidean product of

x and y in F
n
q as x · y = ∑

xi yi . Given a linear code C in F
n
q2

(respectively, F
n
q ), the

Hermitian (respectively, Euclidean) dual space is denoted by C⊥h (respectively, C⊥).

Theorem 1 [1,32] The following two statements hold.

(1) Let C be a linear [n, k, d] error-correcting code over Fq such that C⊥ ⊆ C.
Then, there exists an [[n, 2k − n,≥ d]]q stabilizer code which is pure to d. If
the minimum distance of C⊥ exceeds d, then the stabilizer code is pure and has
minimum distance d.

(2) Let C be a linear [n, k, d] error-correcting code over Fq2 such that C⊥h ⊆ C.
Then, there exists an [[n, 2k − n,≥ d]]q stabilizer code which is pure to d. If the
minimum distance d⊥h of the code C⊥h exceeds d, then the stabilizer code is pure
and has minimum distance d.

Codes obtained as described in Item (1) of Theorem 1 are usually referred to as
obtained from the CSS construction [10,46]. This last procedure is not only useful for
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quantum error correction but also for privacy amplification of quantum cryptography
[44]. In addition, it has been extended to construct asymmetric quantum codes which
are suitable for quantummechanical systems where the phase-flip errors happen more
frequently than the bit-flip errors [15,41]. The parameters of the codes coming from
Item (1) of Theorem 1 can be improved with the Hamada’s generalization [30] of
the Steane’s enlargement procedure [48]. Let us state the result, where wt denotes
minimum weight.

Theorem 2 [30] Let C be an [n, k] linear code over the field Fq such that C⊥ ⊆ C.
Assume that C can be enlarged to an [n, k′] linear code C ′, where k′ ≥ k + 2. Then,
there exists a stabilizer codewith parameters [[n, k+k′−n, d ≥ min{d ′, � q+1

q d ′′�}]]q ,
where d ′ = wt(C\C ′⊥) and d ′′ = wt(C ′\C ′⊥).

Using the above results, many quantum codes coming from classical codes have
been constructed, see [32] for example. A complete table of parameters corresponding
to known binary quantum codes, up to length 128, can be consulted in [27]. There
is no table for nonbinary quantum codes, although there are some codes with good
parameters, essentially concerning MDS quantum codes, quantum LDPC codes or
quantum BCH codes [1,14,31,33–35,40,50]. Most of the above-mentioned codes
have specific lengths depending on q. A way to get codes with good parameters uses
evaluation (classical) codes [21–25]. In [19,20], the authors consider affine variety
codes which form a class of evaluation codes such that duality can be characterized.
The reader can consult [23] for a lower bound for the minimum distance of these
codes.

The above-mentioned papers [19,20] considered affine variety codes, where we
could compare parameters of our codes with others given by BCH codes and improve
some of them. The evaluation at zerowas not considered, andwe only used dualitywith
respect to the Euclidean inner product. This paper is devoted to construct algebraically
generated stabilizer codes from a more general version of affine variety codes (J -
affine variety codes), where we decide which coordinates of the points to evaluate
may be zero. In this way, we get a wider range of lengths for our codes. Moreover,
in this work, both Euclidean and Hermitian duality are considered, which allows us
to obtain a richer family of codes. Notice that our codes are based on cyclotomic
sets and subfield-subcodes, so they can be seen as a natural extension of BCH codes
since these can be constructed with cyclotomic cosets and are subfield-subcodes of
Reed–Solomon codes.

Stabilizer codes derived from the Euclidean inner product and J -affine variety
codes (and their subfield-subcodes) are studied in Sect. 2, and their parameters are
described in Theorem 6. Section 3 develops the Hermitian case; the main result is
Theorem 7, which also gives the parameters of the corresponding codes. To prove this
result, we show that Delsarte theorem [11] also holds in our case, that is, with respect
to Hermitian inner product. Furthermore, we prove in the “Appendix” the following
generalization of the Steane’s enlargement procedure.

Theorem 3 Let C1 and Ĉ1 be two linear codes over the field Fq , with parameters
[n, k1, d1] and [n, k̂1, d̂1], respectively, and such that C⊥

1 ⊆ Ĉ1. Consider a linear
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code D ⊆ F
n
q such that dim D ≥ 2 and (C1 + Ĉ1) ∩ D = {0}. Set C2 = C1 + D

and Ĉ2 = Ĉ1 + D, that enlarge C1 and Ĉ1, respectively, with parameters [n, k2, d2]
and [n, k̂2, d̂2] (k2 − k1 = k̂2 − k̂1 = dim D > 1). Set C3 the code sum of the vector
spaces C1 + Ĉ1 + D, whose parameters we denote by [n, k3, d3]. Then, there exists a
stabilizer code with parameters

[[

n, k2 + k̂1 − n, d ≥ min

{

d1, d̂1,

⌈
d2 + d̂2 + d3

2

⌉}]]

2

,

when q = 2. Otherwise, the parameters are

[[
n, k2 + k̂1 − n, d ≥ min

{
d1, d̂1, M

}]]

q
,

where M = max{d3 + �(d2/q)�, d3 + �(d̂2/q)�}.
In Sect. 4 (see Table 2), we use Theorem 3 to determine stabilizer binary codes

of length 127 which are records in [27]. Within the same section and with the help
of the previously mentioned results, we provide tables with unknown stabilizer codes
over different ground fields that exceed the Gilbert–Varshamov bounds [13,17,39],
[32, Lemma 31]. When comparisons are possible, our codes improve those available
in the literature.

2 Stabilizer J-affine variety codes: Euclidean inner product

In this section, we introduce J -affine variety codes and characterize their duality
with respect to the Euclidean inner product. Our results provide stabilizer quantum
codes, derived from these codes and their subfield-subcodes, whose parameters are
also described.

2.1 Euclidean duality for J-affine variety codes

Set q = pr a positive power of a prime number p and consider the finite field Fq .
Next we are going to introduce a family of affine variety codes and study their dual
codes.

Consider the ring of polynomials Fq [X1, X2, . . . , Xm] inm variables over the field
Fq and fix m integers N j > 1 such that N j − 1 divides q − 1 for 1 ≤ j ≤ m. For a
subset J ⊆ {1, 2, . . . ,m}, set IJ the ideal of the ring Fq [X1, X2, . . . , Xm] generated
by X

N j
j − X j whenever j /∈ J and by X

N j−1
j − 1 otherwise, for 1 ≤ j ≤ m. We

denote by RJ the quotient ring

RJ := Fq [X1, X2, . . . , Xm]/IJ .

Set Z J = Z(IJ ) = {P1, P2, . . . , PnJ } the set of zeros over Fq of the defining ideal
of RJ . Clearly, the points Pi , 1 ≤ i ≤ nJ , can have 0 as a coordinate for those indices j
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which are not in J but this is not the case for the remaining coordinates. Denote evJ :
RJ → F

nJ
q the evaluation map defined as evJ ( f ) = ( f (P1), f (P2), . . . , f (PnJ ),

where nJ = ∏
j /∈J N j

∏
j∈J (N j − 1). Denote also Tj = N j − 1 except when j ∈ J ,

in this last case, Tj = N j − 2, consider the set

HJ := {0, 1, . . . , T1} × {0, 1, . . . , T2} × · · · × {0, 1, . . . , Tm}

and a nonempty subsetΔ ⊆ HJ . Then, we define the J -affine variety code given byΔ,
E J

Δ, as the vector subspace (over Fq ) of F
nJ
q generated by the evaluation by evJ of the

set of classes in RJ corresponding tomonomials X a := Xa1
1 Xa2

1 · · · Xam
m such that a =

(a1, a2, . . . , am) ∈ Δ. Stabilizer codes constructed from {1, 2, . . . ,m}-affine variety
codes were considered in [19,20] because they allowed us to do comparisons with
some quantum BCH codes. In this paper, ∅-affine variety codes are named evaluating
at zero affine variety codes although in some papers they are simply called affine
variety codes [23]. We will standH forH∅, and we will also writeH′ := H{1,2,...,m}.
Notice that considering different sets J , we get codes of different lengths

(N1 − 1)(N2 − 1) · · · (Nm − 1) = n{1,2,...,m} ≤ nJ ≤ n∅ = N1N2 · · · Nm .

Generalized Reed–Muller codes are a well-known family of evaluating at zero
affine variety codes. Indeed, they can be defined as RM(r,m) := EΔ0

(r,m)
, where

N j = q for all j and Δ0
(r,m) corresponds with the exponents of the monomials in the

set { f ∈ R∅| deg f ≤ r}, deg f meaning the total degree of the unique representative
of f of degree less than q in each indeterminate.

The following result extends one given in [7] for N j = q, 1 ≤ j ≤ m, and it will
be used for describing dual codes of J -affine variety codes.

Proposition 1 Let J ⊆ {1, 2, . . . ,m}, consider a, b ∈ HJ and let X a and X b be two
monomials representing elements in RJ . Then, the Euclidean inner product evJ (X a) ·
evJ (X b) is not 0 if, and only if, the following two conditions happen.

• For every j ∈ J , it holds that a j +b j ≡ 0 mod (N j −1), (i.e., a j = N j −1−b j

when a j + b j > 0 or a j = b j = 0).
• For every j /∈ J , it holds that

– either a j+b j > 0 anda j+b j ≡ 0 mod (N j−1) (i.e., a j = N j−1−b j if 0 <

a j , b j < N j − 1 or (a j , b j ) ∈ {
(0, N j − 1), (N j − 1, 0), (N j − 1, N j − 1)

}

otherwise),
– or a j = b j = 0 and p � | N j .

Proof For j = 1, 2, . . . ,m, pick an element ξ j ∈ Fq with order N j − 1; the existence

is guaranteed by the fact that N j −1 divides q−1. Then 〈ξ j 〉 = {ξ0j , ξ1j , . . . , ξ
N j−1
j } =

Z(X
N j−1
j − 1) and 〈ξ j 〉 ∪ {0} = Z(X

N j
j − X j ). By the distributive law, one has that

evJ (X
a) · evJ (X b) =

⎛

⎝
∏

j∈J

∑

γi∈〈ξ j 〉
γ
a j+b j
i

⎞

⎠

⎛

⎝
∏

j /∈J

∑

γi∈〈ξ j 〉∪{0}
γ
a j+b j
i

⎞

⎠ .
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Therefore, the previous product is different from zero if, and only if, every factor is
different from zero.

Let us consider j ∈ J and assume that a j + b j > 0 and a j = N j − 1 − b j , then

a j + b j = N j − 1, and it happens that
∑

γi∈〈ξ j 〉 γ
a j+b j
i �= 0 because

∑

γi∈〈ξ j 〉
γ
a j+b j
i =

∑

γi∈〈ξ j 〉
γ 0
i = N j − 1 �= 0 (in Fq).

The same result holds for a j = b j = 0. Note that N j −1 �= 0 in Fq since p � | N j −1.
Indeed if p | N j − 1, then, as N j − 1| pr − 1, p had to divide pr − 1 which is false.
It remains to show what happens when a j + b j �≡ 0 mod (N j − 1). In this case,
a j + b j = c �= 0 in the ring of congruences modulo N j − 1, which we set ZN j−1, and
the following chain of equalities holds:

∑

γi∈〈ξ j 〉
γ
a j+b j
i =

N j−2∑

i=0

(ξ ij )
c =

N j−2∑

i=0

(ξ cj )
i = 1 − (ξ cj )

N j−1

1 − ξ cj
= 0,

which completes the proof for the case j ∈ J . Notice that ξ cj �= 1 since c �= 0 in
ZN j−1.

To finish, assume j /∈ J . We remark that 0k = 0 for k �= 0 and 00 = 1. If
a j + b j > 0 then

∑

γi∈〈ξ j 〉∪{0}
γ
a j+b j
i =

∑

γi∈〈ξ j 〉
γ
a j+b j
i

and the corresponding factor will be different from zero if and only if a j + b j ≡ 0
mod (N j − 1) (by the case j ∈ J ). However, if a j = b j = 0, then

∑

γi∈〈ξ j 〉∪{0}
γ
a j+b j
i = 1 +

∑

γi∈〈ξ j 〉
γ 0
i = N j

that will be equal to zero if and only if p | N j . ��
The above result shows that each monomial X a = Xa1

1 Xa2
2 · · · Xam

m , a ∈ H, admits
2card(Q) monomials X b such that evJ (X a) · evJ (X b) �= 0, where

Q = { j | 1 ≤ j ≤ m; a j = N j − 1}.

Now, for a set J as above, consider a subset Δ ofHJ . If Δ ⊆ H′, we define Δ⊥ as
the set

HJ\{(N1 − 1 − a1, N2 − 1 − a2, . . . , Nm − 1 − am) | a ∈ Δ}.
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Otherwise, i.e., in our monomials there is an exponent of some X j equal to N j − 1,
Δ⊥ is defined as

HJ\
{{(N1 − 1 − a1, N2 − 1 − a2, . . . , Nm − 1 − am)

|a ∈ Δ ∩ H′} ∪ {a′|a ∈ Δ, a /∈ H′}} ,

where a′
j = N j − 1− a j if a j �= N j − 1 and a′

j equals either N j − 1 or 0 otherwise.
Notice that an element a ∈ Δ, a /∈ H′, determines several values a′.

This definition allows us to state the following straightforward result:

Proposition 2 Consider a set Δ ⊆ HJ as above.

(1) If the following inclusion Δ ⊆ H′ happens, then the equality of codes (E J
Δ)⊥ =

E J
Δ⊥ holds, where (E J

Δ)⊥ denotes the dual code of E J
Δ.

(2) Otherwise, if Δ � H′, then E J
Δ⊥ ⊆ (E J

Δ)⊥.

Remark 1 When considering {1, 2, . . . ,m}-affine variety codes, the defining set Δ

must satisfy Δ ⊆ H′. Thus the same reasoning as above shows that (E {1,2,...,m}
Δ )⊥ =

E {1,2,...,m}
Δ⊥ .

2.2 Subfield-subcodes of J-affine variety codes

In this section, we show some results concerning dimension and self-orthogonality
with respect to Euclidean inner product of subfield-subcodes of J -affine variety codes.

Recall that q = pr and pick a positive integer s such that s divides r .With the above
notations, consider the setHJ and recall that N j − 1 divides q − 1 for all j such that
1 ≤ j ≤ m.Nextwedefine three trace typemapswhichwill be useful: trsr : Fpr → Fps

defined as trsr (x) = x + x ps + · · · + x ps(
r
s −1)

; tr : F
nJ
pr → F

nJ
ps , determined by trsr

componentwise and T : RJ → RJ , T ( f ) = f + f p
s + · · · + f p

s( rs −1)
.

For 1 ≤ j ≤ m, consider the above-defined integer numbers Tj and, as before,
denote by ZTj the quotient ring Z/TjZ. In this section, we will consider cyclotomic
sets that are subsets I of the cartesian product ZT1 × ZT2 × · · · × ZTm such that
I = {ps · a | a ∈ I}, where ps · a = (psa1, psa2, . . . , psam). A cyclotomic set I
is minimal (for the above given exponent s) whenever all the elements in I can be
expressed as psi · a for some fixed element a ∈ I and some nonnegative integer i .
Consider a setA representing the minimal cyclotomic sets, that is pick a ∈ I for each
minimal cyclotomic set in such a way that I = Ia for some a ∈ A. Thus, the set of
minimal cyclotomic sets will be {Ia}a∈A. Moreover, set ia := card(Ia).

The subfield-subcodes (over Fps ) of our J -affine variety codes E J
Δ are defined as

E J,σ
Δ := E J

Δ∩F
nJ
ps .WewriteC J

Δ (respectively,C J,σ
Δ ) the dual code of E J

Δ (respectively,

E J,σ
Δ ). Moreover, an element f ∈ RJ evaluates to Fps whenever f (a) ∈ Fps for all

a ∈ Z J . Notice that this happens if and only if f = T (g) for some g ∈ RJ . Now we
are ready to state the following result that determines the dimension of the subfield-
subcodes E J,σ

Δ . It can be proved reasoning as in [19, Theorem 3].

123



3218 C. Galindo et al.

Theorem 4 Letβa be a primitive element of the finite fieldFpsia and setTa : RJ → RJ

the mapping defined as Ta( f ) = f + f p
s + · · · + f p

s(ia−1)
. Consider a set Δ ⊆ HJ .

Then, the vector space E J,σ
Δ is generated by the images under the evaluation map evJ

of the following elements in RJ :
⋃

a∈A|Ia⊆Δ

{
Ta(βl

aX
a) | 0 ≤ l ≤ ia − 1

}
.

Next, we provide a result concerning the dimension of the dual code C J,σ
Δ .

Theorem 5 Let Δ be a subset of HJ . Consider the dual code C J,σ
Δ of the subfield-

subcode E J,σ
Δ . Then:

(1) The dimension of the code C J,σ
Δ satisfies the inequality

dim(C J,σ
Δ ) ≥

∑

a∈A|Ia∩Δ⊥�=∅
ia.

(2) If Ia ∩ Δ⊥ �= ∅ whenever Ia ⊆ Δ, then the inclusion E J,σ
Δ ⊆ C J,σ

Δ holds.
(3) Assume thatΔ is a subset ofH′. Then we get an equality in (1), and the conditions

given in (2) are equivalent.

Proof We keep the above notation and recall that E J
Δ⊥ ⊆ (E J

Δ)⊥. Moreover

(E J,σ
Δ )⊥ = tr(E J

Δ)⊥ holds by Delsarte theorem [11]. Therefore, we get tr(E J
Δ⊥) ⊆

(E J,σ
Δ )⊥. Set F

Δ⊥
pr the vector space over the field Fpr of polynomials generated by

monomials with exponents inΔ⊥, which is generated by the set {T (γ Xa}a∈Δ⊥,γ∈Fpr
.

Taking into account that ev ◦ T = tr ◦ ev, we deduce that ev
(
T (FΔ⊥

pr )
)

= tr(E J
Δ⊥)

which concludes the proof of items (1) and (2). Item (3) follows from the same rea-
soning and the equality E J

Δ⊥ = (E J
Δ)⊥. ��

2.3 Results on stabilizer codes

The results and ideas in Sects. 2.1 and 2.2 together with Theorem 1 prove the following
result which, keeping the notations as above, states some results for stabilizer codes
constructed with J -affine variety codes.

Theorem 6 Let N j , 1 ≤ j ≤ m, be positive integers such that N j − 1 divides q − 1
for all index j . Let Δ be a subset of the above-defined setHJ . Then:

(1) Assume the set inclusion Δ ⊆ Δ⊥. Then, a stabilizer code coming from
E J

Δ can be constructed. Its parameters are [[nJ , k,≥ d]]q , where nJ =
∏

j /∈J N j
∏

j∈J (N j − 1), k = nJ − 2 card(Δ) and d = d
(
(E J

Δ)⊥
)
.

(2) Consider s a positive integer that divides r and subfield-subcodes with respect to
the field Fps . Assume that Ia ∩ Δ⊥ �= ∅ whenever Ia ⊆ Δ. Then, a stabilizer

code coming from E J,σ
Δ can be constructed. Its parameters are [[nJ ,≥ k,≥ d]]ps ,

where nJ is as above, k = 2
∑

a∈A|Ia∩Δ⊥�=∅ ia − nJ and d = d
(
(E J,σ

Δ )⊥
)
.
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(3) Let s and Δ be as in (2). Suppose also that Δ ⊆ H′. Then, the parame-
ters of the corresponding stabilizer code are [[nJ , k,≥ d]]ps , where nJ =
∏

j /∈J N j
∏

j∈J (N j − 1), k = nJ − 2
∑

Ia|Ia⊆Δ ia and d = d
(
(E J,σ

Δ )⊥
)
.

Notice that the condition Δ ⊆ Δ⊥ for sets Δ containing the element 0 can only
happen when p | N j , for some j /∈ J .

Later, in Sect. 4, we will provide some examples of quantum codes with good
parameters. Now, without any pretension on parameters and only for ease of reading,
we give a simple example of stabilizer codes constructed with the tools of this section.

Example 1 With the above notation, consider p = 2, r = 4,m = 2, N1 = 4, N2 = 6
and set J = {2} ⊆ {1, 2}. It is clear that RJ = Fq [X1, X2]/〈X4

1 − X1, X5
2 − 1〉,

T1 = 3, T2 = 4,HJ = {0, 1, 2, 3}×{0, 1, 2, 3, 4} andH′ = {0, 1, 2}×{0, 1, 2, 3, 4}.
If we consider the subset ofHJ

Δ := {(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (2, 0), (2, 1), (2, 4)},
then it is clear that Δ ⊆ H′ and by the paragraph before Proposition 2,
Δ⊥ = Δ ∪ {(0, 0), (3, 0)}. Then Δ ⊆ Δ⊥, Items (1) in Proposition 2 and Theo-
rem 6 and [36] determine a [[20, 20− 2 · 9, 4]]16 code because the cardinality of Δ is
nine.

With respect to subfield-subcodes, set s = 1, then the minimal cyclotomic sets
are: I(0,0) = {(0, 0)}, I(0,1) = {(0, 1), (0, 2), (0, 3), (0, 4)}, I(1,0) = {(1, 0), (2, 0)},
I(1,1) = {(1, 1), (2, 2), (1, 4), (2, 3)}, I(1,2) = {(1, 2), (2, 4), (1, 3), (2, 1)}, I(3,0) =
{(3, 0)}, I(3,1) = {(3, 1), (3, 2), (3, 3), (3, 4)}. Consider the set Δ1 = I(0,1) ∪ I(1,2),
where i(0,1) = 4, i(1,2) = 4 and as, (0, 1) ∈ I(0,1) ∩ Δ⊥

1 and (1, 2) ∈ I(1,2) ∩ Δ⊥
1 ,

the inclusion E J,σ
Δ1

⊆ C J,σ
Δ1

holds by Item (2) of Theorem 5. Finally, Δ1 ⊆ H′ and
Statement (3) in Theorem 6 shows that we can construct a [[20, 20− 2 · (4+ 4), 4]]2
stabilizer code.

3 Stabilizer J-affine variety codes: Hermitian inner product

We have just studied stabilizer codes determined by J -affine variety codes which are
self-orthogonal with respect to the Euclidean inner product. Next we describe what
happens when one considers the Hermitian inner product.

3.1 Hermitian duality for affine variety codes

In this section, our ring of polynomials is Fq2 [X1, X2, . . . , Xm] where, as above,
q = pr and fix m integers N j > 1, 1 ≤ j ≤ m, such that each N j − 1 divides q2 − 1.
Following Sect. 2.1, we define the rings RJ as quotients of the above ring. Now we
state our first result.

Proposition 3 Let J ⊆ {1, 2, . . . ,m}, consider a, b ∈ HJ and let X a and X b be two
monomials representing elements in RJ . Then, theHermitian inner product evJ (X a)·h
evJ (X b) is not 0 if, and only if, the following two conditions happen.
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• For every j ∈ J , it holds that qa j + b j ≡ 0 mod (N j − 1), (i.e., b j = −qa j +
λ(N j − 1), for some λ ≥ 0).

• For every j /∈ J , it holds that
– either a j + b j > 0 and qa j + b j ≡ 0 mod (N j − 1) (i.e., b j =

−qa j + λ(N j − 1), for some λ > 0, if 0 < a j , b j < N j − 1, or
(a j , b j ) ∈ {

(0, N j − 1), (N j − 1, 0), (N j − 1, N j − 1)
}
, otherwise);

– or a j = b j = 0 and p � | N j .

Proof It follows from Proposition 1 after taking into account that evJ (X a) ·h
evJ (X b) = evJ (X a) · evJ (Xq·b), and a j + qb j ≡ 0 mod (N j − 1) if, and only
if, b j ≡ −qa j mod (N j − 1). Notice that this last equivalence happens because
N j − 1 divides q2 − 1 and thus q is the inverse of q modulo N j − 1. ��

Consider a set Δ ⊆ HJ and an element a in Δ as in Sect. 2. Recall that, now,
our field is Fq2 . Suppose that Δ ⊆ H′, and, for each j , set [−qa j ]N j−1 a suitable
representant of the congruence class modulo N j − 1 given by −qa j . Then, we define
Δ⊥h as the set

HJ\{([−qa1]N1−1, [−qa2]N2−1, . . . , [−qam]Nm−1) | a ∈ Δ}.

Otherwise, Δ⊥h is defined as

HJ\
{{([−qa1]N1−1, [−qa2]N2−1, . . . , [−qam]Nm−1)|a

∈ Δ ∩ H′} ∪ {a′|a ∈ Δ, a /∈ H′}} ,

where a′ is a multi-valued vector defined by a′
j = [−qa j ]N j−1 if a j /∈ {0, N j − 1},

a′
j is equal to N j − 1 if a j = 0 and a′

j admits two values which are N j − 1 and 0 if
a j = N j − 1.

Next we give a result about Hermitian duality of our codes which can be deduced
from Proposition 3.

Proposition 4 Let Δ ⊆ HJ be as above.

(1) Assume Δ ⊆ H′. Then the equality of codes (E J
Δ)⊥h = E J

Δ⊥h
holds.

(2) Otherwise, Δ � H′, it happens that E J
Δ⊥h

⊆ (E J
Δ)⊥h .

Anecessary condition for the inclusion of a generalized Reed–Muller code overFq2

into its Hermitian dual is given in [40]. We conclude this section with the following
result which proves that such a condition is also sufficient.

Proposition 5 Set RMq2(r,m) the (r,m)-generalized Reed–Muller code over the

finite field Fq2 . Then, the codes’ inclusion RMq2(r,m) ⊆ (
RMq2(r,m)

)⊥h holds
if, and only if, 0 ≤ r ≤ m(q − 1) − 1.

Proof By [40], it suffices to prove that r > m(q − 1) − 1 implies

RMq2(r,m) �
(
RMq2(r,m)

)⊥h .
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Indeed, consider the m-tuple q − 1 = (q − 1, q − 1, . . . , q − 1) that provides
the monomial Xq−1. Clearly ev∅(Xq−1) ∈ RMq2(r,m), however ev∅(Xq−1) /∈
(
RMq2(r,m)

)⊥h because q − 1 + q(q − 1) = q2 − 1 which, by Proposition 3,
proves that ev∅(Xq−1) ·h ev∅(Xq−1) �= 0. This concludes the proof. ��

3.2 Results on stabilizer codes using Hermitian inner product

In this section, we prove that, considering duality with respect to the inner Hermitian
product, an analogous result to Theorem 6 holds. As above, q = pr and s is a positive
integer that divides r . The ground field of our evaluation codes is Fq2 , and we consider
subfield-subcodes over Fp2s . Recall that N j − 1 divides q2 − 1 for all j . The trace

maps are defined as: tr2s2r : Fp2r → Fp2s , tr
2s
2r (x) = x + x p2s + · · · + x p2s(

r
s −1)

;
tr : F

nJ
p2r

→ F
nJ
p2s

, determined by tr2s2r componentwise and T : RJ → RJ , T ( f ) =
f + f p

2s + · · · + f p
2s( rs −1)

.
Let us state our before-mentioned result for codes constructed using the Hermitian

inner product.

Theorem 7 Let N j , 1 ≤ j ≤ m, be positive integers such that N j −1 divides p2r −1
for all index j . Let Δ be a subset of the above-defined setHJ .

(1) Assume the set inclusion Δ ⊆ Δ⊥h . Then, a stabilizer code coming from E J
Δ can

be constructed, and their parameters can be obtained with the same formulae
given in Item (1) of Theorem 6 but replacing ⊥ with ⊥h.

(2) Consider a positive integer s dividing r and subfield-subcodes with respect to
the field Fp2s . Assume that Ia ∩ Δ⊥h �= ∅ whenever Ia ⊆ Δ. Then, a stabilizer

code coming from E J,σ
Δ can be constructed. Formulae in Item (2) (respectively (3),

wheneverΔ ⊆ H′) ofTheorem 6, replacing⊥with⊥h, determine the parameters
of these codes.

Proof Item (1) follows from Statement (2) of Theorem 1 and similar arguments to
those given in Sect. 2. With respect to Item (2), we prove our second statement since
the unique difference with respect to the first one relies in Proposition 4 and we can
only ensure (E J

Δ)⊥h = EΔ⊥h when Δ ⊆ H′.
Delsarte theorem is stated for Euclidean dual. Let us show that it is true in our

case and so our result is proved with the same arguments given in Sect. 2 and (2) of
Theorem 1. We start by proving the inclusion (E J,σ

Δ )⊥h ⊇ tr(E J
Δ)⊥h . Indeed, to do

it, it suffices to take a ∈ (E J
Δ)⊥h and b ∈ E J,σ

Δ and consider the following chain of
equalities

tr(a) ·h b = tr(a) · bq = tr2s2r (a · bq) = tr2s2r (a ·h b) = tr2s2r (0) = 0.

Finally, we prove that the dimensions of the vector spaces over Fp2s , (E J,σ
Δ )⊥h

and tr(E J
Δ)⊥h , coincide, which concludes the proof. Write Δ = Δ1 ∪ Δ2 where

Δ1 is the union of the minimal cyclotomic sets Ia which are included in Δ.
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Δ2 does not contain any complete set Ia. Theorem 4 proves that the dimen-
sion of the vector space (E J,σ

Δ )⊥h is nJ − card Δ1. Now, consider the set
HJ\{([−qa1]N1−1, [−qa2]N2−1, . . . , [−qam]Nm−1) | a ∈ Δ} and notice that the
set of tuples ([−qb1]N1−1, [−qb2]N2−1, . . . , [−qbm]Nm−1), defined by the elements
b in a minimal cyclotomic set Ia, determine a minimal cyclotomic set of the same
size, which we denote I−qa. Moreover, Ia �= Ia′ implies I−qa �= I−qa′ . Taking into
account that

dim tr(E J
Δ)⊥h =

∑

a∈A|Ia∩Δ⊥h �=∅
ia

and that Ia ∩ Δ⊥h = ∅ if, and only if, a = −qc, Ic ⊂ Δ1, we deduce that
dim tr(E J

Δ)⊥h = nJ − card Δ1 and our proof is finished. ��

We remark that, as in the previous section, the condition Δ ⊆ Δ⊥h for sets Δ

containing the element 0 can only happen when p | N j , for some j /∈ J .
As above, we give an example only to facilitate the readability of this section.

Examples with good parameters will be found in the next section.

Example 2 With the previous notations, set p = 2, r = 4, s = 2, N1 = 4, N2 = 6.
Also, m = 2 and J = {2}. We deduce our example from the second statement in
Theorem 7. The minimal cyclotomic sets are {(0, 0)}, {(0, 1), (0, 4)}, {(0, 2), (0, 3)},
{(1, 0)}, {(1, 4), (1, 1)}, {(1, 3), (1, 2)}, {(2, 0)}, {(2, 1), (2, 4)}, {(2, 2), (2, 3)},
{(3, 0)}, {(3, 2), (3, 3)}, {(3, 4), (3, 1)}. The set Δ in Example 1 cannot be used now,
since (I(2,0) = {(2, 0)}) ∩ Δ⊥h = ∅. To prove it, it suffices to recall that s = 2 and to
apply the paragraph after the proof of Proposition 3.

Finally, consider the three minimal cyclotomic sets I(0,1) = {(0, 1), (0, 4)},
I(0,2) = {(0, 2), (0, 3)},I(2,1) = {(2, 1), (2, 4)} and the setΔ2 = I(0,1)∪I(0,2)∪I(2,1)
which satisfies the requirements in Theorem 7 because, by the above-mentioned para-
graph, to determine the Hermitian dual, each element in Δ2 erases from HJ another
one which is not in Δ2. For instance, (0, 4) and (2, 4), erase (3, 2) and (2, 2), respec-
tively. Each minimal cyclotomic set has two elements and therefore, by [36] and Item
(2) in Theorem 7, we get a [[20, 20 − 2(2 + 2 + 2), 3]]2 code.

We conclude this section with a short remark on decoding of our codes.

Remark 2 Since classical methods of error correction can be adapted to decode quan-
tum codes [10,38,47], we briefly comment on the decoding of affine variety codes.
The literature contains some decoding procedures for affine variety codes [18,37], a
subclass of J -affine variety codes, which we believe that could be easily adapted to
decode J -affine variety codes as well. More efficient decoding procedures, which cor-
rect up to the Feng–Rao bound, have been described for affine variety codes defined
by order functions (see [25] and references therein). It would be interesting to get
self-orthogonal order domain codes providing good stabilizer codes, and investigate
whether our examples are given by codes of this type.
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4 Some good quantum codes

4.1 Stabilizer codes with Euclidean inner product

We devote this section to give some examples of stabilizer codes obtained applying
Theorems 2, 3 and 6, with the help of [36]. We first provide parameters of some
stabilizer codes over F2. These codes come from subfield-subcodes of J -affine variety
codes.With the above notation, set p = 2, r = 7, s = 1, N1 = 128 and consider codes
Ci = Cσ

Δi
, Ĉi = Cσ

Δ̂i
, i = 1, 2 and C3 = Cσ

Δ3
, where we have omitted the super-index

J = {1}. Table 1 shows their defining sets Δ and parameters (as linear codes).
Theorem 3 applied to these codes provides the stabilizer code C1. Table 2 displays

the parameters of this stabilizer quantum code and several expurgations. According to
[27], the parameters of the codes in Table 2 improve the parameters of the best known
binary quantum codes, and thus they are records.

Consider now F3 as a ground field. Table 4 shows defining sets, values p, r, s, N j

and sets J as above defined to determine stabilizer codes coming from subfield-
subcodes of J -affine variety codes. They are obtained following Item (3) in Theorem6.
The corresponding parameters are displayed in Table 3. Parameters of the codes given
by Steane enlargement, SE, can be seen in Table 5. Notice that all these codes exceed

Table 1 J -affine variety codes over F2

Code n k d Defining set Δ

C1 127 85 12 Δ1 = {42, 84, 41, 82, 37, 74, 21, 2, 4, 8, 16, 32, 64, 1, 6,
12, 24, 48, 96, 65, 3, 10, 20, 40, 80, 33, 66, 5, 14, 28,

56, 112, 97, 67, 7, 18, 36, 72, 17, 34, 68, 9}
Ĉ1 127 91 12 Δ̂1 = {0, 2, 4, 8, 16, 32, 64, 1, 6, 12, 24, 48, 96,

65, 3, 10, 20, 40, 80, 33, 66, 5, 14, 28,

56, 112, 97, 67, 7, 18, 36, 72, 17, 34, 68, 9}
C2 127 99 8 Δ2 = {42, 84, 41, 82, 37, 74, 21, 2, 4, 8, 16, 32, 64, 1, 6,

12, 24, 48, 96, 65, 3, 10, 20, 40, 80, 33, 66, 5}
Ĉ2 127 105 8 Δ̂2 = {0, 2, 4, 8, 16, 32, 64, 1, 6, 12, 24, 48, 96,

65, 3, 10, 20, 40, 80, 33, 66, 5}
C3 127 106 7 Δ3 = {2, 4, 8, 16, 32, 64, 1, 6, 12, 24, 48, 96,

65, 3, 10, 20, 40, 80, 33, 66, 5}

Table 2 New records of
quantum codes over F2

Code n k d≥ Distance in [27]

C1 127 63 12 11

C2 = Subcode(C1, 62) 127 62 12 11

C3 = Subcode(C1, 61) 127 61 12 11

C4 = Subcode(C1, 60) 127 60 12 11

C5 = Subcode(C1, 59) 127 59 12 11
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Table 3 Stabilizer codes over F3

Code/subset n k d≥ Code/subset n k d≥
C1/Δ1 144 132 3 C2/Δ2 144 126 4

C3/Δ3 72 60 2 C4/Δ4 72 62 3

C5/Δ5 72 56 4 C6/Δ6 72 44 6

Table 4 Defining sets of J -affine variety codes over F3

Subset p r s N1 − 1 N2 − 1 N3 − 1 Set J

Δ1 = {(0, 0, 0), (7, 6, 1), (5, 2, 1),
(0, 3, 1), (0, 1, 1), (0, 4, 1)} 3 2 1 8 8 2 {2, 3}

Δ2 = {(0, 0, 0), (7, 6, 1), (5, 2, 1),
(0, 3, 1), (0, 1, 1), (0, 4, 1),
(0, 0, 1), (6, 3, 0), (2, 1, 0)}

3 2 1 8 8 2 {2, 3}

Δ3 = {(0, 4)} 3 4 1 8 8 – {2}

Δ4 = {(0, 4), (0, 7), (0, 5), (7, 4), (5, 4)} 3 4 1 8 8 – {2}

Δ5 = {(0, 4), (0, 7), (0, 5), (7, 4),
(5, 4), (0, 0), (4, 7), (4, 5)} 3 4 1 8 8 – {2}

Δ6 = {(0, 4), (0, 7), (0, 5), (7, 4), (5, 4),
(0, 0), (4, 7), (4, 5), (3, 7), (1, 5),

(0, 6), (0, 2), (6, 5), (2, 7)}
3 4 1 8 8 – {2}

Table 5 Stabilizer codes over
F3 exceeding the
Gilbert–Varshamov bounds.
Obtained from codes Ci ,
1 ≤ i ≤ 6, in Table 3

Code n k d≥ Type

C7 = SE(C2,C1) 144 129 4 GV

C8 = SE(C4,C3) 72 66 3 GV

C9 = SE(C5,C4) 72 59 4 GV

C10 = SE(C6,C5) 72 50 6 GV

the different known versions of the (quantum) Gilbert–Varshamov bound [13,17,39],
[32, Lemma 31], which is noted in the tables by saying that are of type GV.

Finally, we use Theorem 3 to give a stabilizer code C over the field F4 with para-
meters [[63, 45,≥6]]4, which is of type GV. Notice that La Guardia in [33] (see also
[30]) gives two stabilizer codes with parameters [[63, 42,≥6]]4 and [[63, 46,≥5]]4.
Our code improves the first one and has relative parameters better than the second
one. To construct C , it suffices to take values p = 2, r = 6, s = 2 and N1 = 64
and apply Theorem 3 with respect to the affine variety codes Ci = Cσ

Δi
, Ĉi = Cσ

Δ̂i
,

i = 1, 2 and C3 = Cσ
Δ3

, again the super-index J = {1} is omitted. Table 6 shows the
sets Δ and their parameters. Notice that codes and parameters in Table 6 correspond
to linear codes.
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Table 6 J -affine variety codes over F4 that produce a [[63, 45, ≥6]]4 quantum code by Theorem 3

Code n k d Defining set Δ

C1 63 52 6 Δ1 = {0, 21, 8, 32, 2, 40, 34, 10, 62, 59, 47}
Ĉ1 63 53 6 Δ̂1 = {21, 8, 32, 2, 40, 34, 10, 62, 59, 47}
C2 63 55 5 Δ2 = {0, 21, 8, 32, 2, 40, 34, 10}
Ĉ2 63 56 4 Δ̂2 = {21, 8, 32, 2, 40, 34, 10}
C3 63 56 4 Δ3 = {21, 8, 32, 2, 40, 34, 10}

Table 7 Stabilizer codes over F2

Code/subset n k d≥ Type Code/subset n k d≥ Type

C1/Δ1 225 205 4 GV C2/Δ2 225 197 5 GV

C3/Δ3 240 222 4 GV

Table 8 Defining sets of the codes over F2 in Table 7

Subset p r s N1 − 1 N2 − 1 Set J

Δ1 = {(12, 5), (3, 5), (9, 13), (6, 7),
(13, 13), (7, 7), (5, 9), (5, 6),

(9, 0), (6, 0)}
2 4 2 15 15 {1, 2}

Δ2 = {(12, 5), (3, 5), (9, 13), (6, 7),
(13, 13), (7, 7), (5, 9), (5, 6),
(9, 0), (6, 0), (10, 8), (10, 2),

(12, 12), (3, 3)}
2 4 2 15 15 {1, 2}

Δ3 = {(4, 4), (1, 1), (0, 9), (0, 6), (0, 14),
(0, 11), (8, 4), (2, 1), (0, 10)} 2 4 2 15 15 {2}

4.2 Stabilizer codes with the Hermitian inner product

This section gives examples of stabilizer codes obtained following Theorem 7. They
are constructed from subfield-subcodes of J -affine variety codes, and we have con-
sidered duality with respect to the Hermitian inner product. We group them in tables
corresponding to the same ground field. We display first the parameters and the type
(GV or not) and afterward the defining set Δ and the corresponding values p, r, s, N j

and sets J . Tables 7 and 8 (respectively Tables 9 and 10, 11 and 12, 13 and 14, 15 and
16) correspond to stabilizer codes over F2 (respectively, F3, F4, F5, F7).
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Table 9 Stabilizer codes over F3

Code/subset n k d≥ Type Code/subset n k d≥ Type

C1/Δ1 40 32 4 GV C2/Δ2 40 26 6 GV

C3/Δ3 40 20 7 GV C4/Δ4 40 16 8 GV

C5/Δ5 45 33 4 GV C6/Δ6 45 27 5

C7/Δ7 81 73 4 GV C8/Δ8 91 73 6 GV

Table 10 Defining sets of the codes over F3 in Table 9

Subset p r s N1 − 1 N2 − 1 Set J

Δ1 = {2, 5, 15, 18} 3 4 2 40 – {1}

Δ2 = {19, 11, 15, 36, 4, 5, 38, 22} 3 4 2 40 – {1}

Δ3 = {35, 18, 2, 36, 4, 14, 6, 23, 7, 25} 3 4 2 40 – {1}

Δ4 = {18, 2, 15, 27, 3, 24, 16, 36, 4, 5, 14, 6} 3 4 2 40 – {1}

Δ5 = {(0, 0), (0, 3), (0, 2), (6, 4),
(6, 1), (3, 0)} 3 4 2 8 5 {2}

Δ6 = {(0, 4), (0, 1), (0, 3), (0, 2), (1, 4),
(1, 1), (2, 4), (2, 1), (3, 0)} 3 4 2 8 5 {2}

Δ7 = {0, 70, 71, 9} 3 4 2 80 – ∅
Δ8 = {9, 81, 1, 50, 86, 46, 54, 31, 6} 3 6 2 91 – {1}

Table 11 Stabilizer codes over F4 exceeding the Gilbert–Varshamov bounds

Code/subset n k d≥ Type Code/subset n k d≥ Type

C1/Δ1 51 41 4 GV C2/Δ2 51 39 5 GV

C3/Δ3 51 37 6 GV C4/Δ4 51 36 7 GV

C5/Δ5 52 44 4 GV C6/Δ6 52 38 5 GV

C7/Δ7 52 36 6 GV C8/Δ8 255 245 4 GV

C9/Δ9 54 44 4 GV C10/Δ10 54 36 6 GV

We conclude by adding that the codes in Sect. 4 improve the parameters of those
codes in [14] which have the same length. In addition, our code in Table 15 with
parameters [[144, 134,≥4]]7 also improves the parameters [[144, 132,≥4]]7 which
can be obtained by applying [34, Theorem 39].
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Table 12 Defining sets of the codes over F4 in Table 11

Subset p r s N1 − 1 N2 − 1 Set J

Δ1 = {34, 32, 2, 42, 9} 2 8 4 51 – {1}

Δ2 = {32, 2, 45, 6, 10, 7} 2 8 4 51 – {1}

Δ3 = {34, 29, 5, 26, 8, 27, 24} 2 8 4 51 – {1}

Δ4 = {23, 11, 39, 12, 16, 1, 34, 50, 35} 2 8 4 51 – {1}

Δ5 = {0, 34, 26, 8} 2 8 4 51 – ∅
Δ6 = {0, 32, 2, 49, 19, 30, 21} 2 8 4 51 – ∅
Δ7 = {40, 28, 0, 34, 48, 3, 26, 8} 2 8 4 51 – ∅
Δ8 = {114, 39, 17, 241, 31} 2 8 4 255 – {1}

Δ9 = {(0, 0), (0, 1), (0, 2), (16, 0), (1, 0)} 2 8 4 17 3 {2}

Δ10 = {(0, 0), (0, 1), (13, 0),
(4, 0), (0, 2), (12, 2), (5, 2),
(15, 1), (2, 1)}

2 8 4 17 3 {2}

Table 13 Stabilizer codes over F5 exceeding the Gilbert–Varshamov bounds

Code/subset n k d≥ Type Code/subset n k d≥ Type

C1/Δ1 52 36 6 GV C2/Δ2 104 96 4 GV

C3/Δ3 112 102 4 GV C4/Δ4 156 148 4 GV

C5/Δ5 72 62 4 GV C6/Δ6 96 86 4 GV

Table 14 Defining sets of the codes over F5 in Table 13

Subset p r s N1 − 1 N2 − 1 N3 − 1 Set J

Δ1 = {15, 11, 32, 20, 30, 22, 17, 9} 5 4 2 52 – – {1}

Δ2 = {(3, 0), (5, 0), (0, 8), (0, 5)} 5 4 2 8 13 – {1, 2}

Δ3 = {(0, 1), (0, 2), (0, 7), (12, 1), (1, 1)} 5 4 2 13 8 – {2}

Δ4 = {(1, 0), (3, 0), (2, 6), (2, 7)} 5 4 2 12 13 – {1, 2}

Δ5 = {(2, 6, 2), (1, 7, 2), (0, 5, 1),
(2, 2, 0), (0, 3, 2)} 5 4 2 3 8 3 {1, 2, 3}

Δ6 = {(0, 7, 2), (0, 2, 0), (2, 5, 0),
(0, 5, 1), (1, 2, 0)} 5 4 2 3 8 3 {2, 3}

Table 15 Stabilizer codes over F7 exceeding the Gilbert–Varshamov bounds

Code/subset n k d≥ Type Code/subset n k d≥ Type

C1/Δ1 90 78 4 GV C2/Δ2 80 72 4 GV

C3/Δ3 144 134 4 GV
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Table 16 Defining sets of the codes over F7 in Table 15

Subset p r s N1 − 1 N2 − 1 Set J

Δ1 = {(4, 0), (5, 5), (5, 9), (5, 6),
(1, 5), (0, 10)} 7 4 2 6 15 {1, 2}

Δ2 = {(1, 0), (2, 4), (2, 1), (3, 0)} 7 4 2 16 5 {1, 2}

Δ3 = {(10, 2), (15, 2), (19, 1), (8, 0), (2, 2)} 7 2 2 48 3 {1, 2}

Acknowledgments The authors wish to thank Ryutaroh Matsumoto and the anonymous reviewers for
helpful comments on this paper.

Appendix

We devote this appendix to prove Theorem 3 which was stated in the introduction and
preliminaries of this paper. To do this, we adapt to our purposes some facts described
in [48] and [30]. Consider the vector space F

2n
q and the symplectic inner product

(u|v) ·s (u′|v′) = u ·v′ −v ·u′. Recall that the weight w(u|v) of a word (u|v) as above
is the number of indexes i , 1 ≤ i ≤ n, such that either ui or vi (or both) are not zero,
where the ui (respectively, vi ) represent the coordinates of the vector u (respectively,
v). Following [2] (see also [9]), to get our stabilizer code, we only need to find a vector
subspace S in F

2n
q such that S⊥s ⊆ S with dimension k2 + k̂1 and minimum distance

larger than or equal to that stated in the statement. Let us describe it. Set G1 (Ĝ1, L ,
respectively) generator matrices of the codes C1 (Ĉ1, D, respectively) and let S be the
code of F

2n
q generated by the matrix

⎛

⎝
L AL
G1 0
0 Ĝ1

⎞

⎠ ,

where A is a fixed point free squarematrix (see [30,48] for its existence). Our hypothe-
ses imply k̂1 + k2 = k1 + k̂2 and that the rows of the previous matrix are linearly
independent, therefore, for computing the dimension of S, it suffices to see that the
number of rows is k2 − k1 + k1 + k̂1 = k2 + k̂1.

Let H2 (Ĥ2, respectively) be a parity checkmatrix of the codeC2 (Ĉ2, respectively),
one can found a matrix B such that

(
H2
B

)

,

((
Ĥ2
B

)

, respectively

)

is a parity check matrix for C1 (respectively, for Ĉ1). Now defining the matrix K =
BLt (At )−1(BLt )−1, it is not difficult to prove that

⎛

⎝
K B B
Ĥ2 0
0 H2

⎞

⎠ ,
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is a parity check matrix for the code S and therefore one has that S⊥s ⊆ S.
To end our proof, it only remains to study what happens with the weight w(u|v)

for elements (u|v) ∈ S. First assume q = 2, a generic element in S has the form
(v1L + v2G1|v1AL + v3Ĝ1), where v1, v2, v3 are suitable vectors with coordinates
in Fq . When v1 is the zero vector, u must be in C1 and v in Ĉ1, which proves that, in
this case, w(u|v) must be larger than or equal to the minimum of the values d1 and d̂1.
Otherwise, v1 �= 0, one can use the property

w(u|v) = wt(u) + wt(v) + wt(u + v)
2

,

where wt denotes the standard weight of a word in a code in F
n
q , and this concludes

the proof since u ∈ C2, v ∈ Ĉ2, u + v ∈ C3 and the fact that (C1 + Ĉ1) ∩ D = {0}
implies that none of the previous vectors are zero.

Let us consider q �= 2, we will only study w(u|v) for v1 �= 0. For convenience,
assume that the coordinates ut+1, ut+2, . . . , un of thewordu are zero and that this does
not happen with the remaining coordinates. As showed in [30], there exists λ ∈ Fq

such that

w(u|v) = t + wt(vt+1, vt+2, . . . , vn) ≥ wt(v − λu) + wt(u)

q

and, symmetrically, w(u|v) ≥ wt(u − λ′v) + wt(v)
q , for some λ′ ∈ Fq , holds. This

finishes the proof because, as before, our hypotheses imply that 0 �= v − λu and
0 �= u − λ′v belong to C3, 0 �= u ∈ C2 and 0 �= v ∈ Ĉ2.

Remark 3 Notice that the Hamada’s generalization of the Steane’s enlargement, The-
orem 2 in this work, is a particular case of Theorem 3 that holds when C1 = Ĉ1.
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