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Abstract Quantum discord Q is a function of density matrix elements. The domain
of such a function in the case of two-qubit system with X density matrix may consist
of three subdomains at most: two ones where the quantum discord is expressed in
closed analytical forms (Qπ/2 and Q0) and an intermediate subdomain for which, to
extract the quantum discord Qθ , it is required to solve numerically a one-dimensional
minimization problem to find the optimal measurement angle θ ∈ (0, π/2). Hence,
the quantum discord is given by a piecewise analytical–numerical formula Q =
min{Qπ/2, Qθ , Q0}. It is shown that the boundaries between the subdomains con-
sist of bifurcation points. The Qθ subdomains are discovered in the dynamical phase
flip channel model, in the anisotropic spin systems at thermal equilibrium, and in
the heteronuclear dimers in an external magnetic field. We found that the transitions
between Qθ subdomain and Qπ/2 and Q0 ones occur suddenly, but continuously and
smoothly, i.e., nonanalyticity is hidden and can be observed in higher order derivatives
of discord function.

Keywords X density matrix · Quantum discord · Bifurcation points · Sudden
transitions

1 Introduction

At present, we have a situation where further miniaturization of electronics will
inevitably lead to molecular size components. Designing such components requires
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application of the laws of quantum mechanics. This is expected to lead to a techno-
logical breakthrough which will be achieved through employing the holy of holies of
the quantum theory—so-called quantum correlations.

Initially, the entanglement has been considered as a quantum correlation [1,2].
Quantum entanglement is able to bind different parts of systems, even in the case when
there is no interaction between those parts (the Einstein–Podolsky–Rosen effect). By
this, a change in the state of one subsystem can lead to a change in the state of the
other subsystem. Later, this unusual property of quantum entangled states was proved
in different experiments.

Quantum entanglement exists only in nonseparable states of bi- and multipartite
systems. However, it appears in the last years that there are quantum correlations more
general and more fundamental than entanglement. In particular, they can be present
in certain separable states, i.e., when the quantum entanglement is absent. As a mea-
sure of total purely quantum correlations in bipartite systems, the quantum discord is
employed now [3–5]. The basis for the discord conception is the idea of measurements
performed on a system and maximum amount of classical information being extracted
with their help.

Due to the fact that it is necessary to solve the optimization problem, the eval-
uation of quantum correlations, especially discord, is extremely hard [6]. If for the
two-qubit systems the quantum entanglement of formation has been obtained for the
arbitrary density matrices [7–10], the analytical formulas for the quantum discord
were proposed for X states [11–16]. In an X matrix, nonzero entries may belong
only to the main diagonal and anti-diagonal [17–19]. Notice that the sum and prod-
uct of X matrices are again the X matrix (i.e., a set of X matrices is algebraically
closed).

However, it was found later that the formulas [12–15] are incorrect in general.
The reason is that the authors [12–15] believed (and this was their error) that optimal
measurements are achieved only in the limiting points, i.e., at the angles θ = 0 or
π/2. But on the explicit examples [20–22] of X density matrices, it was proved that
the optimal measurements can take place at the intermediate angles in the interval
(0, π/2). Unfortunately, these examples with density matrices are specific and do not
clarify the general situation.

In the present paper, we show that the domain of intermediate optimal angles can
arise in the vicinity of transition from the domain with optimal measurement angle
θ = π/2 to the domain with optimal angle θ = 0 (or inversely). The equations for the
boundaries between these domains are discussed, and their solutions are investigated
for different models. In particular, the boundaries can coincide or be absent at all, and
then, the quantum discord is given in the total domain of definition by closed analytical
formulas.

In the following sections, the general seven-parameters X density matrix is reduced
to the five-parameter form by using local unitary transformations, the existence
of intermediate subdomains with the optimal anglers θ �= 0, π/2 is proved, and
the equations for boundaries between different subdomains are presented and then
applied to various physical systems. Finally, in the last section, a brief conclusion is
given.
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On the quantum discord of general X states 3401

2 Real nonnegative form for the X density matrices and the domain of
definition for their entries

In the most general case, the X density matrix of two-qubit (A and B or 1 and 2)
system has seven real parameters. The quantum entanglement and quantum discord
are invariant under the local unitary transformations of density matrices [1–5]. Owing
to this property, one can with the help of such transformations reduce the seven-
parameters density matrix to the real, nonnegative five-parameters X form [22–25].
After this, the X density matrix takes the form

ρAB =

⎛
⎜⎜⎝
a 0 0 u
0 b v 0
0 v c 0
u 0 0 d

⎞
⎟⎟⎠ , (1)

or, to emphasize explicitly that the off-diagonal elements are nonnegative, and we
write

ρAB =

⎛
⎜⎜⎝

a 0 0 |u|
0 b |v| 0
0 |v| c 0
|u| 0 0 d

⎞
⎟⎟⎠ . (2)

Thus, one can now consider the density matrices (1) with restrictions (which follow
from the normalization condition and nonnegativity definition of any density operator)

a, b, c, d, u, v ≥ 0, a + b + c + d = 1, ad ≥ u2, bc ≥ v2. (3)

These relations define the domain D of X density matrix in the space of its entries.
We can rewrite the density matrix (1) in the equivalent form

ρAB = 1

4

⎛
⎜⎜⎝
1 + s1 + s2 + c3 0 0 c1 − c2

0 1 + s1 − s2 − c3 c1 + c2 0
0 c1 + c2 1 − s1 + s2 − c3 0

c1 − c2 0 0 1 − s1 − s2 + c3

⎞
⎟⎟⎠ ,

(4)
where

s1 = a + b − c − d, s2 = a − b + c − d,

c1 = 2(v + u), c2 = 2(v − u), c3 = a − b − c + d. (5)

Decomposition of this matrix on the Pauli matrices σα (α = x, y, z) leads to its Bloch
form

ρAB = 1

4
(1 + s1σz ⊗ 1 + s21 ⊗ σz + c1σx ⊗ σx + c2σy ⊗ σy + c3σz ⊗ σz). (6)
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The expansion coefficients are the unary and binary correlation functions, and there-
fore, five parameters of density matrix are expressed through the five different
correlators,

s1 = 〈σ 1
z 〉 = Tr(ρABσz ⊗ 1), s2 = 〈σ 2

z 〉 = Tr(ρAB1 ⊗ σz),

c1 = 〈σ 1
x σ 2

x 〉 = Tr(ρABσx ⊗ σx ), c2 = 〈σ 1
y σ 2

y 〉 = Tr(ρABσy ⊗ σy), (7)

c3 = 〈σ 1
z σ 2

z 〉 = Tr(ρABσz ⊗ σz).

It is clear that
− 1 ≤ s1, s2, c1, c2, c3 ≤ 1. (8)

The domain of definition, D, in the space (s1, s2, c1, c2, c3) is formed, according to
Eqs. (3) and (5), by conditions (see also [21,26])

(1 − c3)
2 ≥ (s1 − s2)

2 + (c1 + c2)
2, (1 + c3)

2 ≥ (s1 + s2)
2 + (c1 − c2)

2. (9)

The solid D is finite and lies in the five-dimensional hypercube (8). Numerical calcu-
lations show that the volume of D is 8% of the hypercube one.

The domain D is bounded by two quadratic hypersurfaces

(s1 − s2)
2 + (c1 + c2)

2 − (c3 − 1)2 = 0 (10)

and
(s1 + s2)

2 + (c1 − c2)
2 − (c3 + 1)2 = 0. (11)

Rotation by the angle π/4 around the c3 axis transforms these hyperquadrics to the
forms

(s′
2)

2 + (c′
1)

2 − (c3 − 1)2

2
= 0 (12)

and

(s′
1)

2 + (c′
2)

2 − (c3 + 1)2

2
= 0, (13)

where
s′
1,2 = (±s1 + s2)/

√
2, c′

1,2 = (±c1 + c2)/
√
2. (14)

Thus, the five-dimensional domainD results from an intersection of two conic hyper-
cylinders (12) and (13).

3 Three alternatives for the quantum discord

As mentioned above, the measurement operations lie in the ground of discord notion.
Following the founders of discord conception [27,28] and their adherents [11–15], we
will only consider here the orthogonal projectivemeasurements, i.e., the vonNeumann
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measurements.1 Such measurements can be reduced to the projections which are char-
acterized by the polar (θ ) and azimuthal (φ) angles relative to the z axis [13,15,23]. It
is important to note that the optimal measurements in the case of real X density matrix
with an additional condition uv ≥ 0 are achieved by cos 2φ = 1 [22,23]. Since the
sign of off-diagonal elements are changed by the local unitary transformations, we
can always satisfy the above condition.

In the general nonsymmetrical case (s1 �= s2 or b �= c), quantum discord depends
on a subsystem (A or B) where the measurements are performed. For definiteness and
without loss of generality, let the measured subsystem be B. (If measured subsystem
is A, we simply should replace everywhere s1 � s2 or b � c.) Then the quantum
discord is given as [3–5]

Q = S(ρB) − S(ρAB) + min
θ

Scond(θ), (15)

where ρB = TrAρAB is the reduced density matrix and S(ρ) = −Trρ ln ρ is the
von Neumann entropy for the corresponding state ρ (Here the entropy is in nats; to
transform it, e.g., in bits, one should divide it by ln 2). Simple calculations with (1)
lead to

S(ρB) = −(a + c) ln(a + c) − (b + d) ln(b + d), (16)

S(ρAB) = S, where

S = −a + d + √
(a − d)2 + 4u2

2
ln

a + d + √
(a − d)2 + 4u2

2

−a + d − √
(a − d)2 + 4u2

2
ln

a + d − √
(a − d)2 + 4u2

2

−b + c + √
(b − c)2 + 4v2

2
ln

b + c + √
(b − c)2 + 4v2

2

−b + c − √
(b − c)2 + 4v2

2
ln

b + c − √
(b − c)2 + 4v2

2
. (17)

The quantum average conditional entropy of subsystem A is given as [22]

Scond(θ) = Λ1 lnΛ1 + Λ2 lnΛ2 −
4∑

i=1

λi ln λi , (18)

where

Λ1,2 = 1

4
[1 ± (a − b + c − d) cos θ ], (19)

λ1,2 = 1

4
[[1 + (a − b + c − d) cos θ

1 There exists a statement that classical correlations of binary states are optimized via projective positive
operator valued measurements (projective POVMs): [29–34]. See also [21,38].
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Fig. 1 A fragment of phase
diagram with three possible
subdomains for the X-state
quantum discord

±{[a + b − c − d + (a − b − c + d) cos θ ]2 + 4w2 sin2 θ}1/2]], (20)

λ3,4 = 1

4
[[1 − (a − b + c − d) cos θ

±{[a + b − c − d − (a − b − c + d) cos θ ]2 + 4w2 sin2 θ}1/2]], (21)

w = |u| + |v|. (22)

Thus, Scond depends in fact on four parameters because u and v enter via the combina-
tion (22). The conditional entropy Scond(θ) is a differentiable function of its argument
θ .

Expressions (16)–(22) allow to define the measurement-dependent discord as [4]

Q(θ) = S(ρB) − S(ρAB) + Scond(θ), (23)

where θ ∈ [0, π/2]. It is obvious that the absolute minimum of this discord can be
either on the bounds (θ = 0, π/2) or at the intermediate point θ ∈ (0, π/2). As a
result, there is a choice from three possibilities for the quantum discord

Q = min{Q0, Qθ , Qπ/2}. (24)

This equation generalizes the one proposed earlier for the quantum discord [11–15]

Q̃ = min{Q0, Qπ/2}, (25)

i.e., it was assumed that the optimal observable can be either σz or σx . In Fig. 1,
we schematically illustrate the parameter domain of a system with three possible
subdomains for the discord.

From Eqs. (16)–(23), we have for the discord branch Q0 ≡ Q(0):

Q0 = −S − a ln a − b ln b − c ln c − d ln d. (26)
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On the quantum discord of general X states 3405

For θ = π/2, we obtain

Q π
2

= −S − (a + c) ln(a + c) − (b + d) ln(b + d)

−1 + √
(a + b − c − d)2 + 4w2

2
ln

1 + √
(a + b − c − d)2 + 4w2

2

−1 − √
(a + b − c − d)2 + 4w2

2
ln

1 − √
(a + b − c − d)2 + 4w2

2
. (27)

Thus, the branches Q0 and Qπ/2 are expressed analytically, and the branch Qθ =
minθ∈(0,π/2) Q(θ), if the intermediate minimum exists, should be found from the
numerical solution of one-dimensional minimization problem or from the transcen-
dental equation

S′
cond(θ) = 0. (28)

In the latter case, we should choose among all solutions the point which corresponds
to the global minimum. The first derivative of conditional entropy with respect to θ is
equal to

S′
cond(θ) = Λ′

1(1 + lnΛ1) + Λ′
2(1 + lnΛ2) −

4∑
i=1

λ′
i (1 + ln λi ) (29)

with

Λ′
1,2 = ∓1

2
(a − b + c − d) sin θ, (30)

λ′
1,2 = 1

4

[
− (a − b + c − d) sin θ

±[a+ b − c−d+ (a− b − c+ d) cos θ ][−(a− b − c+d) sin θ ]+ 2w2 sin 2θ√
[a+ b −c− d+(a− b− c+d) cos θ ]2+4w2 sin2 θ

]
,

(31)

λ′
3,4 = 1

4

[
(a − b + c − d) sin θ

±[a+ b− c− d − (a− b − c+ d) cos θ ](a− b− c+d) sin θ+2w2 sin 2θ√
[a+ b − c− d− (a− b − c+ d) cos θ ]2+4w2 sin2 θ

]
.

(32)

All three possible variants for the quantum discord (Q0, Qπ/2, and Qθ ) can really
exist in physical systems. In the case when a = b and b = c (or s1 = s2 = 0), the
conditional entropy minimum is always achieved at one of two bound points [11].
However, this is wrong for the more general X states; global minimum can take place
at inner points of the interval (0, π/2).
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Fig. 2 Quantum conditional entropy Scond as a function of measured angle θ for the state (33)

Indeed, following the authors [20], let us consider the state

ρ =

⎛
⎜⎜⎝
0.0783 0 0 0

0 0.125 0.100 0
0 0.100 0.125 0
0 0 0 0.6717

⎞
⎟⎟⎠ . (33)

Using Eqs. (18)–(22), we have computed the function Scond(θ) for this state. Its behav-
ior is shown in Fig. 2.

From the figure, we conclude that the conditional entropy minimum is situated in
the intermediate region, namely at the angle θ = 0.4883 ≈ 28◦. Two other similar
numerical examples of quantum states are given in Ref. [22].

These examples clearly show that the optimal measurement angles can really be
in the intermediate region (0, π/2), i.e., the optimal observables for quantum discord
can be not only the σx or σz , but also their superposition.

For the realX state with constraint |u+v| ≥ |u−v| (i.e., uv ≥ 0 or signu = signv),
the authors [21] have proved a theorem which guarantees that the optimal observable
is σz if

(|u| + |v|)2 ≤ (a − b)(d − c) (34)

and σx if
|u| + |v| ≥ |√ad − √

bc|. (35)

The theorem states nothing for the region lying between these bounds. But in the case

ac = bd (36)

the inequalities (34) and (35) lead to absence of the intermediate region [35].
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4 Equations for the boundaries

Let us start with a heuristic example. Consider a two-parameter family of X states
[21,36]

ρ =

⎛
⎜⎜⎝

ε/2 0 0 ε/2
0 (1 − ε)m 0 0
0 0 (1 − ε)(1 − m) 0

ε/2 0 0 ε/2

⎞
⎟⎟⎠ (37)

or

ρ = 1

4
[1 + (1 − ε)(2m − 1)(σ z

1 − σ z
2 ) + ε(σ x

1 σ x
2 − σ

y
1 σ

y
2 ) + (2ε − 1)σ z

1σ z
2 ]

= ε|�+〉〈�+| + (1 − ε)m|01〉〈01| + (1 − ε)(1 − m)|10〉〈10|, (38)

where |�+〉 = (|00〉+|11〉)/√2.The given densitymatrixρ represents the generalized
Horodecki states [26].

Simple calculation yields Q0 = ε (in bits). Sufficient conditions (34) and (35) for
the Q0 and Qπ/2 subdomains give [21]

ε ≤ 2m(1 − m)

1 + 2m(1 − m)
(39)

and

ε ≥
√
m(1 − m)

1 + √
m(1 − m)

, (40)

respectively. But in the region

2m(1 − m)

1 + 2m(1 − m)
< ε <

√
m(1 − m)

1 + √
m(1 − m)

(41)

the above theorem does not say anything.
Let us now find the lines on the plane (m, ε) which are defined by the condition

Q0(m, ε) = Qπ/2(m, ε). (42)

Then we will study the changes of curves Scond(θ) in the neighborhood to those lines.
Using Eqs. (17), (26), and (27), we have numerically solved the transcendental

equation (42). The solution is only one. The results are plotted in Fig. 3 by dotted line.
Consider in detail a particular case. Let the ε is held fixed and equal, for example,

to ε = 0.228 (see Fig. 3). Then the equality Q0 = Qπ/2 is satisfied at the crossing
point m× = 0.101 234. Study now the behavior of Scond(θ) when the parameter m
varies. Inequalities (39) and (40) guarantee that when m < 0.096 545, the discord
equals Q = Qπ/2 and Q = Q0 when m > 0.180 107. If m = 0.1015, the minimum
of Scond(θ) is at θ = 0 (see Fig. 4a). Moreover, the angle θ = 0 is optimal for all larger
values of m. When the m decreases, the minimum on the curve Scond(θ) inside the
interval between 0 and π/2 appears. The minimum is clearly seen when m = 0.1014
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Fig. 3 Subdomains Qπ/2, Q0, and (between them) Qθ for the state (37). Dotted line corresponds to the
condition Qπ/2 = Q0. Solid lines 1 and 2 are the π/2- and 0-boundaries, respectively

a b c

d e

Fig. 4 Appearance and disappearance of an intermediate minimum on the conditional entropy curve by
transition from Q0 to Qπ/2 subdomain. Here, Scond(θ) corresponds to the state (37) at the fixed value of
ε = 0.228 and m = 0.1015 (a), 0.1014 (b), 0.101 234 (c), 0.1011 (d), and 0.1008 (e)

(Fig. 4b). Near the pointm = 0.101 234, theminimumachieves large depth. By further
decreasing m, the minimum moves to the bound θ = π/2, and then, it disappears at
all. Optimal measurements undergo to the angle θ = π/2.

We argue now that both lower and upper boundaries of the interval where the
optimal angles lie between 0 and π/2 are exact, i.e., the intermediate minimum of
Scond(θ) suddenly appears and suddenly disappears. Above all, we note that the first
derivative of function Scond(θ) at θ = 0 andπ/2 equals zero in general case: S′

cond(0) ≡
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S′
cond(π/2) ≡ 0. This is easy to check by direct calculations using Eqs. (29)–(32). Let

us turn now again to the Fig. 4. By fixed value of parameter ε and for each value
of m, one can say at any moment the inside minimum exists or it is absent. For
instance, when m = 0.1015 (ε = 0.228), the function Scond(θ) is concave at the point
θ = 0 and therefore its second derivative S′′

cond(0) > 0. But when m = 0.1014, the
conditional entropy has a local maximum at the same bound point θ = 0 and therefore
S′′
cond(0) < 0. Hence, the bifurcation point (in the sense that two extrema arise from

one) [37] is determined by the condition

S′′
cond(0) = 0. (43)

Similarly, we have for the other bound point θ = π/2,

S′′
cond(π/2) = 0. (44)

Using Eqs. (18)–(21), we get the second derivatives at limiting points:

S′′
cond(0) = 1

4
(a − b + c − d)

(
2 ln

b + d

a + c
+ ln

ac

bd

)

+ 1

4
(a − b − c + d) ln

ad

bc
− 1

2
w2

(
1

a − c
ln

a

c
+ 1

b − d
ln

b

d

)
(45)

and

S′′
cond(π/2) = 8w2

r3
[(a − c)(b − d) + w2] ln 1 + r

1 − r
+ (a − b + c − d)2

− 1

2(1 + r)

[
a − b + c − d + 1

r
(a + b − c − d)(a − b − c + d)

]2

− 1

2(1 − r)

[
a − b + c − d − 1

r
(a + b − c − d)(a − b − c + d)

]2
,

(46)

where
r = [(a + b − c − d)2 + 4w2]1/2 (47)

and w is given by Eq. (22). The relations (43)–(47) are the boundary equations for the
crossover zone Qθ . Thus, the boundaries consist of bifurcation points. Notice that the
equations for the boundaries between three different phases of quantum discord have
been obtained for the first time by the author [24,25] and later by Maldonado-Trapp
et al. [38].

If the solutions of Eqs. (43) and (44) are the same, the intermediate subdomain Qθ

is absent and the quantum discord is given by analytical expressions. On the other
hand, instead of rough conditions (34) and (35), the inequalities S′′

cond(0) ≤ 0 and
S′′
cond(π/2) ≤ 0 define now the complete subdomains Q0 and Qπ/2, respectively.
Numerical solution of Eqs. (43)–(47) for the state (37) shows that the boundaries are

the lines going approximately parallel to the dotted lines (see the lines 1 and 2 in Fig. 3).
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3410 M. A. Yurischev

Fig. 5 Dependencies of the false discord Q̃ = min{Qπ/2, Q0} (dotted line) and the corrected quantum
discord Q = min{Qπ/2, Qθ , Q0} (solid line) for the state (37) with parameter ε = 0.228 Longer bars mark
the exact boundaries mπ/2 = 0.100 997 and m0 = 0.101 474. Subdomains m ≤ mπ/2, mπ/2 < m < m0,
and m ≥ m0 correspond to the discord branches Qπ/2, Qθ , and Q0, respectively

As a result, the subdomain appears within which the optimal angles should be found
numerically. Out of this subdomain, we have analytical expressions for the quantum
discord. By ε = 0.228, the value for m of π/2-boundary equals mπ/2 = 0.100 997,
and for the 0-boundary, it is m0 = 0.101 474. The middle of this interval equals
0.101236 which is near the point m× = 0.101 234.

Consider the discord behavior by a transition from the subdomain Qπ/2 to Q0 one
(Fig. 5). One can see that down to crossing point m× = 0.101 234, the discord Q̃,
according to Refs. [12–14], equals Qπ/2, and above the point m×, it equals Q0 (see
Fig. 5). If thiswas valid, the discord Q̃ = min{Qπ/2, Q0}would not be differentiable at
the intersection pointm×. However, in fact, the true discord Q = min{Qπ/2, Qθ , Q0}
is smooth. This follows from the numerical solution of the task in the intermediate
domain. The results are shown again in Fig. 5 by solid line. It is clearly seen that
smoothness occurs. We may say that, instead a fracture at m×, two hidden transitions
occur at the π/2- and 0-boundaries.

Notice that the conditions (39) and (40) are rough too and lead to the bounds which
lie far beyond the region of Fig. 3.

5 Bell-diagonal states

The case a = d and b = c or s1 = s2 = 0 corresponds to the Bell-diagonal states.
Domain of definition for the physical states,D, lies now in the three-dimensional cube
defined by c1, c2, c3 ∈ [−1, 1]. Two second-order hypersurfaces (10) and (11) are
transformed to the two first-order surfaces

± |c1 + c2| + c3 − 1 = 0 (48)
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Fig. 6 Tetrahedron with
vertices v1, v2, v3 and v4 is the
domain for the total
Bell-diagonal states. Two
regions (O, v1, v2, o1, o2) and
(O, v3, v4, o3, o4) correspond
to the physical states with Q0
discord

and
± |c1 − c2| + c3 + 1 = 0. (49)

The former consists of two semi-planes with a∧-shaped cross section, and the latter is
similar to it but has a ∨-shaped cross section. The angle between semi-planes equals
arccos(1/3) ≈ 78◦. These semi-plane surfaces put bounds to the domain D that is
reduced, as shown in Fig. 6, to a tetrahedron with vertices [39]

v1 = (−1, 1, 1), v2 = (1,−1, 1), v3 = (1, 1,−1), v4 = (−1,−1,−1);
(50)

these vertices lie in octants II (−,+,+), IV (+,−,+), V (+,+,−), and VII
(−,−,−), respectively. The centers of tetrahedron facets are

o1 = (1/3, 1/3, 1/3), o2 = (−1/3,−1/3, 1/3),

o3 = (−1/3, 1/3,−1/3), o4 = (1/3,−1/3,−1/3). (51)

Tetrahedron volume equals a third (i.e., about 33.3%) of the cube one. Notice that the
tetrahedron vertices are the states with maximal value of discord (which equals one in
bit units).

It is known [40] that the states with zero discord are negligible in the whole Hilbert
space. In particular, it has been proved [41,42] that,when s1 = s2 = 0, the zero-discord
states have at most one nonzero component of vector (c1, c2, c3), i.e., all classical-only
correlated states lie on the Cartesian axes Oc1, Oc2 or Oc3. (This corresponds to the
so-called “Ising spins” introduced as a matter of fact by his adviser W. Lenz in 1920
[43,44].)

In the case of Bell-diagonal states, both boundary equations (43)–(47) are reduced
to a relation

(a − b)2 = (|u| + |v|)2, (52)

so that
2|c3| = |c1 + c2| + |c1 − c2|. (53)
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a b

Fig. 7 Quantum discord for the Bell-diagonal states: (a), Q = min{Q0, Qπ/2} versus c3 by c1 = 0.3 and
c2 = 0.25, longer bars mark the positions of fracture points at c3 = ±0.3; (b), Q = Qπ/2 (solid line) and
Q0 (dotted line) versus c2 when c1 = 0.25 and c3 = 0

Thus, the π/2- and 0-boundaries are coincident, the Qθ subdomain is absent here, and
the quantum discord is given by the explicit analytical formula Q = min{Q0, Qπ/2}
which is in full agreement with Luo’s results [11].

From Eq. (53), four equations follow

c3 = ±c1 c3 = ±c2. (54)

These planes divide the tetrahedron into subdomains Q0 and Qπ/2, where the quantum
discord takes the values Q0 or Qπ/2. Q0 subdomain consists of two hexahedrons
(O, v1, v2, o1, o2) and (O, v3, v4, o3, o4); they are shown in Fig. 6. The remaining
volume of a tetrahedron belongs to the Qπ/2 states. It is in two times larger than the
volume of Q0 states.

The behavior of quantum discord for the Bell-diagonal states along different trajec-
tories is illustrated in Fig. 7 by solid lines. Figure 7a shows the discord as a function
of c3 ∈ [−0.95, 0.45] by fixed values of c1 = 0.3 and c2 = 0.25. The curve is contin-
uous but has the fractures at c3 = ±0.3. They happen when the trajectory crosses the
planes dividing the Q0 and Qπ/2 subdomains (see Fig. 6). In this case, the optimal
measurement angle θ varies discontinuously; namely, it jumps from θ = 0 to θ = π/2
or inversely. In the vicinity of cross points, the conditional entropy Scond(θ) changes
its form going through a straight line (where any angle θ ∈ [0, π/2] is optimal). Such
a regime of conditional entropy behavior is shown in Fig. 8.

Figure 7b shows the behavior of branches Q0 and Qπ/2 as functions of c2 by fixed
values of other two parameters, c1 = 0.25 and c3 = 0. Since here Qπ/2 < Q0, the
quantum discord Q equals Qπ/2. The curve Qπ/2 has two fractures. This means that
the branch Qπ/2 is a piecewise analytic function. In this case, however, the optimal
measurement angle does not change its value θ = π/2, and therefore, the position of
conditional entropy minimum remains immutable.
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Fig. 8 Transition between Qπ/2 and Q0 subdomains via a straight line for the conditional entropy. Here,
Scond(θ) is at and near the fracture point c3 = 0.3 on the quantum discord curve in Fig. 7a. The curves 1,
2, and 3 correspond to c3 = 0.29, 0.3, and 0.31, respectively

6 Physical systems with the Qθ subdomains

We are interested now in the systems with Qθ phases. As it was seen from the previous
section, such regions do not exist in the Bell-diagonal states. Therefore, in this section,
we will consider the systems with nonzero values of s1, s2.

6.1 Phase flip channels

Let us consider the dynamics of quantum discord under decoherence (for a recent
review, see, e.g, [45] and references therein). The authors [14] have considered such
a dynamics in the phase flip channel.

The problem is to calculate the quantum discord for the X matrix

ε = 1

4
[1 + s1σz ⊗ 1 + s21 ⊗ σz + (1 − p)2c1σx ⊗ σx

+ (1 − p)2c2σy ⊗ σy + c3σz ⊗ σz]. (55)

Here, the parametrized time p = 1− exp(−γ t), where t is the time and γ is the phase
damping rate. The authors [14] restricted themselves to the case where

c2 = −c3c1, s2 = c3s1, −1 ≤ c3 ≤ 1, −1 ≤ s1 ≤ 1. (56)

Expansion coefficients in Eq. (55) are related to the corresponding X matrix elements
as

a = (1 + s1 + s2 + c3)/4, b = (1 + s1 − s2 − c3)/4,
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Fig. 9 Q0 (solid line) and Qπ/2 (dotted line) in bits versus p for the phase flip channel with parameters
s1 = s2 = 0.65, c1 = c2 = 0.249, and c3 = 0.5. Crossing point of the lines is at p× = 0.315 789 . . .

c = (1 − s1 + s2 − c3)/4, d = (1 − s1 − s2 + c3)/4, (57)

u = (1 − p)2(c1 − c2)/4, v = (1 − p)2(c1 + c2)/4.

Owing to the relation s2 = c3s1, the matrix elements a, b, c, and d satisfy the condition
(36), and hence, the Qθ domain is absent here; conditional entropy behaves similar to
that as shown in Fig. 8. Thus, nonzero values of s1 and s2 are the necessary but not
sufficient condition for existence of Qθ phase.

Consider a different initial state. For example, let us take s1 = s2 = 0.65, c1 =
c2 = 0.249, and c3 = 0.5. As can see from Fig. 9, the curves Q0(p) and Qπ/2(p)
cross at p× � 0.3158. An additional study shows that the transition Qπ/2 → Q0 goes
through the appearance of single minimum on the Scond(θ) curves inside the interval
between 0 and π/2 (similarly to the curves on Fig. 4).

Solution of equations for the boundaries, Eqs. (43)–(47), shows that the π/2- and 0-
boundaries do not coincide now, and therefore, the Qθ region exists here (see Fig. 10).

6.2 Thermal discord

We now discuss systems at the thermal equilibrium. Discord in such systems is impor-
tant for applications to various magnetic materials [4,5]. Let us consider the XYZ spin
Hamiltonian

H = −1

2
(Jxσ

x
1 σ x

2 + Jyσ
y
1 σ

y
2 + Jzσ

z
1σ z

2 + B1σ
z
1 + B2σ

z
2 ). (58)
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Fig. 10 Dependencies of the false discord Q̃ = min{Qπ/2, Q0} (dotted line) and the corrected quantum
discord Q = min{Qπ/2, Qθ , Q0} (solid line) versus p for the phase flip channel with parameters s1 =
s2 = 0.65, c1 = c2 = 0.249, and c3 = 0.5. Longer solid bars mark the boundaries pπ/2 = 0.314 949 and

p0 = 0.316 637. Longer dotted bar marks the position of a fracture, p× = 0.315 789, on the curve Q̃(p)

ThisHamiltonian containsfive independent parameters Jx , Jy, Jz, B1, B2 ∈ (−∞,∞)

(i.e., inR5) and is themost general real symmetric tracelessX matrix. The correspond-
ing Gibbs density matrix is given as

ρAB = 1

Z
e−βH (59)

(here β = 1/T , T is the temperature in energy units, Z is the partition func-
tion) and has also the five-parameter real X structure. Thus, the map (B1/T, B2/T,

Jx/T, Jy/T, Jz/T ) ↔ (s1, s2, c1, c2, c3) (that is R5 ↔ D) allows in general to
change the density matrix language on a picture of interactions in the XYZ dimer in
inhomogeneous fields B1 and B2.

Having solved eigenproblem for the Hamiltonian (58), we then find expressions for
the thermal density matrix elements (see also, e.g., [46])

a = 1

2

cosh(βR1/2) + [(B1 + B2)/R1] sinh(βR1/2)

cosh(βR1/2) + exp(−β Jz) cosh(βR2/2)
,

b = 1

2

cosh(βR2/2) + [(B1 − B2)/R2] sinh(βR2/2)

exp(β Jz) cosh(βR1/2) + cosh(βR2/2)
,

c = 1

2

cosh(βR2/2) − [(B1 − B2)/R2] sinh(βR2/2)

exp(β Jz) cosh(βR1/2) + cosh(βR2/2)
, (60)

d = 1

2

cosh(βR1/2) − [(B1 + B2)/R1] sinh(βR1/2)

cosh(βR1/2) + exp(−β Jz) cosh(βR2/2)
,
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u = 1

2

[(Jx − Jy)/R1] sinh(βR1/2)

cosh(βR1/2) + exp(−β Jz) cosh(βR2/2)
,

v = 1

2

[(Jx + Jy)/R2] sinh(βR2/2)

exp(β Jz) cosh(βR1/2) + cosh(βR2/2)
,

where

R1 = [(B1 + B2)
2 + (Jx − Jy)

2]1/2, R2 = [(B1 − B2)
2 + (Jx + Jy)

2]1/2.
(61)

For the correlations functions (5), we have, respectively,

c1,2 = 2

Z
[[±[(Jx − Jy)/R1]eβ Jz/2 sinh(βR1/2)

+[(Jx + Jy)/R2]e−β Jz/2 sinh(βR2/2)]],
c3 = 2

Z
[eβ Jz/2 cosh(βR1/2) − e−β Jz/2 cosh(βR2/2)], (62)

s1,2 = 2

Z
[[[(B1 + B2)/R1]eβ Jz/2 sinh(βR1/2)

±[(B1 − B2)/R2]e−β Jz/2 sinh(βR2/2)]],
where the partition function equals

Z = 2[eβ Jz/2 cosh(βR1/2) + e−β Jz/2 cosh(βR2/2)] (63)

and R1 and R2 are given again by Eq. (61).
For each choice of interaction constants Jx , Jy, Jz and external fields B1 and B2,

we will find the points where the condition Q0 = Qπ/2 is satisfied. After this, we will
again study the changes of curves Scond(θ) in the neighborhood of points found.

Taking, for example, a dimer with parameters Jx = Jy = J = 1, Jz = 1.02, and
B1 = B2 = B = 1 (that is theXXZdimer in an uniformfield), we consider the thermal
discord behavior by a transition from the subdomain Qπ/2 to Q0 one (Fig. 11). From
the figure, one can see that down to the crossing point T× = 0.81296, the discord Q̃,
according to Refs. [12–14], equals Qπ/2, and above the point T×, it equals Q0. If this
was valid, the discord Q̃ = min{Q0, Qπ/2} would have a fracture at the intersection
point T×. However, in fact, the true discord Q is a smooth function (at least, it is a
function of differentiability class C1). This follows from the numerical solution of
the task in the intermediate domain, where the Scond(θ) curves change similar as in
Fig. 4. Results for the quantum discord are shown again in Fig. 11. At the bifurcations
points Tπ/2 = 0.76106 and T0 = 0.85361, the higher derivatives of quantum discord
Q = min{Qπ/2, Qθ , Q0} exhibit a discontinuous behavior.

6.3 Heteronuclear systems with dipolar coupling

Let us consider the system (58) with parameters Jx = Jy = −D and Jz = 2D. Such a
model corresponds to a dipolar coupled dimer which is stretched along the z axis [47]
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Fig. 11 Dependencies of the false discord Q̃ = min{Qπ/2, Q0} (dotted line) and the correct quantum
discord Q = min{Qπ/2, Qθ , Q0} (solid line) for the XXZ dimer with parameters J = 1, Jz = 1.02 and
B = 1. Longer bars mark the temperatures Tπ/2 = 0.76106 and T0 = 0.85361. Domains T ≤ Tπ/2,
Tπ/2 < T < T0, and T ≥ T0 correspond to the discord branches Qπ/2, Qθ , and Q0, respectively

H = 1

2
D(σ x

1 σ x
2 + σ

y
1 σ

y
2 − 2σ z

1σ z
2 ) − 1

2
(B1σ

z
1 + B2σ

z
2 ). (64)

Here the dipolar coupling constant (in frequency units) equals

D = μ0

4π

γ1γ2h̄

2r30
, (65)

where μ0 is the magnetic permeability of free space, γ1 and γ2 are the gyromag-
netic ratios of particles in the dimer, and r0 is the distance between those particles.
Normalized fields B1 and B2 in Eq. (65) are

B1 = γ1B0, B2 = γ2B0, (66)

where B0 is the external magnetic field induction.
We have performed necessary calculations (according to our approach developed

in the previous sections) and found the subdomains of quantum discord in the plane
(B1/D, B2/D). The results are shown at the normalized temperature T/D = 1 in
Fig. 12. From this figure, one can see that such a system has the Qθ regions between
the 1, 2 and 1′, 2′ lines. Notice that the phase diagram (Fig. 12) is not symmetric
with respect to the bisection line B1/D = B2/D because the quantum discord is not
symmetric under the exchange of the subsystems. The Qθ regions can be reached by
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Fig. 12 Subdomains Qπ/2, Q0, and (between the lines 1,2 and 1′, 2′) Qθ for the spin dimer (64) at
the normalized temperature T/D = 1. Dotted lines 3 and 4 correspond to B2 = 4B1 and B2 = B1/4,
respectively

varying the external magnetic field B0. Two possible trajectories are shown in Fig. 12
by dotted lines, B2 = 4B1 and B2 = B1/4. (The value γ2/γ1 = 4 approximately
corresponds to the quotient of gyromagnetic ratios for the nucleus of 1H and 13C.)

We found also that in the Qθ subdomain, the conditional entropy Scond(θ) has
only one minimum that is located in the interval (0, π/2). The picture is qualitatively
similar to that is shown in Fig. 4.

So, the Qθ region and corresponding sudden changes of quantum correlation behav-
ior at their boundaries can be observed in solid materials with nuclear dimers.

7 Results and perspectives

In the light of the above, the calculation of quantum discord of any X states can be
achieved by following steps. First, the density matrix is transformed to a real form.
Second, it is also well to solve the equation Q0 = Qπ/2, determine possible crossing
points of branches Q0 and Qπ/2, and study the behavior of Scond(θ) near the crossing
points found. Then the equations S′′

cond(0) = 0 and S′′
cond(π/2) = 0 are solved to find

the boundaries for the intermediate subdomain Qθ . After this, one should numerically
find the optimal measurement angle θ ∈ (0, π/2) and compute Qθ = Q(θ). As a
result, the quantum discord is given by Q = min{Q0, Qθ , Qπ/2}.

So, the quantum discord of X states is represented analytically if the Qθ region is
absent. Then the quantum discord is given by the closed form Q = min{Qπ/2, Q0}
and by Q = Qπ/2 = Q0 in the fully isotropic case [48]. The discord is continuous,
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but generally speaking it is a piecewise smooth function. In particular, this is valid for
a special class of X states, namely for the Bell-diagonal states. For them, we found
the Q0 and Qπ/2 regions in the total domain of their definition (Fig. 6). It would be
interesting to find the subdomains Q0, Qθ , and Qπ/2 in the five-dimensional domain
D making, e.g., an atlas of maps.

Also, we have shown in this paper that the boundaries for the transition subdomain
from Q0 to Qπ/2 or reversely are exactly defined. They consist of nonanalyticity points
which are bifurcation ones. The boundaries may coincide, and then, the quantum
discord is evaluated analytically in the total domain of definition. The regions Qθ with
the optimal intermediate angles θ ∈ (0, π/2) have been found for a number of physical
systems including the phase flip channels, spin dimers at the thermal equilibrium, and
heteronuclear systems with dipolar interaction. The transitions Qπ/2 ↔ Qθ ↔ Q0
occur continuously and smoothly. This is a new type of transitions for the quantum
discord.

The examples considered show that Qθ phases are interesting physical phenomena
rather not a mathematical exotic.

We have found only two regimes for the average conditional entropy change by
above transitions: (i) via the birth of one intermediate minimum (as shown in Fig. 4)
and (ii) via the straight line (as shown in Fig. 8), when arbitrary angle θ ∈ [0, π/2]
is optimal, but any infinitesimal perturbations of model parameters lead to a jump of
optimal measurement angle to zero or π/2. It is hoped that our observations will be
rigorously proofed and, maybe, generalized in the future.

At present, the attempts are made to obtain analytical formulas for the super quan-
tum discord of X states with nonzero Bloch vectors [49,50]. In this connection, one
should note that the authors do not take into account a possibility of intermediate
optimal angles for the weak measurements which are a generalization of ordinary
projective ones.
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