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Abstract Quantum deficit originates in questions regarding work extraction from
quantum systems coupled to a heat bath (Oppenheim et al. in PhysRevLett 89:180402,
2002). It links quantum correlations with quantum thermodynamics and provides a
new standpoint for understanding quantum non-locality. In this paper, we propose a
newmethod to evaluate the one-way deficit for a class of two-qubit states. The dynamic
behavior of the one-way deficit under decoherence channel is investigated, and it is
shown that the one-way deficit of the X states with five parameters is more robust
against decoherence than entanglement.

Keywords One-way deficit · Concurrence · Phase flip channel

1 Introduction

Quantum entanglement is a resource in quantum information processing such as
teleportation [1], super-dense coding [2], quantum cryptography [3], remote-state
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preparation [4,5], and so on. However, there are quantum correlations other than
entanglement which are also useful and have attracted much attention recently [6–
11]. One remarkable and widely accepted quantum correlation is quantum discord.
Quantum discord is a measure of the difference between the mutual information and
maximum classical mutual information, which is generally difficult to calculate even
for two-qubit quantum system [12–16].

Other nonclassical correlations besides entanglement and quantum discord have
arisen recently; for example, quantum deficit [17,18], measurement-induced distur-
bance [19], geometric discord [20,21], and continuous-variable discord [22,23], see
a review [11]. Quantum deficit originates on asking how to use nonlocal operation to
extract work from a correlated system coupled to a heat bath [17]. It is also closely
related to other forms of quantum correlations. Oppenheim et al. [17] defined the work
deficit

� ≡ Wt − Wl, (1)

whereWt is the information of the whole system andWl is the localizable information
[24,25]. As with quantum discord, quantum deficit is also equal to the difference in
the mutual information and classical deficit [26]. Recently, Streltsov et al. [27,28]
give the definition of the one-way information deficit (one-way deficit) in terms of
relative entropy, which reveals an important role of quantum deficit as a resource for
the distribution of entanglement. One-way deficit by von Neumann measurement on
one side is given by [29]

�→(ρab) = min{�k }
S

(∑
k

�kρ
ab�k

)
− S(ρab). (2)

From the definition, we can see that the one-way deficit and quantum discord are
different kinds of quantum correlations. The one-way deficit is related to the work that
can be extracted from the total system, and the work that can be extracted from the
subsystems after suitable LOCCoperations. Quantumdiscord quantifies the difference
between themutual information andmaximal classical mutual information.Moreover,
theminimizations involved in computing one-way deficit and quantumdiscord are also
different. One may wonder whether the analytical formula or the calculation method
for a class of two-qubit states like quantum discord can be obtained. In this paper,
we will endeavor to calculate the one-way deficit for two-qubit X states with five
parameters.

2 One-way deficit for X states with five parameters

We first introduce the form of two-qubit X states. By using appropriate local unitary
transformations, we can write ρab as
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ρab = 1

4

(
I ⊗ I + r · σ ⊗ I + I ⊗ s · σ +

3∑
i=1

ciσi ⊗ σi

)
, (3)

where r and s are Bloch vectors and {σi }3i=1 are standard Pauli matrices. When r = s
= 0, ρ reduces to two-qubit Bell-diagonal states. When we assume that Bloch vectors
are in the z direction, that is, r = (0, 0, r), s = (0, 0, s), the state in Eq. (3) has the
following form

ρab = 1

4

(
I ⊗ I + rσ3 ⊗ I + I ⊗ sσ3 +

3∑
i=1

ciσi ⊗ σi

)
. (4)

In the computational basis |00〉, |01〉, |10〉, |11〉, the density matrix of ρab is

ρ = 1

4

⎛
⎜⎜⎝
1 + r + s + c3 0 0 c1 − c2

0 1 + r − s − c3 c1 + c2 0
0 c1 + c2 1 − r + s − c3 0

c1 − c2 0 0 1 − r − s + c3

⎞
⎟⎟⎠ . (5)

From Eq. (4) in [14], after some algebraic calculations, we can obtain that parameters
x, y, s, u, t in [14] can be substituted for r, s, c1, c2, c3 of the X states in Eq. (5)
successively and

r, s, c1, c2, c3 ∈ [−1, 1]. (6)

One can also change them to be x or y direction via an appropriate local unitary
transformation without losing its diagonal property of the correlation terms [30].

The eigenvalues of the X states in Eq. (5) are given by

u± = 1

4

[
1 − c3 ±

√
(r − s)2 + (c1 + c2)2

]
,

v± = 1

4

[
1 + c3 ±

√
(r + s)2 + (c1 − c2)2

]
.

The entropy is given by

S(ρ) = 2 −
[
1

4

(
1 − c3 +

√
(r − s)2 + (c1 + c2)2

)
log

(
1 − c3 +

√
(r − s)2 + (c1 + c2)2

)

+ 1

4

(
1 − c3 −

√
(r − s)2 + (c1 + c2)2

)
log

(
1 − c3 −

√
(r − s)2 + (c1 + c2)2

)
+ 1

4

(
1 + c3 +

√
(r + s)2 + (c1 − c2)2

)
log

(
1 + c3 +

√
(r + s)2 + (c1 + c2)2

)
+ 1

4

(
1 + c3 −

√
(r + s)2 + (c1 − c2)2

)
log

(
1 + c3 −

√
(r + s)2 + (c1 − c2)2

)]
.

(7)
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Next, we evaluate the one-way deficit of the X states in Eq. (5). Let {�k =
|k〉〈k|, k = 0, 1} be the local measurement for the party b along the computational
base |k〉; then any von Neumann measurement for the party b can be written as

{Bk = V�kV
†: k = 0, 1}

for some unitary V ∈ U (2). For any unitary V ,

V = t I + i �y · �σ

with t ∈ R, �y = (y1, y2, y3) ∈ R
3, and t2 + y21 + y22 + y23 = 1, after the measurement

Bk , the state ρab will be changed into the ensemble {ρk, pk} with

ρk = 1

pk
(I ⊗ Bk)ρ(I ⊗ Bk), pk = tr(I ⊗ Bk)ρ(I ⊗ Bk).

To evaluate ρk and pk , we write

pkρk = (I ⊗ Bk)ρ(I ⊗ Bk)

= 1

4
(I ⊗ V )(I ⊗ �k)

[
I + rσ3 ⊗ I + s I ⊗ V †σ3V

†

+
3∑
j=1

c jσ j ⊗ (V †σ j V )

⎤
⎦ (I ⊗ �k)(I ⊗ V †).

By the relations [19]

V †σ1V =
(
t2 + y21 − y22 − y23

)
σ1 + 2(t y3 + y1y2)σ2 + 2(−t y2 + y1y3)σ3,

V †σ2V = 2(−t y3 + y1y2)σ1 +
(
t2 + y22 − y21 − y23

)
σ2 + 2(t y1 + y2y3)σ3,

V †σ3V = 2(t y2 + y1y3)σ1 + 2(−t y1 + y2y3)σ2 +
(
t2 + y23 − y21 − y22

)
σ3,

and

�0σ3�0 = �0,�1σ3�1 = −�1,� jσk� j = 0, for j = 0, 1, k = 1, 2,

we obtain

p0ρ0 = 1

4
[I + sz3 I + c1z1σ1 + c2z2σ2 + (r + c3z3)σ3] ⊗ (V�0V

†),

p1ρ1 = 1

4
[I − sz3 I − c1z1σ1 − c2z2σ2 + (r − c3z3)σ3] ⊗ (V�1V

†),

where

z1 = 2(−t y2 + y1y3), z2 = 2(t y1 + y2y3), z3 = t2 + y23 − y21 − y22 .
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Then, we will evaluate the eigenvalues of
∑

k �kρ
ab�k by

∑
k

�kρ
ab�k = p0ρ0 + p1ρ1, (8)

and

p0ρ0 + p1ρ1 = 1

4
[(I + rσ3) + (sz3 I + c1z1σ1 + c2z2σ2 + c3z3σ3)] ⊗ (V�0V

†)

+ 1

4
[(I + rσ3) − (sz3 I + c1z1σ1 + c2z2σ2 + c3z3σ3)] ⊗ (V�1V

†)

= 1

4
(I + rσ3) ⊗ (V�0V

† + V�1V
†)

+ 1

4
(sz3 I + c1z1σ1 + c2z2σ2 + c3z3σ3) ⊗ (V�0V

† − V�1V
†)

= 1

4
(I + rσ3) ⊗ I + 1

4
(sz3 I + c1z1σ1 + c2z2σ2 + c3z3σ3) ⊗ Vσ3V

†.

The eigenvalues of p0ρ0 + p1ρ1 are the same with the eigenvalues of the states
(I ⊗ V †)(p0ρ0 + p1ρ1)(I ⊗ V ), and

(I ⊗ V †)(p0ρ0 + p1ρ1)(I ⊗ V ) = 1

4
(I + rσ3) ⊗ I

+ 1

4
(sz3 I + c1z1σ1 + c2z2σ2 + c3z3σ3) ⊗ σ3.

(9)

The eigenvalues of the states in the Eq. (9) are

λ1,2 = 1

4

(
1 − sz3 ±

√
r2 − 2rc3z3 + c21z

2
1 + c22z

2
2 + c23z

2
3

)
,

λ3,4 = 1

4

(
1 + sz3 ±

√
r2 + 2rc3z3 + c21z

2
1 + c22z

2
2 + c23z

2
3

)
. (10)

It can be directly verified that z21 + z22 + z23 = 1. Set φ = z3, and

φ ∈ [−1, 1]. (11)

Let us put θ = c21z
2
1+c22z

2
2+c23z

2
3, c = min{|c1|, |c2|, |c3|},C = max{|c1|, |c2|, |c3|},

then c2 = min{c21, c22, c23}, C2 = max{c21, c22, c23}, c2 ≤ θ ≤ C2, and the equality can
be readily obtained by appropriate choice of t, y j [19]. Therefore, we see that the
range of values allowed for θ is [c2,C2]. The entropy of

∑
k

�kρ
ab�k is

S

(∑
k

�kρ
ab�k

)
= f (φ, θ) = −

4∑
i=1

λi log λi
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= 2 − 1

4

[
(1 − sφ +

√
r2 − 2rc3φ + θ) log(1 − sφ +

√
r2 − 2rc3φ + θ)

+ (1 − sφ −
√
r2 − 2rc3φ + θ) log(1 − sφ −

√
r2 − 2rc3φ + θ)

+ (1 + sφ +
√
r2 + 2rc3φ + θ) log(1 + sφ +

√
r2 + 2rc3φ + θ)

+ (1 + sφ −
√
r2 + 2rc3φ + θ) log(1 + sφ −

√
r2 + 2rc3φ + θ)

]
.

(12)

From Eqs. (6) and (11), we can obtain 1 ∓ sφ ≥ 0 and

∂ f

∂θ
= 1

ln 256

(
ln(1 − sφ − √

r2 − 2rc3φ + θ) − ln(1 − sφ + √
r2 − 2rc3φ + θ)√

r2 − 2rc3φ + θ

+ ln(1 + sφ − √
r2 + 2rc3φ + θ) − ln(1 + sφ + √

r2 + 2rc3φ + θ)√
r2 + 2rc3φ + θ

)

= 1

ln 256

⎛
⎜⎜⎝
ln 1−sφ−

√
r2−2rc3φ+θ

1−sφ+
√

r2−2rc3φ+θ√
r2 − 2rc3φ + θ

+
ln 1+sφ−

√
r2+2rc3φ+θ

1+sφ+
√

r2+2rc3φ+θ√
r2 + 2rc3φ + θ

⎞
⎟⎟⎠ < 0. (13)

It converts the problem about min{�k }
S(

∑
k

�kρ
ab�k) to the problem about the function

of one variable φ for minimum. That is

min{�k }
S

(∑
k

�kρ
ab�k

)

= min
φ

f (φ,C)

= min
φ

{
2 − 1

4

[
(1 − sφ +

√
r2 − 2rc3φ + C2) log(1 − sφ +

√
r2 − 2rc3φ + C2)

+ (1 − sφ −
√
r2 − 2rc3φ + C2) log(1 − sφ −

√
r2 − 2rc3φ + C2)

+ (1 + sφ +
√
r2 + 2rc3φ + C2) log(1 + sφ +

√
r2 + 2rc3φ + C2)

+ (1 − sφ −
√
r2 + 2rc3φ + C2) log(1 + sφ −

√
r2 + 2rc3φ + C2)

]}
.

(14)

By Eqs. (2), (7), (14), the one-way deficit of the X states in Eq. (5) is given by

�→(ρab) = min{�k }
S

⎛
⎝∑

k

�kρ
ab�k

⎞
⎠ − S(ρab)

= 1

4

[
(1 − c3 +

√
(r − s)2 + (c1 + c2)2) log(1 − c3 +

√
(r − s)2 + (c1 + c2)2)

+ (1 − c3 −
√

(r − s)2 + (c1 + c2)2) log(1 − c3 −
√

(r − s)2 + (c1 + c2)2)
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+ (1 + c3 +
√

(r + s)2 + (c1 − c2)2) log(1 + c3 +
√

(r + s)2 + (c1 − c2)2)

+ (1 + c3 −
√

(r + s)2 + (c1 − c2)2) log(1 + c3 −
√

(r + s)2 + (c1 − c2)2)

]

−max
φ

1

4

[
(1 − sφ +

√
r2 − 2rc3φ + C2) log(1 − sφ +

√
r2 − 2rc3φ + C2)

+ (1 − sφ −
√
r2 − 2rc3φ + C2) log(1 − sφ −

√
r2 − 2rc3φ + C2)

+ (1 + sφ +
√
r2 + 2rc3φ + C2) log(1 + sφ +

√
r2 + 2rc3φ + C2)

+ (1 + sφ −
√
r2 + 2rc3φ + C2) log(1 + sφ −

√
r2 + 2rc3φ + C2)

]
,

(15)

where C = max{|c1|, |c2|, |c3|}, φ ∈ [−1, 1].
For example, we set r = 0.2, s = 0.3, c1 = 0.3, c2 = −0.4, c3 = 0.56, and use

the minimum command

MinValue
[
{�→(ρab),−1 ≤ φ ≤ 1}, φ

]
(16)

in “Wolfram Mathematics8.0” software, and obtain that the value of the one-way
deficit is 0.130614.

When r = s = 0, ρ reduces to two-qubit Bell-diagonal states. One-way deficit of
Bell-diagonal states is

�→(ρab) = min{�k }
S

(∑
k

�kρ
ab�k

)
− S(ρab)

= 1

4

[
(1 − c1 − c2 − c3) log(1 − c1 − c2 − c3)

+ (1 − c1 + c2 + c3) log(1 − c1 + c2 + c3)

+ (1 + c1 − c2 + c3) log(1 + c1 − c2 + c3)

+ (1 + c1 + c2 − c3) log(1 + c1 + c2 − c3)
]

− 1 − C

2
log(1 − C) − 1 + C

2
log(1 + C), (17)

which is in consistent with the result using the simultaneous diagonalization theorem
obtained in [31].

It is worth mentioning that we have obtained a formula for solving one-way deficit.
It is simpler than the method using the joint entropy theorem [32].

3 Dynamics of one-way deficit under local nondissipative channels

The concurrence of the X states in Eq. (5) can be calculated in terms of the eigenvalues
of ρρ̃, where ρ̃ = σy ⊗ σyρ

∗σy ⊗ σy . The eigenvalues of ρρ̃ are
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λ5 = 1

16

(
c1 − c2 −

√
(1 + c3)2 − (r + s)2

)2
= 1

16

(
c1 − c2 − √

(1 + r + s + c3)(1 − r − s + c3)
)2

,

λ6 = 1

16

(
c1 − c2 +

√
(1 + c3)2 − (r + s)2

)2
= 1

16

(
c1 − c2 + √

(1 + r + s + c3)(1 − r − s + c3)
)2

,

λ7 = 1

16

(
c1 + c2 −

√
(1 − c3)2 − (r − s)2

)2
= 1

16

(
c1 + c2 − √

(1 + r − s − c3)(1 − r + s − c3)
)2

,

λ8 = 1

16

(
c1 + c2 +

√
(1 − c3)2 − (r − s)2

)2
= 1

16

(
c1 + c2 + √

(1 + r − s − c3)(1 − r + s − c3)
)2

.

The concurrence of the X states in Eq. (5) is given by

C(ρab) = max
{
2max{√λ5,

√
λ6,

√
λ7,

√
λ8

}
− √

λ5 − √
λ6 − √

λ7 − √
λ8, 0}.

(18)

In the following, we consider that the X states in Eq. (5) undergo the phase flip chan-
nel [33], with the Kraus operators 


(A)
0 = diag(

√
1 − p/2,

√
1 − p/2) ⊗ I , 
(A)

1 =
diag(

√
p/2,−√

p/2) ⊗ I , 

(B)
0 = I⊗ diag(

√
1 − p/2,

√
1 − p/2), 


(B)
1 = I⊗

diag(
√
p/2,−√

p/2), where p = 1−exp(−γ t), γ is the phase damping rate [33,34].
Let ε represent the operator of decoherence. Then, under the phase flip channel, we
have

ε(ρ) = 1

4

(
I ⊗ I + rσ3 ⊗ I + I ⊗ sσ3 + (1 − p)2c1σ1 ⊗ σ1

+ (1 − p)2c2σ2 ⊗ σ2 + c3σ3 ⊗ σ3
)
. (19)

We will only consider the following further simplified family of the X states in Eq.
(5), where

|c1| < |c2| < |c3|. (20)

As ε(ρ) satisfies conditions in Eqs. (5), (20) and the one-way deficit of the ρab under
the phase flip channel is given by

�→(ε(ρab)) = 1

4

[(
1 − c3 +

√
(r − s)2 + (1 − p)4(c1 + c2)2

)

× log

(
1 − c3 +

√
(r − s)2 + (1 − p)4(c1 + c2)2

)
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+
(
1 − c3 −

√
(r − s)2 + (1 − p)4(c1 + c2)2

)

× log

(
1 − c3 −

√
(r − s)2 + (1 − p)4(c1 + c2)2

)

+
(
1 + c3 +

√
(r + s)2 + (1 − p)4(c1 − c2)2

)

× log

(
1 + c3 +

√
(r + s)2 + (1 − p)4(c1 − c2)2

)

+
(
1 + c3 −

√
(r + s)2 + (1 − p)4(c1 − c2)2

)

× log

(
1 + c3 −

√
(r + s)2 + (1 − p)4(c1 − c2)2

)]

− max
φ

1

4

[(
1 − sφ +

√
r2 − 2rc3φ + c23

)
log

(
1 − sφ +

√
r2 − 2rc3φ + c23

)

+
(
1 − sφ −

√
r2 − 2rc3φ + c23

)
log

(
1 − sφ −

√
r2 − 2rc3φ + c23

)

+
(
1 + sφ +

√
r2 + 2rc3φ + c23

)
log

(
1 + sφ +

√
r2 + 2rc3φ + c23

)

+
(
1 + sφ −

√
r2 + 2rc3φ + c23

)
log

(
1 + sφ −

√
r2 + 2rc3φ + c23

)]
.

(21)

As an example, for r = 0.2, s = 0.3, c1 = 0.3, c2 = −0.4, c3 = 0.56, the dynamic
behavior of correlations of the state under the phase flip channel is depicted in Fig. 1.
Here one sees that the concurrence becomes zero after the transition. We find that
sudden death of entanglement appears at p = 0.217617. Therefore, for these states,
concurrence is weaker against decoherence than one-way deficit.
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Fig. 1 Concurrence (blue dashed line) and one-way deficit (red solid line) under phase flip channel for
r = 0.2, s = 0.3, c1 = 0.3, c2 = −0.4 and c3 = 0.56 (Color figure online)
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4 summary

We have given a new method to evaluate the one-way deficit for X states with five
parameters. By this way, we can evaluate one-way deficit of the wide range states than
the method using the simultaneous diagonalization theorem. Meanwhile, this way is
more simpler than the method using the joint entropy theorem. The dynamic behavior
of the one-way deficit under decoherence channel is investigated. It is shown that one-
way deficit of the X states is more robust against the decoherence than concurrence.
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