
Quantum Inf Process (2015) 14:2563–2575
DOI 10.1007/s11128-015-1004-2

Geometry of contextuality from Grothendieck’s coset
space

Michel Planat1

Received: 2 December 2014 / Accepted: 16 April 2015 / Published online: 5 May 2015
© Springer Science+Business Media New York 2015

Abstract The geometry of cosets in the subgroups H of the two-generator free group
G = 〈a, b〉 nicely fits, via Grothendieck’s dessins d’enfants, the geometry of com-
mutation for quantum observables. In previous work, it was established that dessins
stabilize point-line geometries whose incidence structure reflects the commutation of
(generalized) Pauli operators. Now we find that the nonexistence of a dessin for which
the commutator (a, b) = a−1b−1ab precisely corresponds to the commutator of quan-
tum observables [A,B] = AB − BA on all lines of the geometry is a signature of
quantum contextuality. This occurs first at index |G:H | = 9 in Mermin’s square and
at index 10 in Mermin’s pentagram, as expected. Commuting sets of n-qubit observ-
ables with n > 3 are found to be contextual as well as most generalized polygons. A
geometrical contextuality measure is introduced.

Keywords Quantum contextuality · Dessins d’enfants · Point/line geometries ·
Coset space
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1 Introduction

Never ask for the meaning of a word in isolation, but only in the context of a sentence
(Gottlob Frege, Grundlagen der Arithmetik, 1884).
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There is no quantumworld. There is only an abstract quantum physical description.
It is wrong to think that the task of physics is to find out howNature is. Physics concerns
what we say about Nature [Niels Bohr, Spoken at the Como conference, 1927].

The lack of commutativity of quantum observations gives rise to the concept of
contextuality, a kind of impossibility to recover the quanta of reality irrespectively of
our words for describing it. In a nutshell, Kochen–Specker theorem states that contex-
tuality is needed to reproduce all quantum mechanical predictions on a d-dimensional
(d > 3) system [1]. Since this foundational no-go theorem was discovered, many
quantum systems carrying quantum contextuality have been displayed, see [2–4] for
a recent hint. One of the most transparent contextuality proofs consist of particular
sets of observables in a four-dimensional (two-qubit) or in a eight-dimensional (three-
qubit) system, through the geometries ofMermin’s square and pentagram, respectively
[5,6]. Contextuality in such systems was shown to be experimentally testable [7].

We recently found amathematical scheme giving rise to the aforementioned geome-
tries as well as many related ones [8–10]. Our work is based on Grothendieck’s great
insight about the relationship between algebra, geometry and topology, called by him
dessins d’enfants [11].1 In the present note, the elusive ‘contextual’ geometries are
given a precise definition. We compare the (ring) commutativity of observables and
the (group theoretical) commutativity of cosets that both coordinatize the vertices of
the relevant geometry. We find that the nonexistence of a dessin for which the coset
commutator (a, b) = a−1b−1ab exactly corresponds to the commutator of observ-
ables [A,B] = AB − BA on all lines of the geometry is a convincing signature of
quantum contextuality. In this definition, contextuality arises first for 9 and 10 vertices
like in Mermin’s point-line configurations.

In Sect. 2, we shortly explain how the two-generator free group and its subgroups
are given the coset structure of a Grothendieck’s dessin d’enfant D and how a D may
stabilize a point/line geometry G, and then, we introduce our criterion for geometri-
cal contextuality. In Sect. 3, we fully explicate the algebraic/topological/geometrical
meaning of small non-trivial dessins in relation to their (non-)contextuality, includ-
ing the case of Mermin’s structures. In Sect. 4, it is shown how contextuality arises
in maximum sets of commuting operators starting with the 4-qubit case. Finally, in
Sect. 5, a geometrical contextuality measure is introduced and applied to generalized
polygons.

2 Coset coordinates, dessins d’enfants and finite geometries

Let F = 〈a, b〉 be the free group on two generators. Elements in the group are words u
that are products of elements of F and their inverses modulo the only defining relation
uu−1 = e, with e the identity element. In the following, we restrict to the free group
G = 〈

a, b | b2 = e
〉
, which accounts for an extra involution b. The index n := |G:H |

of a subgroup H in G counts the number of cosets/copies of H that fill up G. A right
coset with respect to an element g ∈ G is defined as Hg = {hg : h ∈ H}. The set of

1 For another mathematical approach of quantum contextuality based on sheaf theory, the reader should
look at [12] and the references therein.
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right cosets partitions G. In other words, every g ∈ G belongs to just one right coset.
Similar statements holds for left cosets.

A transversal is an indexed set of (right) coset representatives for H in G, and the
coset table is away to express the action of generators a, b and of the non-trivial inverse
a−1 on them. The algorithm performing this task is the Coxeter–Todd algorithm [13].
Under the action of a and b, the indexed coset representatives are represented by a
two-generator permutation group P = 〈g0, g1〉. The latter corresponds to a map on a
compact orientable surface that is a triple (g0, g1, g∞) with g0g1g∞ = 1, from which
the V vertices, E edges and F faces of the map are defined by the cycles of g0, g1 and
g∞ [14,15]. Grothendieck was enthusiastic in seeing such a map as a bicolored map
D, also called an hypermap [16], with B black vertices and W white vertices, in such
a way that the adjacent vertices have always opposite color and the corresponding
segments are the n edges [11]. For bicolored maps derived from G, the valency of
white vertices is ≤ 2. The resulting dessin d’enfant is endowed a natural topological
structure with Euler characteristic 2 − 2g = B + W + F − n, where g stands for the
topological genus.

Grothendieck also recognized a dessin as an object defined over the field Q̄ of
algebraic numbers as a complex algebraic curve. Technically, given f (x), a rational
function of the complex variable x , a critical point of f is a root of its derivative and
a critical value of f is the value of f at the critical point. Let us define a so-called
Belyi function corresponding to a dessin D as a rational function f (x) of degree n
embedded into the Riemann sphere Ĉ in such a way that (i) the black vertices are the
roots of the equation f (x) = 0 with the multiplicity of each root being equal to the
degree of the corresponding (black) vertex, (ii) the white vertices are the roots of the
equation f (x) = 1 with the multiplicity of each root being equal to the degree of the
corresponding (white) vertex, (iii) the bicolored map is the preimage of the segment
[0, 1], that is D = f −1([0, 1]), (iv) there exists a single pole of f (x), i. e. a root of
the equation f (x) = ∞, at each face, the multiplicity of the pole being equal to the
degree of the face, and (v) besides 0, 1 and ∞, there are no other critical values of f .
In addition, the coefficients of Belyi functions are algebraic numbers [15].

Finally, the coset structure and its permutation representation (by a dessin d’enfant)
provide a coordinatization tomany point-line geometries occurring in the investigation
of commutation of quantum observables [8–10]. Taking the permutation group P (it
identifies a dessinD) corresponding to a subgroup H ofG, one proceeds by first listing
the m non-isomorphic subgroups Sm stabilizing a pair of elements/cosets. Given a
Sm , all points on a line of the putative geometry Gm should share the same two-point
stabilizer subgroup of P . The lines of aGm are thus distinguished by their (isomorphic)
stabilizers acting on different G-sets. Doing this, the cosets happen to coordinatize
the edges of the D and, at the same time, the vertices of the resulting geometries Gm .

2.1 Identifying commutation for cosets and for observables: contextuality

Thekeypoint, not recognizedbyus before, is that, not only there should exist a bijection
between a point-line geometryGm stabilized by a dessinD and the point-line geometry
occurring in a set of quantum observables (quantum observables as cosets), but the
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commutation structure in both cases should also correspond (commuting operators on a
line as commuting cosets).While the commutator [A,B] = AB−BA for observables
A and B is that for a ring, the commutator for the representative of two cosets a and
b is the group theoretical one (a, b) = a−1b−1ab. We identify a contextual geometry
as one where at least one line of p points/cosets fails to satisfy the ‘commutation law’
(a1, a2, . . . , ap) = e whatever the ordering of cosets. Observe that, in our definition
of non-contextuality, we do not ask the commutation of all pairs of cosets but that of
their product.

A few non-contextual and contextual geometries are described at the next section.
The smallest index contextual geometry is recognized to be a 3 × 3-grid (a Mermin
square of observables) as it could have been expected.

3 From non-contextual to contextual point-line geometries

3.1 Recovering the octahedron

Let us apply our approach to a very simple geometry, that of the octahedronO whose
‘lines’ are the triangles. There exist 56 subgroups of index 6 in G, and while many of
the corresponding dessinsmay be used to recoverO, most of them are of the contextual
type.

For instance, the permutation group P1 = 〈(1, 2, 3)(4, 5, 6), (2, 4)(3, 5)〉 [where
the G-set {1, 2, 3, 4, 5, 6} is an ordered set of indices for the transversal
{e, a, a−1, ab, a−1b, aba−1}] can be used to recover O as shown in Fig. 1i. The
cosets that serve as coordinates of the edges of the dessin and as coordinates of the
vertices ofO are shown. In this setting, only the triangles above the square inO have
their coordinates satisfying the commutation law so that the dessin is of the contextual
type.

Since the dessin for P1 is of a small size, it is an easy task to derive its corresponding
Belyi curve as

f1(x) = − 1

64x3
(x − 1)3(x + 3)2.

To see this, take the derivative f ′
1(x) = 3(x−1)2(x+3)2(x2+3)/(64x3). The critical

points are the black points at x = 1 and x = −3 ( where the valency is 3) and the white
points at x = ±i

√
3 (where the valency is 2). Then, solving the equation f1(x) = 0,

one gets of course the two solutions x = 1 and −3 corresponding to the black points,
while solving for f1(x) = 1 one gets the critical (white) points at x = ±i

√
3 and the

real (white) points at x = −3± 2
√
3. Hence, the coordinates of vertices of the dessin

are those shown in Fig. 1i. The two solutions of the equation f1(x) = ∞ are x = 0
and x = ∞, and they correspond to the center of the faces.

Besides P1, there are four permutation groups P isomorphic to the group Z2 × Z6
that may be used to recover O. Two of them are tree-like as is the dessin shown
in [9, Fig. 2], and one can check that they are of the contextual type. The other
two are non-contextual as the one shown in Fig. 1j where the permutation group is
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Fig. 1 i A contextual hypermap (top) stabilizing the octahedron (bottom) with the corresponding coset
labelling. The vertices of the dessin are in the extension field Q(

√
3) as shown. The triangles with thick

linesdo not have all their edges indexed with commuting cosets. jA non-contextual map (top) stabilizing the
octahedron (bottom). The octahedron is also given a set 3-qubit coordinates that are mutually commuting
at the vertices of a triangle

P2 = 〈(1, 2, 4, 6, 5, 3), (2, 3)(4, 5)〉 [here the G-set {1, 2, 3, 4, 5, 6} is an ordered set
of indices for the transversal {e, a, a−1, a2, a−2, a3}]. The Belyi curve for this dessin
is easily found as

f2(x) = 4

27

x6

(x2 − 1)2
,

and this function allows to coordinatize the vertices of the dessin in Fig. 2j.

3.2 Recovering the n-simplex and the 2r-orthoplex

In our earlier work, we found that there exist many dessinsD of index n stabilizing the
n-simplex and, when n is even (n = 2r ), also stabilizing the r -orthoplex: The smallest
orthoplex structures are the square, the octahedron and the 16-cell for which r = 2, 3
and 4, respectively [10, Table 1]. The vertices in these trivial structures can always be
coordinatized in terms of single-generator cosets aq , for some q ∈ Z and |q| ≤ n/2.
The commutator of every pair of cosets is thus the identity so that the n-simplex and
the r -orthoplex are of the non-contextual type.
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2568 M. Planat

Fig. 2 i A non-contextual hypermap (left) stabilizing the bipartite graph K (3, 3) (right) with the cor-
responding coset labelling. j A non-contextual map/dessin (top) stabilizing the Fano plane (bottom). k
A non-contextual map/dessin (left) stabilizing the bipartite graph K (4, 4) (right) with the corresponding
coset labelling. The graph K (3, 3) and the Fano plane are given a set of two- and three-qubit coordinates,
respectively. The seven 3-qubit coordinates in the Fano plane are mutually commuting, and the product of
the three coordinates on any line is the identity matrix (see Sect. 4)
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3.3 Recovering geometries of small index

In this line of thoughts, the first connected and non-trivial geometries that are D-
stabilizable are the bipartite graph K (3, 3), the Fano plane and the bipartite graph
K (4, 4) corresponding to the index (the number of vertices) 6, 7 and 8, respec-
tively.

As for the graph K (3, 3) and sensu stricto, we found no dessin D built from
the free group G and that respects the non-contextual definition that the edges of
the graph are defined by commuting cosets. But there exists an hypermap built on
the general free group F = 〈a, b〉 that satisfies the latter constraint as shown in
Fig. 2i.

As for the Fano plane, there exists a map and a single-generator and non-contextual
coset coordinatization shown in Fig. 2j. Then, a dessin d’enfant D stabilizing the
bipartite graph K (4, 4) in terms of two-generator cosets and in a non-contextual way
is shown in Fig. 2k.

3.4 Recovering contextual geometries

The smallest size and contextual point-line geometry (in the sense of our defi-
nition in Sect. 2) is the (3 × 3)-grid, also known as Mermin’s square in honor
of D. Mermin who made use of it to prove the Kochen–Specker theorem in the
four-dimensional Hilbert space [5,6]. There exists a unique (genus 1) map stabi-
lizing the Mermin’s square shown in Fig. 3i (also pictured in [9, Fig.7]). There
are two subgroups S1 ∼= Z1 (a single-element group) and S2 ∼= Z2 (a two-
element group) stabilizing a pair of elements in the permutation group attached to
the dessin. Both stabilizer subgroups lead to Mermin squares that are skewed to
each other. The former one is non-contextual; that is, the cosets on the lines/triads
of the grid are commuting (not shown); the other grid is contextual as shown at
the bottom of Fig. 3i in that the right column does not have all its triples of
cosets commuting. This observation establishes a striking parallel with the proof
of the Kochen–Specker theorem based on this geometry. It does not come as a
surprise that two other D-stabilized geometries of index 9, the Pappus and Hesse
configurations, that contain the (3 × 3)-grid, are also found to be contextual. But
the multipartite graph K (3, 3, 3) admits a two-generator non-contextual dessin (not
shown).

For the index ten, there are four non-trivial graph/configurations that may be D-
stabilized. The Petersen graph and theMermin’s pentagram correspond to two distinct
stabilizer subgroups Si , (i = 1 . . . 2) of the permutation group P for the relevant D,
see [10, Fig. 10]. Another disguise of both is the Desargues configuration that can also
beD-stabilized as shown in [10, Fig. 11]. The lastD-stabilized connected structure is
the bipartite graph K (5, 5). All the four structures are contextual. In Fig. 3j, one plots
one of the three D-stabilized pentagrams. In the corresponding dessin, one notices
that coordinates on the right of the vertical axis are obtained from the ones at the left
by replacing a by a−1. The bold lines of the pentagram are those that are defective for
the commutativity of the cosets on them.
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Fig. 3 i A contextual map/dessin (top) stabilizing the Mermin square (bottom) with the corresponding
coset labelling. The right-hand-side columnis defective as in the original proof of Kochen–Specker theorem
derived for two-qubit coordinates. j A contextual map/dessin (top) stabilizing Mermin pentagram (bottom).
The thick lines are defective: not all of their cosets are commuting. The lines of the pentagram are given
three-qubit coordinates in such a way that the product of operators on a thick line is minus the identity
matrix, see [18] for all such configurations

4 Contextuality in maximum sets of commuting observables

While maximum sets of mutually commuting observables arising from the two-qubit
and three-qubit Pauli group are non-contextual—they correspond to the triangle and
Fano plane [17] (also Fig. 2j), respectively—this is no longer true for commuting sets
in the general n-qubit Pauli group, n > 3.

In the four-qubit Pauli group, such a maximum set comprises 24−1 = 15 operators
arranged as 35 triads on which the product of operators is the identity matrix. The
point/line geometry is that of the projective space PG(3, 2). We ask two questions: (i)
Does it exist a dessin of index 15 stabilizing PG(3, 2)? (ii) Are the coset coordinates
such that each line of PG(3, 2) has commuting cosets as its points? The answer to (i)
is yes, but the answer to (ii) is definitely no, as shown below.

For recovering/stabilizing PG(3, 2), we start from a subgroup G ′ of the free group
F of finite representation G ′ = F/[b2 = a8 = (ba−1)7] = 1. The selected relations
at the quotient were suggested by the finite representation of the symmetric group S8.
There are four subgroups H of G ′ of index 15 and permutation group P isomorphic
to the alternating group A7, of cardinality 2520. The stabilizer of one point in P is
the group PSL(2, 7) and that of a pair of points is the alternating group A4. The
geometry that arises from A4 is that of the projective space PG(3, 2). We selected the
dessin that produces as many lines as possible such that their points/cosets satisfy the
commutation law, only nine over the 35 have this property. Thus, the three-dimensional
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Fig. 4 i A contextual hypermap/dessin stabilizing the projective space PG(3, 2). The edges are labelled
in terms of an indexed G-set and the corresponding cosets. j The projective space PG(3, 2) as a model of
a 4-qubit maximal commuting set. A few lines/triads inside are not drawn. Thick triads are such that their
points are commuting cosets.

projective space is clearly contextual. The result is illustrated in Fig. 4 with the dessin
(i) and the corresponding three-dimensional projective space (j).

A similar methodology holds for PG(n, 2), n > 3, which is a model of a maximal
commuting set in the (n+1)-qubit setting. For the general case, one finds that PG(n, 2)
contains at least a copy of PG(n − 1, 2) [a perp-set of PG(n, 2)] as a non-contextual
subset.

5 Quantifying geometrical contextuality

Quantifying quantum contextuality is currently an active subject. In [12], it is shown
that contextuality, and non-locality as a special case, corresponds to sheaf-theoretical
obstructions to the existence of global sections. The degree of contextuality in any
measurement scenario may be found using linear programming methods [19]. In [20],
a relative entropy of contextuality is defined. Finally in [21], a relation between the
entropy associated with quantum measurements and the second law of thermodynam-
ics is obtained in the frame of category theory. Our approach is different in that it is
based on the shift between the quantum commutation/compatibility of operators and
the commutation of corresponding coset representatives that serve as coordinates for
these operators.

From our definition in Sect. 2, a contextual finite geometry G cannot have all its
lines encoded with commuting cosets. Let l be the number of lines of G and u the
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Table 1 Geometric contextuality measure l/u (l the number of lines and u the number of them with
commuting cosets) for a few generalized polygons compared to the base-two logarithm of the number h of
hyperplanes within the selected geometry

Geometry l u l/u log2(h) Remark

GQ(2, 1) 6 5 1.2 4 Mermin square, Fig. 3i

GQ(2, 2) 15 3 5 5 Two-qubit commutation [9,10]

GQ(2, 4) 45 5 9 6 Black-hole/qubit analogy [9]

GH(2, 1) 14 2 7 8 In the dual of GH(2, 2) [22]

GO(2, 1) 30 2 15 16 In GO(2, 4) [24]

GH(2, 2) 63 3 21 14 [22] and Fig. 5

Dual of GH(2, 2) 63 4 15.75 14 [22] and Fig. 6

number of them with commuting cosets. Thus, G is contextual as soon as l
u > 1 so

that a possible measure of contextuality is c = l−u
l where 0 ≤ c ≤ 1 and c vanishes

for a non-contextual geometry.
Our earlier work featured a few generalized polygons [the Mermin’s square

GQ(2, 1) is the smallest one]2 useful for encoding the commutation law of quantum
operators in the generalized Pauli group. In such structures, the number h of geomet-
ric hyperplanes is known,3 and h happens to grow with the contextual parameter l

u
roughly as log2 h, as shown in Table 1.

5.1 The generalized hexagon GH(2, 2)

The generalized hexagon GH(2, 2) (with 63 vertices and dually 63 lines/triads) is an
excellent geometrical model of 3-qubit contextuality [17,18]. The hexagon GH(2, 2)
and its dual can be stabilized by dessins d’enfant. For recovering them, one can start
from a subgroupG ′′ = F/[b2 = a4 = (ab)7 = (a, b)6] of the free group F . There are
just two subgroups H of G ′′ of index 63 inducing a dessin with permutation group P
of order 12096. The first dessin in Fig. 5b is of genus 0 and signature (B,W, F, g) =
(21, 35, 9, 0), and it stabilizes GH(2, 2) as shown in Fig. 5a through the stabilizer
subgroup S1 ∼= Z3

2 � Z2
2 . The second dessin in Fig. 6b is of genus 1 and signature

(B,W, F, g) = (18, 36, 9, 1), and it stabilizes the dual of GH(2, 2) as shown in
Fig. 6a through the stabilizer subgroup S2 ∼= E+

32 (the extraspecial group of order 32).

2 A Tits generalized polygon (or generalized n-gon) is a point-line incidence structure whose incidence
graph has diameter n and girth 2n. A generalized polygon of order (s, t) is such that every line contains
s + 1 points and every point lies on t + 1 lines. According to Feit-Higman theorem, the finite generalized
n-gons, s, t ≥ 2, exist for n = 2, 3, 4, 6 or 8. One uses the notation GQ (for a generalized quadrangle),
GH (for a generalized hexagon) and GO (for a generalized octagon) corresponding to n = 4, 6 and 8,
respectively.
3 A geometric hyperplane of a generalized polygon is a proper subspace meeting each line at a unique
point or containing the whole line. The set of hyperplanes can be constructed in an efficient way by using
an addition law for the hyperplanes: The ‘sum’ of two hyperplanes is just the complement of the symmetric
difference in the relevant G-set of indices labelling the vertices of the geometry [22,23].
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Fig. 5 Generalized hexagon GH(2, 2)(a) is stabilized by the genus zero dessin (b). Only three lines of
GH(2, 2) have mutually commuting cosets (not shown)
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Fig. 6 Dual of generalized hexagon GH(2, 2)(a) is stabilized by the genus one dessin (b). Only four lines
in this dual have mutually commuting cosets (not shown)

It has been recognized that the size 12096 of the automorphism group of GH(2, 2)
is also the number of 3-qubit pentagrams and is related to the number of copies
of hyperplanes in each class [18]. For this hexagon (resp. its dual), the geometrical
contextuality measure l

u = 21 (resp. l
u = 15.75) is larger than log2 h = 14, while
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it is not the case for the other polygons in the table. The hexagon GH(2, 2) can be
considered as ‘strongly contextual’ in this respect.

6 Conclusion

We provided a striking comparison between the commutativity of multiple qubit quan-
tum observables and that of cosets of subgroups of the two-generator free group. This
parallel allowed us to propose a new definition of contextuality based on the coset
structure of Grothendieck’s dessins d’enfants, in close correspondence with the stan-
dard quantumone. In particular, geometric contextuality in small generalized polygons
starting with the (3×3)-grid was investigated. Further work may focus on identifying
and quantifying contextuality in higher size geometries. Since a complex algebraic
curve defined over the field Q̄ of algebraic numbers [that is a Belyi function f (x)]
[11,15] is attached to any dessin d’enfant D, it is expected that the contextuality
criterion features specific curves through the action of the group of automorphisms
Gal(Q̄/Q) of the field Q̄ (the absolute Galois group) on dessins that would be helpful
to recognize. We can say more about Nature than in Bohr’s century. The coset lan-
guage, with only two letters a and b, is enough for quantum contextuality. Even the
sporadic groups enter this frame.
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