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Abstract We investigate the characteristics of entanglement teleportation of a two-
qubit and three-qubit Heisenberg XYZ model under different Dzyaloshinskii–Moriya
(DM) interactions with intrinsic decoherence taken into account. The two-qubit results
reveal that the dynamics of entanglement is a symmetric function about the coupling
coefficient J for the z-component DM system, whereas it is not for the x-component
DMsystem.The ferromagnetic case is superior to the antiferromagnetic case to restrain
decoherence when using the x-component DM system. The dependencies of entan-
glement, the output entanglement, and the average fidelity on initial state angle α

all demonstrate periodicity. Moreover, the x-component DM system can get a high
fidelity both in two-qubit and in three-qubit teleportation protocol.

Keywords Entanglement · Decoherence · Teleportation · Different
Dzyaloshinskii–Moriya interactions

1 Introduction

Quantum entanglement is the fundamental characteristic of quantum mechanics, and
it is also an important resource for quantum communication and quantum computa-
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tion [1]. Recently, much attention has been paid to the thermal entanglement in the
spin model [2,3] since it plays a key role in quantum information processing tasks.
The experimental observation of thermal entanglement in a spin chain formed in the
compoundNa2Cu5Si4O14 has been reported [4]. In particular, the properties ofHeisen-
bergmodel with theDzyaloshinskii–Moriya (DM) interaction (arising from spin–orbit
coupling) have been studied extensively which can cause another type of anisotropy
[5–8]. The Cs2CuCl4, Cu benzoate, and kagomé antiferromagnet can be described by
the DM interaction. Many physical systems, such as optical lattices, superconductors,
and nuclear spins also have been simulated by the model. It is now well established
that at low temperatures these systems exhibit new types of magnetic order and novel
quantum phases [9].Moreover, quantum teleportation has been comprehensively stud-
ied in both theoretical and experimental works. Quantum teleportation can be adopted
to test the existence of entanglement and howmuch entanglement there is in a quantum
state. Quantum teleportation not only is relevant to quantum communication, but also
is a universal computational primitive for quantum computation. It is worthwhile to
study the entanglement teleportation in the condensed matter physics.

Recently, Li et al. [8] examined the Heisenberg model with different DM interac-
tions. They found that a more efficient control parameter can be obtained by adjusting
the direction of the DM interaction, no matter in the antiferromagnetic case or in the
ferromagnetic case. Inspired by this, if we use the Heisenberg model with different
DM interactions to perform quantum teleportation protocol, we will also have another
means to manipulate the output entanglement and the fidelity of entanglement telepor-
tation. As far as we are aware, the entanglement in the system must be maintained a
long time in order to fulfill the quantum task. The unavoidable interaction of a system
with its surroundings always makes entanglement decay with time [10]. It is difficult
to keep the coherence of a quantum state as the quantum system correlates with its
external environment. So, all the discussionmust be including the environmental effect
on the system [10,11]. In recent years, there have been many proposals to solve the
decoherence problemwhich is responsible for the quantum-to-classical transition. The
general investigation method for this problem is tracing out all other degrees except
the quantum states of interest. However, Milburn [12] has given a simple model of
intrinsic decoherence based on the assumption that for sufficiently short time steps the
system does not evolve continuously under unitary evolution but rather in a stochastic
sequence of identical unitary transformations [13–15]. The effects of intrinsic deco-
herence on the dynamics of entanglement have been studied in a number of works.
For example, Hu [15] has shown that the ideal spin channels will be destroyed by the
intrinsic decoherence environment. Yu [16] has discussed the intrinsic decoherence
effects on the entanglement of a two-qubit XYZ model. Also, the results of reference
[17] has demonstrated that an inhomogeneous magnetic field can reduce the effects
of intrinsic decoherence. Fan has found that the phase decoherence rate makes the
original harmonic vibration with respect to time decay to a stable value [18]. All those
works enrich our understanding of the decoherence mechanism. However, how the
different DM interactions affect the dynamics of entanglement teleportation and the
fidelity of entanglement teleportation has not been reported. We will not only study
howmuch entanglement is teleported through the channel, but also consider the quality
of the entanglement teleportation protocol by the fidelity.
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In this paper, we will investigate the influence of the intrinsic decoherence on the
entanglement and entanglement teleportation of a two-qubit and three-qubit Heisen-
bergXYZmodel with different DM interactions. The outline of this work is as follows.
In Sect. 2, we introduce the Hamiltonian of the two-qubit model with different DM
interactions and present the exact solution of the model. In Sect. 3, we discuss the
effect of different DM interactions on the evolution of entanglement. In Sect. 4, entan-
glement teleportation processes via the above system and the effect of initial state on
the fidelity are investigated. In Sect. 5, we extend our result to three-qubit DM system
and study the effect of decoherence on the average fidelity. Finally, in Sect. 6, we
summarize our results and draw our conclusions.

2 Model and solution

The Hamiltonian Hz for a two-qubit anisotropic Heisenberg XYZ model with z-
component DM interaction is

Hz = J (1 + γ )σ x
1 σ x

2 + J (1 − γ )σ
y
1 σ

y
2 + Jzσ

z
1σ z

2 + Dz(σ
x
1 σ

y
2 − σ

y
1 σ x

2 ), (1)

where J is the isotropic coupling coefficient and Jz is the anisotropic coupling coef-
ficient. They both can be obtained by combining bare exchange interactions with an
applied field [19]. J > 0 and Jz > 0 correspond to the antiferromagnetic. J < 0
and Jz < 0 correspond to the ferromagnetic. γ is the anisotropic parameter. Dz is the
z-component DM interaction parameter, and σ i (i = x, y, z) are Pauli matrices. The
eigenvalues and eigenvectors of the Hamiltonian Hz are given by

Ez1 = Jz + 2Jγ,

Ez2 = Jz − 2Jγ,

Ez3 = −Jz + 2
√
J 2 + D2

z ,

Ez4 = −Jz − 2
√
J 2 + D2

z ,

|ψz1,z2〉 = |00 > ±|11 >√
2

,

|ψz3,z4〉 = |01 > ±χ |10 >√
2

, (2)

where χ = J−i Dz√
J 2+D2

z
.

The Hamiltonian Hx for a two-qubit anisotropic Heisenberg XYZ model with x-
component DM interaction is

Hx = J (1 + γ )σ x
1 σ x

2 + J (1 − γ )σ
y
1 σ

y
2 + Jzσ

z
1σ z

2 + Dx (σ
y
1 σ z

2 − σ z
1σ

y
2 ). (3)
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Except for Dx , themeanings of the other parameters are the same as those in Eq. (1).
The eigenvalues and eigenvectors of the Hamiltonian Hx are given by

Ex1 = 2J − Jz,

Ex2 = 2Jγ + Jz,

Ex3 = −J (1 + γ ) +
√

[J (1 − γ ) + Jz]2 + 4D2
x ,

Ex4 = −J (1 + γ ) −
√

[J (1 − γ ) + Jz]2 + 4D2
x ,

|ψx1〉 = |01 > +|10 >√
2

,

|ψx2〉 = |00 > +|11 >√
2

,

|ψx3〉 = sin ϕ1|00 > −i cosϕ1|01 > +i cosϕ1|10 > − sin ϕ1|11 >√
2

,

|ψx4〉 = sin ϕ2|00 > +i cosϕ2|01 > −i cosϕ2|10 > − sin ϕ2|11 >√
2

, (4)

here ϕ1,2 = arc tan

(
2Dx√[J (1−γ )+Jz ]2+4D2

x∓J (1−γ )±Jz

)
.

The master equation describing the intrinsic decoherence under the Markovian
approximations is given by [12,14]

dρ(t)

dt
= −i [H, ρ(t)] − 1

2
	 [H, [H, ρ(t)]] , (5)

where 	 is the intrinsic decoherence rate. The formal solution of the above master
equation can be expressed as

ρ(t) =
∞∑

k=0

(t)k

k! Mkρ(0)M†k, (6)

where ρ(0) is the density operator of the initial state and Mk is defined by

Mk = Hke−i Ht e− t
2	H2

. (7)

According to the Eq. (6), it is easy to show that, under intrinsic decoherence, the
dynamics of the density operatorρ(t) for the above-mentioned systemwhich is initially
in the state ρ(0) is given by

ρ(t) =
∑
mn

exp

[
−	t

2
(Em − En)

2 − i (Em − En) t

]
× 〈ψm |ρ(0) |ψn〉 |ψm〉 〈ψn| ,

(8)
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Fig. 1 Concurrence versus the real coupling coefficients J and the time under different initial states with
the Hamiltonian being Eq. (1) (a), Eq. (3) (b). γ = 0.2, Jz = 1, Dz/x = 2, 	 = 0.02.

where Em, En and |ψm〉 , |ψn〉 are the eigenvalues and the corresponding eigenvectors
of Hz/x given in Eqs. (2) and (4). Here, wewill choose |ϕ(0)〉 = cosα |01〉+sin α |10〉
as the initial state for two-qubit Heisenberg XYZ model.

3 Entanglement evolutions

To quantify the amount of entanglement associated with ρ(t), we consider the con-
currence, which is defined as [20,21]

C = max

[
0, 2max (λi ) −

4∑

i

λi

]
, (9)

where λi are the square roots of the eigenvalues of the matrix R = ρ(t)Sρ∗(t)S, ρ(t)
is the density matrix, S = σ

y
1 ⊗σ

y
2 , and the asterisk stands for the complex conjugate.

In Fig. 1, we depict the concurrence as a function of the coupling coefficients
J and the time under different initial conditions. As is shown in Fig. 1a, there is
no difference between ferromagnetic case and antiferromagnetic case because the
concurrence is a symmetric function about J = 0. This can be explained from Eq. (2),
for the eigenvalues are the same if we change the sign of J . The concurrence is a
decreasing function with respect to |J | when the initial state is a separable state,
and it is an increasing function for the entangled state. In Fig. 1b, we see that the
concurrence is an asymmetric function with the J = 0 for the Dx system because the
eigenvalues will change if we alter the sign of J . So the evolution of entanglement is
different for the antiferromagnetic case and the ferromagnetic case. When the initial
state angle become α = π/4, the entanglement is 1 and it is independent of any
parameters.

In Fig. 2, the entanglement is plotted versus the coupling coefficients Jz and the
time. From Fig. 2a, we see that the entanglement is also a symmetric function about
Jz = 0 because the expression of the density matrix for this system is independent
of Jz . After enough time of decoherence, the entanglement becomes a constant value,
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Fig. 2 Concurrence versus the real coupling coefficients Jz and the time under different initial states with
the Hamiltonian being Eq. (1) (a), Eq. (3) (b). J = 1, γ = 0.5, Dz/x = 2, 	 = 0.02

Fig. 3 Concurrence versus the DM interaction Dz/x and the time under different initial states with the
Hamiltonian being Eq. (1) (a), Eq. (3) (b). J = 1, γ = 0.6, Jz = 1.5, 	 = 0.02

while the system becomes a stable state when time→ ∞. In Fig. 2b, the entanglement
is an asymmetric functionwith respect to Jz = 0 except forα = π/4 (the entanglement
assumes its maximum 1 under this condition). We can note that with the increase in
time the entanglement behaves as an oscillatory function, especially for ferromagnetic
case.

In Fig. 3, we give the plot of the entanglement as a function of the DM interaction
Dz/x and the time. Except the initial state |10〉, the other figures in Fig. 3a show that
the entanglement is a monotonic decreasing function with respect to Dz . For a fixed
Dz , the entanglement will quickly become a stable value with the increase in time
because the stable decoherence time is short for this condition. In Fig. 3b, except
α = π/4 case, the entanglement will oscillate with the increase in Dx and eventually
become a stable value. This result can be explained by seeking the limiting value of
the concurrence equation.

Fig. 4 gives the results about how the initial state affects the entanglement. In
Fig. 4a, with the increasing of the time, the entanglement will quickly become a stable
value. The maximal stable value of concurrence occurs at α = π/4 and α = 3π/4.
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Fig. 4 Concurrence versus the initial state angle α and the time with the Hamiltonian being Eq. (1) (a),
Eq. (3) (b). a J = 1, γ = 0.2, Jz = 2, Dz = 0.5, 	 = 0.02. b γ = 0.2, Dx = 0.5, 	 = 0.02

The dependence of entanglement on initial state angle α periodically changes, and the
period is π/2. In Fig. 4b, we find that the region of the entanglement will change if
we alter the sign for J or Jz , but the results will not be affected if their signs change
together. The period is π/2 for the same signs of J and Jz , but the period is π for
different signs of J and Jz .

4 The effect of initial state on the entanglement teleportation and the
fidelity

The above model can be used as a quantum channel to transmit unknown state. After
we input a state from one end, the state will be destroyed, and then, we can apply a local
measurement in the form of linear operators, after that wewill get the output state from
another end.Nowweuse two copies of the above stateρ(t)⊗ρ(t ′) as resource and input
state |ψin〉 = cos(θ/2)|10〉 + eiφ sin(θ/2)|01〉(0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π). The output
replica state can be obtained by ρout (t) = ∑

i, j pi j (σi ⊗ σ j )ρin(σi ⊗σ j ) [22], where
σi (i = 0, x, y, z) denote the unit matrix I and three components of the Pauli matrix,
respectively, ρin = |ψ〉in 〈ψ | and pi j = tr [Ei ρ(t)] tr [E j ρ(t)] ,

∑
pi j = 1. ρ(t) is

the quantum state of the channel, E0 = ∣∣ψ2
Bell

〉 〈
ψ2
Bell

∣∣ , E1 = ∣∣ψ3
Bell

〉 〈
ψ3
Bell

∣∣ , E2 =∣∣ψ0
Bell

〉 〈
ψ0
Bell

∣∣ , E3 = ∣∣ψ1
Bell

〉 〈
ψ1
Bell

∣∣ and
∣∣∣ψ0,3

Bell

〉
= (|00〉 ± |11〉)/√2,

∣∣∣ψ1,2
Bell

〉
=

(|01〉 ± |10〉)/√2.
In Fig. 5, the output entanglement Cout as a function of the initial state angle α and

the time is plotted for the Dz/x system. From the figures, we find that the maximal
output entanglement is decreasing when the input state angle θ varied from π/2 to
π/6. The periodic dependence of output entanglement on the angle α also exists in
the figures. π/2 and π are the periodicity for the Dz system and the Dx system,
respectively. Moreover, in Fig. 5b, the behavior of the output entanglement is totally
different when the initial state angle α ∈ (0, π/2) and α ∈ (π/2, π).These results
demonstrate that how to choose initial state is very important.

The fidelity between ρin and ρout characterizes the quality of the teleported state
ρout. When the input is a pure state, we can apply the concept of fidelity as a useful
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Fig. 5 Entanglement of output state versus the initial state angle α and the time t with the Hamiltonian
being Eq. (1) (a), Eq. (3) (b). J = 1, γ = 0.2, Dz/x = 0.5, φ = 0, 	 = 0.02, (a), (b)

indicator of teleportation performance of a quantum channel. If the quantum channel is
maximal entangled, the best entanglement teleportation will be obtained. The fidelity
of ρin and ρout is defined to be [23,24]

F(ρin, ρout ) = {tr [
√

(ρin)1/2ρout (ρin)1/2]}2. (10)

By averaging over all possible input state, the average fidelity FA of teleportation
can be formulated as

FA =
∫ 2π
0 dφ

∫ π

0 F sin θdθ

4π
. (11)

In Fig. 6, the average fidelity FA is plotted as a function of the time under different
initial state α. For the purpose of transmitting ρin with better fidelity than any classical
communication protocol, we require Eq. (11) to be strictly greater than 2/3 [25].
Figure 6a gives the evolution of fidelity for the Dz/x systemwhen the initial state is |10〉.
In this figure, the Dx systembehaves inferior to the classical communication and the Dz

system performs better. If we change the initial state from |10〉 to
(√

3 |10〉 + |01〉
)
/2,

the result in Fig. 6b shows that the two kinds of system all behave better than the former
condition. The entanglement will become a stable constant value with the increase in
time, and this is meaningful for quantum information processing. In Fig. 6c, d, we
choose the initial state as

√
2(|10〉 + |01〉)/2 and |ϕ(0)〉 = 0.9238 |01〉+0.3826 |10〉,

respectively, the Dx system has a better average fidelity than the Dz system. From
Fig. 6, we find that the initial state is one of the significant factors to determine what
kinds of system are suitable as quantum channel.

The asymptotic behavior of the fidelity versus the model parameters α is shown in
the Fig. 7. The asymptotic fidelity FA demonstrates periodicity too. This means that
we can implement teleportation process in proper angle and get optimal fidelity. We
note that the period is π/2, π for the Dz and the Dx systems, respectively.
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Fig. 6 Dynamics of the average fidelity for Dz = 2 (blue solid line) and Dx = 2 (red dotted line).
J = 1, γ = 0.4, Jz = 0.5, 	 = 0.02 (Color figure online)

Fig. 7 Asymptotical behavior of the fidelity versus the initial state angle α.J = 1, γ = 0.8, Jz = 2,
	 = 0.02. a Dz = 2, b Dx = 2

5 The decoherence of the fidelity for the three-qubit model

The three-qubit Hamiltonian of XYZ model with different DM interactions is
expressed as follows,

Hz = J (1 + γ )
(
σ x
1 σ x

2 + σ x
2 σ x

3

) + J (1 − γ )
(
σ
y
1 σ

y
2 + σ

y
2 σ

y
3

) + Jz
(
σ z
1σ z

2 + σ z
2σ z

3

)

+ Dz
(
σ x
1 σ

y
2 − σ

y
1 σ x

2 + σ x
2 σ

y
3 − σ

y
2 σ x

3

)
, (12)

Hx = J (1 + γ )
(
σ x
1 σ x

2 + σ x
2 σ x

3

) + J (1 − γ )
(
σ
y
1 σ

y
2 + σ

y
2 σ

y
3

) + Jz
(
σ z
1σ z

2 + σ z
2σ z

3

)

+ Dx
(
σ
y
1 σ z

2 − σ z
1σ

y
2 + σ

y
2 σ z

3 − σ z
2σ

y
3

)
, (13)
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Fig. 8 Dynamics of the average fidelity for Dz = 1 (blue solid line) and Dx = 1 (red dotted line). The
initial state is W state |W 〉 = (|001〉 + |010〉 + |010〉) /

√
3.J = 1, γ = 0.2, Jz = 1.2, 	 = 0.02 (Color

figure online)

Taking into account the decoherence factors, we use the above three-qubit state
χABC as a quantum resource. The joint state of the two receivers conditioned on the
sender measurement result j is described by [26]

ρ
j
BC = 1

p j
trSA

[(
�

j
SA ⊗ IBC

)
(τin ⊗ χABC)

]
, (14)

here �1
SA = ∣∣ψ0

Bell

〉 〈
ψ0
Bell

∣∣ ,�2
SA = ∣∣ψ3

Bell

〉 〈
ψ3
Bell

∣∣ ,�3
SA = ∣∣ψ1

Bell

〉 〈
ψ1
Bell

∣∣, and
�4

SA = ∣∣ψ2
Bell

〉 〈
ψ2
Bell

∣∣. IBC is the identity operator on the subsystem BC, and j is
the outcome of the measurement. τin = |ψ〉s 〈ψ | is the density matrix for input state

|ψ〉s = cos θ
2 |0〉s+eiφ sin θ

2 |1〉s . p j = trSABC
[(

�
j
SA ⊗ IBC

)
(κs ⊗ χABC)

]
. In order

to successfully carry out the teleportation protocol, two receivers perform j-dependent
unitary operations U j

B = U j
C = U j on the systems B and C, respectively. So

τ
j
B = τ

j
C = τ j = U jρ jU j†, (15)

where U j could be one of the Pauli matrices or the identity matrix. ρ j = ρ
j
B =

trCρ
j
BC = ρ

j
C = trBρ

j
BC. The average fidelity between τin and τout characterizes the

quality of the teleportation protocol

FA =
∫ 2π
0 dφ

∫ π

0 sin θdθ
4∑

i=1
p j tr

(
τ
j
outτin

)

4π
. (16)

In Fig. 8, the average fidelity FA is plotted as a function of the time. The Dx

systembehaves better than the classical communication, and the Dz systemwill exhibit
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damped oscillation below the value of 2/3. From this figure and Fig. 6, we notice that
the Dx system is more favorable to resist decoherence in most cases.

6 Summary

In summary, we have investigated the entanglement and the fidelity of entangle-
ment teleportation for Heisenberg XYZ model with different Dzyaloshinskii–Moriya
interactions when the Milburn’s intrinsic decoherence taken into consideration. After
comparing the two different DM interactions, we can clearly find which one can get
stable entanglement and high fidelity. The results demonstrate that after reaching the
maximum decoherence time the entanglement will keep in a steady value for some
initial state. With the change of initial state angle, the entanglement, the output entan-
glement, and the asymptotic fidelity all will exhibit periodicity. The Dx system is
more favorable to resist decoherence and get a high fidelity both in two-qubit telepor-
tation protocol and in three-qubit teleportation protocol. These results are valuable in
quantum information processing based on the solid-state qubit.
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