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Abstract Quantumprivate comparison (QPC) allows us to protect private information
during its comparison. In the past, various three-party quantum protocols have been
proposed that claim to work well under noisy conditions. Here, we tackle the problem
of QPC under noise. We analyze the EPR-based protocol under depolarizing noise, bit
flip and phase flip noise. We show how noise affects the robustness of the EPR-based
protocol. We then present a straightforward protocol based on CSS codes to perform
QPC which is robust against noise and secure under general attacks.

Keywords Quantum cryptography ·Quantum private comparison ·Noisy channels ·
CSS code

1 Introduction

Quantum ideas have led to surprising developments in the field of secure commu-
nication. The most startling example is that of cryptography, where quantum ideas
have revolutionized the field. While most classical cryptography schemes depend on
computational complexity for their security, quantum cryptographic schemes [1–4]
offer security based on physical laws. There have been further developments such as
quantum secure direct communication [5–7], quantum secret sharing [8–10], quantum
authentication and quantum signatures [11–14].
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Securemulti-party computation allows several distrustful parties to jointly compute
a function while keeping their inputs private [15] and is of fundamental importance in
secure communication. A particular instance is to compute the equality function with
just two parties [15]. Quantum private comparison (QPC) aims to do the above com-
putation without sharing the party’s private information. This is in contrast to quantum
key distribution (QKD) which provides a secure way to share private information.

LetAlice andBob have private informationMA andMB, respectively. QPC involves
the computation of the function f (MA, MB) such that

f (MA, MB) =
{
0 if MA = MB

1 if MA �= MB
(1)

Furthermore, at the end of the protocol, Alice and Bob do not wish the other party
to learn anything about their information, apart from what can be inferred logically
from f (MA, MB). Lo [16] pointed out that the above function f (MA, MB) cannot be
computed securely by two parties alone. Hence, a third party is needed to facilitate
the process. One might think that a three-party QPC is trivial. Both Alice and Bob
can convey their information to a trusted third party (Charlie) and he can tell Alice
and Bob the outcome of the function f . The problem here is a little different; Alice
and Bob do not wish to disclose their information to anyone, including Charlie and
yet wish to compare their private information. In fact, they do not want to transmit
the information at all. In the past, several three-party quantum protocols have been
proposed [17–21]. They impose the following restriction on the third party:

(a) Charlie tries to learn information aboutAlice andBob’s inputwhile being restricted
to faithfully follow the protocol. In other words, he is semi-honest or honest but
curious.

(b) Charlie may know the positions at which MA and MB differ, but not the actual bit
values.

Further, these protocols assume that all channels are noiseless or remain silent on
this aspect. We show that under the proposed restrictions, we can build a protocol
to achieve QPC even under noisy conditions. A slight modification of our protocol
allows us to relax the condition, that Charlie is honest. That is, he may not cooperate
with Alice and Bob and return false results. We also show how our protocol is more
efficient than similar quantum protocols [21].

It is hard to build perfect quantum channels, and hence, we must build protocols
that are robust against noise. We choose a specific protocol described by Tseng et
al. [18] and add noise to its channels. We consider depolarizing noise, bit flip and
phase flip noise. We show that the protocol as such, is not robust under noise. We note
that three-party QPC involves transmission of correlated keys between the parties
and that under noise, these correlations are altered. Quantum error correction helps
overcome the effects of noise. We note that quantum error correction and quantum
cryptography have a deep connection [22]. Exploiting this connection, we use the CSS
quantum error correction scheme [23] to transmit correlated keys to relevant parties
under noisy conditions in a secure manner. This allows us to perform three-party
QPC under noisy conditions. Further, by repeated use of our protocol and through
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Quantum private comparison over noisy channels 3007

cooperation between Alice and Bob, any dishonesty on the part of Charlie can also be
detected.

2 EPR-based QPC protocol and noise

We review the EPR-basedQPCprotocol given in [18]. Alice andBob have n-bit strings
MA and MB, respectively. They want to compare their information with the help of a
semi-honest third party called Charlie. Let Alice, Bob, and Charlie be connected by
noiseless quantum channels that can be eavesdropped upon and classical channels that
can be eavesdropped upon but not altered. For each qubit, we consider the computa-
tional basis |0〉 and |1〉 and define the rotated basis state as |+〉 = 1√

2
(|0〉 + |1〉) and

|−〉 = 1√
2
(|0〉 − |1〉). For pairs of qubits, the four Bell states are defined as

|φ±〉 = |00〉 ± |11〉√
2

, |ψ±〉 = |01〉 ± |10〉√
2

. (2)

Using these resources over the quantum channels and classical communication over
the classical channels, the secure QPC protocol proceeds as follows:

Protocol 1 1. Charlie prepares a random n-bit string CT . For each bit of CT , he
prepares a quantum state. If the bit is 0, then he prepares one of the states from
|φ±〉 (it does not matter which). Otherwise, he prepares one of the states from
|ψ±〉. Sequence TA consists of the first half of each of these entangled pairs, while
TB consists of the second halves.

2. Charlie prepares two sets of decoys DA and DB randomly in the states: |0〉, |1〉, |+〉
and |−〉. Charlie randomly interleaves DA with TA and DB with TB to form SA
and SB, which are then sent to Alice and Bob respectively.

3. Upon receipt of the complete sequences SA and SB, Alice and Bob signal Charlie
to disclose the positions and the basis ({|0〉, |1〉} or {|−〉, |+〉}) for measuring the
decoys.

4. Alice and Bob measure the decoys in the appropriate basis and consult over a
classical channel to check for eavesdroppers. If the error rate is more than a pre-
determined rate then they abort the protocol, else they proceed.

5. Alice and Bob measure the non-decoy particles in the Z basis to obtain bit strings
RA and RB respectively. Note that each of RA and RB are uniformly randomwhile
RA ⊕ RB = CT .

6. Alice and Bob calculate CA = MA ⊕ RA and CB = MB ⊕ RB. They cooperate to
calculate C = CA ⊕ CB and send it to Charlie.

7. Charlie computes Rc = C ⊕ CT . Rc has a single nonzero entry if and only if
MA �= MB, in which case Charlie outputs 1, otherwise he outputs 0.

It is not hard to see that in the absence of noise and eavesdropping, the protocol com-
putes the function f (MA, MB) with certainty. We note that if an eavesdropper (Eve)
passes undetected, then the output of the protocol can be different from f (MA, MB)

because Eve can tamper with the non-decoy particles (she may cause RA ⊕ RB �= CT )
andmake the protocol malfunction. It has been shown that the above protocol is secure
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against certain insider and outsider attacks [18] and hence computes f (MA, MB)with
very high probability.

2.1 One-qubit noisy channels

In the QPC protocol described above, perfect (noiseless) single- qubit quantum chan-
nels between Alice, Bob, and Charlie have been employed. In any real situation, noise
can act on these channels in a number of ways. Therefore, we need to consider noisy
one-qubit channels instead of noiseless channels and explore the possibility of carry-
ing out QPC over these noisy channels. We begin by describing the noisy channels
and then figure out their effect on the EPR-based QPC protocol.

The bit flip channel with error probability 1 − p is defined through its action on a
one-qubit density operator ρ via the action of the bit flip gate X as

F(ρ) = (1 − p)XρX† + pρ. (3)

Similarly, the phase flip channel with error probability 1− p is described through the
action of the phase flip gate Z as

G(ρ) = (1 − p)ZρZ† + pρ. (4)

The depolarizing channel with error probability p is

H(ρ) = (1 − p)ρ + p

3

(
XρX† + YρY † + ZρZ†

)
. (5)

The above equation admits the interpretation that the state is acted upon by each Pauli
operator with probability p

3 and remains unchanged with probability 1 − p.

2.2 QPC and depolarizing channels

Let both the channels between Alice and Charlie (AC) and between Bob and Charlie
(BC) suffer from depolarizing noise. If the error represented by the Pauli matrix σA
acts on the AC channel and the error represented by σB affects the BC channel, then
we call the combined error σAσB. From Eq. (5), we see that under depolarizing noise
the channel acts such that each Pauli matrix acts on the qubit with equal probability
p
3 . Since both the channels AC and BC are independent the errors act independently.
Hence, the probability for an XAXB error is p

3 · p
3 . If an error acts such that it takes

the state |φ±〉 to the state |ψ±〉 or vice-versa then the protocol will return an incorrect
answer. This happens because the flipping of a correlated to an anti-correlated state
and vice-versa makes the string CT an unfaithful record of the positions at which RA
and RB differ. After the error has acted, CT �= C ′

T where

C ′
T ≡ RA ⊕ RB (6)
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So in step 7 of Protocol 1, Charlie gets Rc = (CT ⊕ C ′
T ) ⊕ (MA ⊕ MB) instead of

Rc = MA ⊕ MB.
Under the action of depolarizing noise mentioned in Eq. (5), the probability that

the state changes from |φ±〉 to |ψ±〉 or viceversa is r = 4p
3 (1 − 2p

3 ), which means
that the probability that CT and C ′

T differ at a given position is r . Even if there is a
difference at a single position in CT and C ′

T , the protocol will give wrong results. Let
n be the length of the strings and P(CT = C ′

T ) the probability that CT = C ′
T . It is

straightforward to see that

P
(
CT �= C ′

T

) = 1 − P
(
CT = C ′

T

)
= 1 − (1 − r)n (7)

Hence, the protocol [18] is not robust against any amount of depolarizing noise. For
large n and small r , the error is linear in r .

2.3 Bit flip and phase flip channels and QPC

Consider bit flip and phase flip noise in channels AC and BC. Suppose bit flip (3) acts
with probability p and phase flip (4) with probability q. The combined action of the
error is given by

F ◦ G(ρ) = G ◦ F(ρ)

= (1 − q)pXρX + (1 − p)qZρZ + pqYρY

+ (1 − q)(1 − p)ρ. (8)

Equation (8) gives the total action of noise on each channel. Let the length of CT and
C ′
T be n, then

P(CT �= C ′
T ) = 1 − (1 − 2p(1 − p))n . (9)

Hence the protocol [18] is robust against phase flip noise but not bit flip noise. For
large n and small p, the error is linear in p.

We see that due to depolarizing noise and bit flip noise in the communication
channels between Alice (Bob) and Charlie, the protocol returns incorrect results. This
is because noise alters the quantum state being sent and consequently the string RA
and RB. This alteration results in CT (the string with Charlie) becoming an unfaithful
record of the correlations between RA and RB. In general, channels are noisy and any
protocol fit for implementation must be robust against noise. Hence we need to design
protocols that work even under noisy conditions.

3 CSS code-based protocol

In order to perform three-party QPC under noise, it is necessary to preserve the infor-
mation encoded in the quantum states being sent by Charlie to Alice (Bob). This will
ensure that CT remains a faithful record of the correlations. One way to achieve this
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is through error correction on the quantum states being sent to convey RA and RB.
We utilize CSS codes to perform error correction [23]. We note that these codes have
a deep connection with QKD [22].

We propose a protocol for QPC that is robust under noise and completely secure
from attacks. The basic idea is to use the CSS codes to securely transfer a known key
from Charlie to Alice and Bob. This allows the QPC to work perfectly under noise as
long as the bit (phase) error rate is under an acceptable limit.

3.1 CSS codes

We review the CSS codes [23,24] and the protocol for using CSS codes to perform a
secure key distribution of a known random key.

Suppose C1 and C2 are [n, k1] and [n, k2] classical linear codes such that {0} ⊂
C2 ⊂ C1 ⊂ F

n
2,C1 and CT

2 both correct t errors. Then CSS(C1,C2) is an [n, k1 − k2]
quantum error-correcting code capable of correcting t-qubit errors. For x ∈ C1, we
define a code state

|x + C2〉 ≡ 1√|C2|
∑
y∈C2

|x ⊕ y〉 (10)

where⊕ is summation modulo 2. If x, x ′ belong to the same coset inC2, i.e., x − x ′ =
y′ ∈ C2, then they define the same code state, and hence the total number of distinct
code states is the number of cosets of C2 in C1, |C1|/|C2| = 2k1−k2 . Each code state
can be used to encode a distinct n-bit classical string. This can then be exchanged
between interested parties.

The code state can get affected by noise in the channel, which we must be able to
correct. It is sufficient to write the corrupted code state as

1√|C2|
∑
y∈C2

(−1)(x+y)·e2 |x ⊕ y ⊕ e1〉 (11)

where e1 is the n-bit string with a nonzero entry only at positions where a bit flip has
occurred and e2 is a similar n bit string for phase flips. By correcting both these kind of
errors, we can correct any kind of error [23,24]. In order to detect and correct errors,
we consider σa(k) the Pauli matrix acting on the kth bit, where a(k) ∈ {x, y, z}. The
operator σ

[l]
a is defined as

σ [l]
a = σ

l1
a(1) ⊕ σ

l2
a(2) ⊕ · · · ⊕ σ

ln
a(n) (12)

l is an n-bit string and its i th entry is li that takes values from {0, 1}. By definition,
σ 0
a(k) = I. Note that eigenvalues of σa(k) are ±1.
In classical error correction, if F is a parity check matrix for a code M , an error y

affecting the code word p giving p′ = p + y has syndrome Fp′ = Fy (Fp = 0 by
definition). This syndrome is used to determine the most likely error y. Note that the
mth entry of the column vector Fy is fm · p′ mod 2, where fm is the mth row in F .
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For correcting the quantum state in Eq. (11), we employ a measurement protocol
along similar lines. Let H1 be the parity check matrix for C1 and H2 for CT

2 (the dual
code of C2). If l is the i th row of H1, then we determine the i th column entry for
the bit flip error syndrome H1 · e1 by measuring σ

[l]
z with the understanding that the

eigenvalue 1(−1) is mapped to 0(1). Thus by measuring σ
[l]
z for each row l ∈ H1,

we obtain the full syndrome. The i th column entry for the phase flip error syndrome

H2 · e2 is similarly obtained bymeasuringσ
[l ′]
x where l ′ is the i th rowof H2. From these

syndromes, we can accurately get back e1 and e2 using classical linear coding theory
as long aswt (e1) ≤ t andwt (e2) ≤ t respectively. We then correct the corrupted state
and retrieve the encoded state

1√|C2|
∑
y∈C2

|x ⊕ y〉 (13)

A generalized CSS(C1,C2) code for any two n-bit strings x and z can be defined
as

|v + C2〉 ≡ 1√|C2|
∑

w∈C2

(−1)z·w|v ⊕ x ⊕ w〉 v ∈ C1 (14)

We may use these code states. Let s ≡ (x, z) then we denote the quantum code with
the above code states as Qs . For x = 0 and z = 0Qs reduces to CSS(C1,C2). If
we measure σ

[l]
z (l ∈ H1) and σ l ′

x (l ′ ∈ H2) on code state (14), then we will obtain
syndromes corresponding to H1x and H2z, respectively. If there was a bit flip error
e1 and a phase flip error e2 on the code state (14), then our syndrome measurements
would be corresponding to H1(x + e1) and H2(z + e2). We can recover the error with
the understanding that we must subtract x and z to retrieve the e1 and e2, respectively.
If we perform syndrome measurements on any state |ψ〉 and obtain that the syndrome
are both null vectors, then we can conclude |ψ〉 = |v + C2〉 v ∈ C1 for some
v. The syndrome measurement projects the state |ψ〉 into the subspace spanned by
|v + C2〉, v ∈ C1. Alternatively, if we obtain syndromes corresponding to H1.x and
H2. z for bit flip and phase flip, respectively, then we may conclude that |ψ〉 has been
projected onto a subspace spanned by code states of Qs, s = (x, z).

3.2 The protocol

Let us first describe the CSS-based protocol for sharing a known randomly chosen
secret key. Let us assume that a secret key is to be distributed between Alice and
Charlie.

Protocol 2 1. Alice creates n random check bits, a randomm-bit key k and a random
2n-bit string b.

2. Alice generates s = (x, z) by choosing n-bit strings x and z at random.
3. Alice encodes her key k as |k〉 using the CSS code Qs .
4. Alice chooses n positions (out of 2n) and puts the check bits in these positions and

the code bits in the remaining positions.

123



3012 V. Siddhu, Arvind

5. Alice applies a Hadamard transform to those qubits in those positions where b is
1.

6. Alice sends the resulting state to Charlie. He acknowledges the receipt once he
receives all qubits.

7. Alice announces b, the positions of the check bits, the values of the check bits and
the strings s.

8. Charlie performs Hadamard on the qubits where b is 1.
9. Charlie checks whether too many of the check bits have been corrupted and aborts

the protocol if so.
10. With the help of s, Charlie decodes the key bits and uses them for the key.
The above protocol works correctly and is unconditionally secure as long as the noise
is under a given threshold value [22]. The protocol for carrying out QPC under noisy
conditions is as follows

Protocol 3 1. Charlie generates a random n-bit string RA and uses the CSS code-
based quantum error correction protocol (Protocol 2) to send it to Alice.

2. Charlie generates a random n-bit string CT and computes RB = RA ⊕ CT

3. Charlie uses Protocol 2 to send RB to Bob.
4. Alice and Bob compute CA = MA ⊕ RA and CB = RB ⊕ MB.
5. Alice andBob collaborate together to computeC = CA⊕CB and send it to Charlie

over a public channel.
6. Charlie computes Rc = C ⊕ CT . Rc has a single nonzero entry if and only if

MA �= MB, in which case Charlie outputs 1, otherwise he outputs 0

The entire process is summarized in Fig. 1. It is easy to see that in the absence of noise
and eavesdropping, the protocol computes the function f (MA, MB) correctly. In the
presence of noise alone, the CSS-based scheme can transmit keys correctly as long as
noise is within an acceptable level (the current acceptable level of bit(phase) flip errors
is 20.0% [25,26]). When both noise and eavesdropping are allowed, the protocol is
secure and gives correct results with very high probability. We now show the security
and correctness in the presence of noise and eavesdropping. We note that participant
attacks are stronger than non-participant attacks since participants always have more
information. We consider attacks by Alice and Bob to demonstrate the security of the
protocol.

Consider an attack by Alice to gain information about MB. She can attack the
transmission channel between Bob and Charlie and try to extract information by per-
forming any physical operation permitted by quantum mechanics. Alternatively, she
may exploit side channel attacks which exploit loopholes in the devices used to imple-
ment key distribution [27–35]. These two are fundamentally different kinds to attack.

Let us first analyze a direct attack on the transmission by Alice. She has access to
MA,CB,CA and RA. We may assume that MA contains no information about MB.
We note MB = RB ⊕ CB, hence information about RB implies information about
MB and vice-versa. Alice can gain information about RB through CT (RB = CT ⊕
RA), alternatively she may intercept the communication between Bob and Charlie.
The semi-honest nature of Charlie ensures that Alice does not learn anything about
CT . We know [22,36] that once Bob and Charlie authenticate the CSS protocol the
probability that intercepts by Alice go undetected is exponentially close to 1. In the
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Fig. 1 The schematic diagram
of the protocol where Charlie
generates random strings RA
and CT ; using the CSS- based
protocol he sends RA to Alice
and RB = RA ⊕CT to Bob over
the noisy channels. Alice and
Bob encode their respective
messages MA and MB in CA
and CB. They collaborate to
compute C = CA ⊕ CB and
send it via a public channel to
Charlie

AliceMA

BobMB

Charlie CT

RA

RB

CA

CB

C

event, the protocol is authenticated Alice’s mutual information about the key (MB) is
exponentially small. So, any attack by Alice on the communication between Bob and
Charlie cannot help her gain more than an exponentially small amount of information
about RB without going undetected with a probability exponentially close to 1. So
with very high probability, attacks by Alice are unsuccessful.

Consider an attack by Alice on the devices used to implement the CSS based key
distribution scheme. A CSS-based scheme can be turned into an equivalent modified
BB-84 scheme [22], we need only analyze attacks on the latter to discuss the security
of the former. Implementations of QKD employ devices that may not adhere to the
strict assumptions made while proving their unconditional security. This allows for
side channels for eavesdroppers to attack. These attacks can also be tackled. One can
use measurement device-independent quantum key distribution [37] and appropriate
experimental designs [38,39] to achieve this. Specifically, it has been shown that we
can implement key distribution such that it is immune to all side channel attacks [39].

In the event, the attacks are unsuccessful then we need to only care about the noise.
But as we saw earlier, the CSS protocol is robust as long as the noise is under an
acceptable level. Since the protocol is symmetric with respect to Alice and Bob, any
attacks by Bob are also ruled out. We note that Charlie has access to RA, RB,CT and
C and is restricted to be semi-honest. It is easy to see that under these restrictions, he
can gain no information about MA or MB.

3.3 Dishonest third party

It is possible to modify our protocol to achieve three-party QPC for weaker conditions
on the third party. We allow the third party to be dishonest, in the sense that he may
return incorrect comparisons to Alice and Bob. We note that by providing false results
Charlie does not stand to gain any information about the private strings of Alice and
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Bob.We adapt the technique from [21] for our purposes. Alice and Bob sharem strings
whose values are known to them. They repeat the QPC protocol(as described above)
m + 1 times. They compare m known strings and 1 secret string. Their secret strings
are compared at some random repetition, known to Alice and Bob but unknown to
Charlie. This prevents Charlie from being dishonest. In the event Charlie tries to give
false information to Alice and Bob, he is caught with high probability (1 − 1

m+1 ).

4 Conclusions

We analyze EPR-based three-party QPC under noisy conditions and show that it is
not robust under any amount of bit flip noise and depolarizing noise. We then present
a CSS-based protocol that is robust against noise and secure under general attacks, as
long as the noise is under an acceptable rate.

It is important to compare our work with the available classical and quantum proto-
cols in the literature. Recently, a protocol using quantum key distribution (QKD) [21]
have been proposed. This protocol does not consider noisy channels or side channel
attacks. Though it is possible from our analysis above, to extend their work to the
noisy channel case, in terms of resources, for the case of a semi-honest third party,
their protocol achieves QPC using 4-QKD relays each sharing n bits of information. In
comparison, our protocols uses 2-QKD-like relays, decreasing the quantum resources
and communication complexity by a factor of 2. However, the overall communication
complexity and quantum resources(in terms of entangled states used to implement a
QKD) are still O(n).

Several classical protocols have been designed to perform two-party and multi-
party secure computation. These protocols either work under an honest majority [40]
or a Common Reference String (CRS) along with complexity assumptions [41] or
demand access to a trusted dealer [42] (implemented using public key technique)
but are able to tackle both passive and active adversaries. It is well known that certain
complexity assumptions such as absence of polynomial time algorithms for prime fac-
torization or discrete logarithm are invalid when the adversary has access to quantum
resources [43]. On the other hand it is possible to use classical public key cryptosys-
tems based on the hardness of learning with errors [44]. These cryptosystems cannot
be broken by quantum algorithms presently known to us. Implementations of public
key cryptosystems are expensive but can be done with O(poly(n)) classical resources.
In our work, we consider only 2 parties and propose a protocol to compute a single
function (equality) but allow the parties to be corrupted by an adversary who however
does not inject incorrect information into the protocol.While we do not need complex-
ity assumptions, we do need secure channels between the interested parties, and we
take into account the resources expended in creating secure channels. In our proposal,
the resources (classical and quantum) utilized to implement the protocol from scratch
are linear in the size of the input. Our proposal based on previous work demands a
trusted third party but we show how that assumption can be relaxed by repeating the
protocol several times, consequently incurring a cost which is still linear in the size of
the input.
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We note that our protocol no longer uses EPR states, but requires the used of CSS
code states. In order to send CSS-encoded information, we may require multi-qubit
channels. In order to perform QPC under noise, we exploit the connection between
CSS codes and key distribution. This enables us to provide unconditional security for
QPC in real time implementation schemes.

It would be interesting to see if other QPC protocols that use d- level quantum sys-
tems or Greenberger–Horne–Zeilinger (GHZ) states can also be made unconditionally
secure against all possible attacks. It would also be worthwhile to explore protocols
that work under milder restrictions on the third party and protocols that can work for
multi-party and implement a wider class of functions.
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