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Abstract Recently, Girolami and Adesso (Phys Rev A 83: 052108, 2011) have
demonstrated that the calculation of quantum discord for two-qubit case can be viewed
as to solve a pair of transcendental equation. In the present work, we introduce the
generalized Choi–Jamiolkowski isomorphism and apply it as a convenient tool for
constructing transcendental equations. For the general two-qubit case, we show that
the transcendental equations always have a finite set of universal solutions; this result
can be viewed as a generalization of the one obtained by Ali et al. (Phys Rev A 81:
042105, 2010). For a subclass of X state, we find the analytical solutions by solving
the transcendental equations.

1 Introduction

How to quantify and characterize the nature of correlations in a quantum state, besides
the fundamental scientific interest, has a crucial applicative importance in the field of
quantum information processing [1]. For a bipartite quantum state, it is known that both
the classical and quantum correlations are contained in it. Beyond the entanglement,
quantum discord was introduced as a more general measure of quantum correlation
[2,3] and was regarded as a resource for quantum computation [4], quantum state
merging [5,6]. Quantum discord has attracted much attention recently [4–23] and has
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also been generalized to continuous-variable systems for Gaussian states [24,25] and
non-Gaussian states [26].

Quantum discord is very hard to calculate even for two-qubit states because of the
minimization over all possible measurements. For an important class of two-qubit
states, the so-called X states, Ali, Rau, and Alber (ARA) proposed an algorithm
to calculate the quantum discord with minimization taken over only a few simple
cases [9]. However, a counterexample for the ARA algorithm was given by Lu et al.
[10], where the authors proved that, for the entire class os X states, the optimization
procedure involved in the classical correlation should be state dependent. For the real
X states, Chen et al. have identified a class of states, where quantum discord can be
evaluated analytically without any minimization, and hence, the ARA algorithm is
valid. Meanwhile, they also identified a family of states for which the ARA algorithm
fails [27].

The ARA algorithm involved a minimization procedure with four constrained para-
meters. However, Girolami and Adesso have shown that two free parameters, the polar
and azimuthal angles usually used to describe an arbitrary unitBlochvector, are already
sufficient. With the two angles, one may obtain two partial derivatives for the condi-
tional entropy, and by setting the two partial derivatives to be zero, the minimization
procedure can be simplified as to find the solutions of a pair of transcendental equa-
tions [28]. Usually, one should firstly give all the possible solutions, which are series
of values of the two angles, and then select the optimal setting where the conditional
entropy takes the minimal value.

Although the transcendental equations are direct and reliable, it has been argued
that, for general case, one cannot solve the problem analytically since these equa-
tions involves logarithms of nonlinear quantities [28]. In the present work, we shall
give some further discussion about this problem. First, we introduce the generalized
Choi–Jamiolkowski isomorphism as a convenient tool to construct the transcendental
equations. Then, for the general two-qubit case, we demonstrate that the transcen-
dental equations have a set of universal solutions which have been discovered by the
ARA algorithm. Finally, for a subclass of the X state, we give the analytical solution
by solving the transcendental equations.

The content of present work is organized as follows. In Sect. 2, we give a brief
reviewof the quantumdiscord. In Sect. 3,we introduce the generalChoi–Jamiolkowski
isomorphism. In Sect. 4, a detail introduction of the Bloch vector transformation is
discussed. In Sect. 5, we give a classification of the solutions for the partial equation of
the classical mutual information. In Sect. 6, several examples are given there. Finally,
we end our work with a short conclusion.

2 The quantum discord

The correlations for a bipartite state can be quantified by the quantum mutual infor-
mation. For a given density matrix ρab of a bipartite system Ha ⊗ Hb, the quantum
mutual information is defined as

I = S
(
ρa) + S

(
ρb

)
− S

(
ρab

)
, (1)
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where S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy, and ρa (ρb) denotes the
reduced density matrix of subsystem Ha (Hb). The quantum mutual information can
be expressed as the sum of two parts,

I
(
ρab

)
= C

(
ρab

)
+ Q

(
ρab

)
, (2)

with C(ρab) the classic correlation andQ(ρab) the quantum discord [2,3]. To quantify
the quantum discord, Olliver and Zurek [2] have suggested the use of von Neumann-
type measurements: {�i }Di=1, with�i the one-dimensional projective operators. After
the measurement on subsystem Hb, a density operator ρ j associated with the outcome
j is

ρ j = 1

p j

(
ID ⊗ � j

) (
ρab

) (
ID ⊗ � j

)
, (3)

with p j the probability for the j th outcome. Use S(ρ|� j ) = ∑
p j S(ρ j ) to denote

the quantum conditional entropy, and the corresponding quantum mutual information
reads

I ′ (ρab|� j

)
= S

(
ρa) − S

(
ρ|� j

)
. (4)

Then, the classical correlation is

C
(
ρab

)
:= sup{� j }I ′ (ρab|� j

)
, (5)

and the quantum discord is defined as

Q
(
ρab

)
:= I

(
ρab

)
− C

(
ρab

)
. (6)

3 The system-ancilla-environment picture

The Choi–Jamiolkowski isomorphism is a useful connection between quantum chan-
nel and a bipartite state [29], say ρab = ε ⊗ ID(|S+〉〈S+|), with |S+〉 the maximally
entangled state of the bipartite system. Our work is motivated by such a simple idea:
We first express a density operator ρab with a quantum channel ε, and then, the analytic
expression of the quantum discord for the D ⊗ D system can be simplified since only
a D-dimensional quantum process ε is involved. It should be noticed that the isomor-
phism above is only available for the cases when the reduced density matrix ρb is a
complete mixture, ρb = ID/D. With careful analysis, we find that the isomorphism
above can take a general form as the maximally entangled state is substituted by a gen-
eral entangled state, and then, the density matrix with a full-rank reduced matrix ρb

can always be expressed with a quantum channel and an entangled state. Meanwhile,
the Bloch vector transformation can be applied to describe the quantum operation for
the qubit case. Therefore, the derivation of the quantum discord is closely related to
the property of the quantum channel.

To study a quantum channel ε of a D-dimensional system Ha , it is convenient to
introduce an ancilla system Hb with an equal dimension. Prepare a pure entangled
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state |�〉 as the initial state of the bipartite system Ha ⊗ Hb, and since the system
Ha is subjected to a interaction described by the trace-preserving quantum operation
ε with the environment, the final state is

ρab = ε ⊗ ID (|�〉〈�|) . (7)

From it,we can obtain a lot of information about the quantumchannel. For example, the
Schmacher’s channel fidelity is defined as F = 〈�|ρab|�〉, which provides a measure
of how well the entanglement between the two systems is preserved by the quantum
process ε [30]. In the following, we shall show that this process is reversible: If the
reduced matrix of Hb is full-rank, it can always be described by the corresponding ε

and |�〉. To prove this, we should first notice that a bounded operator in HD is always
related to a vector in a extended Hilbert space H⊗2

D . Denote A to be a bounded operator
on the D-dimensional Hilbert space HD , with Ai j = 〈i |A| j〉 the matrix elements, and
an isomorphism between A and a D2-dimensional vector |A〉〉 can be

|A〉〉 = √
DA ⊗ ID|S+〉 =

D∑

i, j=1

Ai j |i j〉, (8)

where |S+〉 is the maximally entangled state in H⊗2
D , |S+〉 = ∑D

k=1 |kk〉/√D with
|i j〉 = |i〉 ⊗ | j〉. This isomorphism offers a one-to-one map between an operator and
its vector form. Suppose that A , B, and ρ are three arbitrary bounded operators on
HD , and then

Tr
(
A†B

)
= 〈〈A|B〉〉, |AρB〉〉 = A ⊗ BT|ρ〉〉, (9)

with BT the transpose of B.
Now, consider a D2 × D2 density matrix,

ρab =
D2∑

m=1

λm |�m〉〈�m | (10)

where |�m〉 are the normalized eigenvectors of the bipartite density operator

ρab, 〈�m |�n〉 = δmn , and λm are the corresponding eigenvalues with
∑D2

m λm = 1.
Due to the isomorphism |�m〉 = |�m〉〉, the density matrix ρab can be also expressed
as

ρab =
∑

m

λm |�m〉〉〈〈�m |,

and the transpose of the reduced density matrix ρb can be derived as

(
ρb

)T =
∑

m

λm�†
m�m . (11)

A simple proof of Eq. (11) is as following:With the equations in Eqs. (9) and (10), one
can obtain 〈〈�m |ki〉 = 〈i |�†

m |k〉, and 〈k j |�m〉〉 = 〈k|�m | j〉. Plugging these results
into the definition of the partial trace operation, we have
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〈i |
(
ρb

)T | j〉 = 〈 j |
(
ρb

)
|i〉

=
D∑

k=1

〈k j |
∑

m

λm |�m〉〉〈〈�m |ki〉

=
∑

m

∑

k

λm〈i |�†
m |k〉〈k|�m | j〉

= 〈i |
∑

m

λm�†
m�m | j〉.

��
For the two-qubit case, D = 2, and one can further assume det(ρb)T) 	= 0 and

define √(
ρb

)T = U	U †, (12)

where

	 =
(
cos γ

2 0
0 sin γ

2

)
,

with U a 2× 2 unitary transformation. Furthermore, one can introduce a set of Kraus
operators {Em}4m=1 for the quantum process ε as follows:

Em = √
λm�mU	−1,

∑

m

E†
mEm = I2, (13)

and now, the density matrix ρab can be rewritten as

ρab =
∑

m

Em ⊗ I2|	U †〉〉〈〈	U †|E†
m ⊗ I2

=
∑

m

Em ⊗U∗|	〉〉〈〈	|E†
m ⊗ (U∗)†.

It is obvious that a new basis for Hb can be defined as

|0〉 = (U∗)†|0〉, |1〉 = (U∗)†|1〉,

and the relation in Eq. (7) with the entangled state

|�〉 = |	〉〉 = cos
γ

2
|00〉 + sin

γ

2
|11〉.

can be obtained. In this picture, the two reduced density matrices are

ρb =
(
cos2 γ

2 0
0 sin2 γ

2

)
, ρa = ε(ρb). (14)
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It should be mentioned that (ρb)T has the same determinant as ρb, and furthermore,
our method above can be easily generalized for the cases with the arbitrary dimension
D.

In the following,we shall focus on the situationwhere a vonNeumannmeasurement
is performed on subsystem Hb. Two free parameters, θ and φ, can be used for the
measurement operators �i = |ψi 〉〈ψi |(i = 1, 2), where

|ψ1〉 = cos
θ

2
|0〉 + sin

θ

2
exp(iφ)|1〉, (15)

|ψ2〉 = − sin
θ

2
|0〉 + cos

θ

2
exp(iφ)|1〉. (16)

After the measurement, the final state ρa′b′
can be formally expressed as ρa′b′ =

ε ⊗ I2(ρ̄), where

ρ̄ =
2∑

j=1

I2 ⊗ � j |	〉〉〈〈	|I2 ⊗ � j . (17)

By some algebra, we find that ρ̄ is a mixture of product state

ρ̄ =
2∑

j=1

p j |φ j 〉〈φ j | ⊗ |ψ j 〉〈ψ j |, (18)

with p j the probabilities

p1 = 1

2
(1 + cos θ cos γ ), p2 = 1

2
(1 − cos θ cos γ ), (19)

and |φ j 〉( j = 1, 2) are a pair of pure states defined as

|φ1〉 = 1√
p1

(
cos

γ

2
cos

θ

2
|0〉 + sin

γ

2
sin

θ

2
e−iφ |1〉

)
,

|φ2〉 = 1√
p2

(
− cos

γ

2
sin

θ

2
|0〉 + sin

γ

2
cos

θ

2
e−iφ |1〉

)
.

Finally, one can obtain

ρa′b′ =
2∑

j=1

p jρ j ⊗ |ψ j 〉〈ψ j |, ρ j = ε(|φ j 〉〈φ j |). (20)

Meanwhile, it is easy to check that
∑

j p j |φ j 〉〈φ j | = ρb, and therefore,

2∑

j=1

p jρ j = ε(ρb) = ρa . (21)
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From Eq. (20), we see that the classic information I ′ is a function of the free
parameters θ and φ,

I ′(θ, φ) = S(ρa) −
2∑

j=1

p j S(ρ j ), (22)

and the quantum discord can be accessed if the maximum value of I ′(θ, φ) has been
decided

Q = I − Maxθ,φI ′(θ, φ). (23)

4 The Bloch vector transformation

In order to obtain the analytic expression of the quantum discord for a two-qubit state,
we shall at first give a general expression of the conditional entropy

∑2
j=1 p j S(ρ j ).

The Bloch representation is very useful for the single-qubit state, and the state ρ

can be written as ρ = 1
2 (I2 + �r · �σ), where �r is a three component real vector and

�σ = (σx , σy, σz). Meanwhile, it turns out that an arbitrary trace-preserving quantum
operation is equivalent to a map such that

�r ′ → �r = η�r + �c, (24)

with η a 3 × 3 real matrix, �c a constant vector, and ε(ρ) = 1
2 (I2 + �r ′ · �σ). This is an

affine map, mapping the Bloch sphere into itself [1], and can be explicitly expressed
as ⎛

⎝
r ′
x
r ′
y
r ′
z

⎞

⎠ =
⎛

⎝
ηxx ηxy ηxz
ηyx ηyy ηyz

ηzx ηzy ηzz

⎞

⎠

⎛

⎝
rx
ry
rz

⎞

⎠ +
⎛

⎝
cx
cy
cz

⎞

⎠ , (25)

with the coefficients defined as

ηi j = 1

2
Tr

[
σ jε (σi )

]
, ck = 1

2
Tr [σkε (I2)] . (26)

Here, we have used

|φ1〉〈φ1| = 1

2
(I2 + �s · �σ) , |φ2〉〈φ2| = 1

2

(
I2 + �t · �σ )

, (27)

and the two unit vectors �s and �t

sx = sin γ sin θ cosφ

1 + cos γ cos θ
, sy = sin γ sin θ sin φ

1 + cos γ cos θ
,

sz = cos γ + cos θ

1 + cos γ cos θ
, tx = − sin γ sin θ cosφ

1 − cos γ cos θ
,

ty = − sin γ sin θ sin φ

1 − cos γ cos θ
, tz = cos γ − cos θ

1 − cos γ cos θ
. (28)
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With the following two vectors,

�s′ = η�s + �c, �t ′ = η�t + �c (29)

one may have

ρ1 = 1

2
(I2 + �s′ · �σ), ρ2 = 1

2
(I2 + �t ′ · �σ), (30)

For simplicity, s′(θ, φ) and t ′(θ, φ) are used to denote the purity of the density matrix

ρ1 and ρ2 respectively, and s′(θ, φ) = |�s′| =
√

(s′
x )

2 + (s′
y)

2 + (s′
z)
2, t ′(θ, φ) = |�t ′|.

It is easy to note that there exists a symmetry between these two functions: Under the
transformation

θ → π − θ, φ → φ + π (31)

these two functions are interchanged

s′(θ, φ) ⇐⇒ t ′(θ, φ). (32)

This result comes from the fact that �r(π − θ, φ + π) = �s(θ, φ), which can be seen
from Eq. (28).

5 Classification of the solutions

With theBlochvector introduced in the above section, onemayget a general expression
of the classic information,

I ′ (θ, φ) = S
(
ρa) − p1H2

(
1 + s′

2

)
− p2H2

(
1 + t ′

2

)
, (33)

with H2(p) the binary entropy defined as H2(p) = −p log2 p− (1− p) log2(1− p).
From Eq. (19), ∂p1

∂θ
= − ∂p2

∂θ
. Therefore, we can obtain

∂I ′

∂φ
= ∂s′

∂φ

(

p1 log2

√
1 + s′
1 − s′

)

+ ∂t ′

∂φ

(

p2 log2

√
1 + t ′
1 − t ′

)

,

∂I ′

∂θ
= −∂p1

∂θ

(
H2

(
1 + s′

2

)
− H2

(
1 + t ′

2

))

+ ∂s′

∂θ

(

p1 log2

√
1 + s′
1 − s′

)

+ ∂t ′

∂θ

(

p2 log2

√
1 + t ′
1 − t ′

)

. (34)

As a necessary condition, the maximum value may happen with

∂I ′/∂φ = 0, ∂I ′/∂θ = 0. (35)

In the following, we shall show that the following two types of solutions are universal:
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(A)The symmetric solution: In this case, one of the solutions happens with the
setting

θ = π

2
, φ = φ̄, (36)

with φ̄ is constrained by

s′(θ, φ̄) = s′(θ, π + φ̄), (37)
∂s′(π/2, φ)

∂φ
|φ=φ̄ = −∂t ′(π/2, φ)

∂φ
|φ=φ̄ . (38)

Following the discussions about the symmetry between s′(θ, φ̄) and t ′(θ, φ̄), there
should be

s′(π/2, φ̄) = t ′(π/2, φ̄), (39)

∂s′(θ, φ̄)

∂θ
|θ=π/2 = −∂t ′(θ, φ̄)

∂θ
|θ=π/2. (40)

Jointing the above results with

p1(θ = π/2) = 1

2
, p2(θ = π/2) = 1

2
, (41)

one can conclude that the setting in Eq. (36) is one of the solutions.
(B)The asymmetric solution: Another solution of the partial equation exists with

the setting
θ = θ̃ , φ = φ̃, (42)

with θ̃ and φ̃ the solution of the equations below,

∂s′(θ, φ̃)

∂θ
|θ=θ̃ = ∂t ′(θ, φ̃)

∂θ
|θ=θ̃ = 0, (43)

∂s′(θ̃ , φ)

∂φ
|φ=φ̃ = ∂t ′(θ̃ , φ)

∂φ
|φ=φ̃ = 0, (44)

∂p1
∂θ

|θ=θ̃ = ∂p2
∂θ

|θ=θ̃ = 0, (45)

Except the special case where p1 = p2 = 1/2, θ = 0 is the only possible solution
for the equations above since ∂pi/∂θ ∝ sin θ, (i = 1, 2). By jointing it with the
symmetric solution, θ = π/2, the main result in [9], which states that the polar angle
θ may take the value 0 or π/2 for the X states, is also suitable for the general two-qubit
case.

(C)The state-dependent solution: For some given states, the two transcendental
equations in Eq. (35) may have other type solutions beside the universal one given
above. We shall give an example in the next section.
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6 Examples

(A) The X state. This type of density matrix has been widely discussed in previous
works [7,9,10],

ρab =

⎛

⎜⎜
⎝

ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44

⎞

⎟⎟
⎠. (46)

By some simple algebra, we may see that the map in Eq. (25) now take the form

⎛

⎝
r ′
x
r ′
y
r ′
z

⎞

⎠ =
⎛

⎝
ηxx ηxy 0
ηyx ηyy 0
0 0 ηzz

⎞

⎠

⎛

⎝
rx
ry
rz

⎞

⎠ +
⎛

⎝
0
0
cz

⎞

⎠, (47)

Here, we focus on the case when cos γ = 0, which means the pure state |�〉 in
Eq. (7) is the maximally entangled state. Under this condition, the probability for each
final state takes the same value, p1 = p2 = 1/2. The transcendental equations are
reduced as

0 = ∂s′

∂φ

(

log2

√
1 + s′
1 − s′

)

+ ∂t ′

∂φ

(

log2

√
1 + t ′
1 − t ′

)

, (48)

0 = ∂s′

∂θ

(

log2

√
1 + s′
1 − s′

)

+ ∂t ′

∂θ

(

log2

√
1 + t ′
1 − t ′

)

. (49)

With the vector transformation, we shall get

s′(θ, φ) =
{
sin2 θ f (φ) + [cz + ηzz cos θ ]2

} 1
2
, (50)

t ′(θ, φ) =
{
sin2 θ f (φ) + [cz − ηzz cos θ ]2

} 1
2
,

f (φ) = (ηxx cosφ + ηxy sin φ)2 + (ηyx cosφ + ηyy sin φ)2 (51)

Note that s′ and t ′ depend on φ in the same way. Therefore, the optimal setting for φ

should be decided by equation, ∂ f (φ)/∂φ = 0, can be easily solved. By introducing
a set of parameters,

η2⊥ = max
φ

f (φ), a = η2⊥ + c2z , b = ηzzcz, (52)

c = η2zz − η2⊥, k = c

b2 − ca
, (53)

we can express s′ and t ′ with a simple form,

s′ = {a + 2b cos θ + c cos2 θ} 1
2 , t ′ = {a − 2b cos θ + c cos2 θ} 1

2 .
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From it, we get the derivatives,

∣
∣∣∣
∂s′

∂θ

∣
∣∣∣ = sin θ

√
b2 − caG(s′),

∣∣∣∣
∂t ′

∂θ

∣∣∣∣ = sin θ
√
b2 − caG(t ′),

G(x) =
√
1 + kx2

x
, 0 < x < 1. (54)

Note that two derivatives cannot be positive at the same time, and we can rewrite
Eq. (49) as

0 = sin θ
√
b2 − ca

2 ln 2
(H(s′) − H(t ′)), (55)

H(x) =
√
1 + kx2

x
ln

1 + x

1 − x
, 0 < x < 1 (56)

Here, we shall show that: In the parameter range

k ≥ −2

3
or k ≤ −1, (57)

the equation in (55) has no other solutions beside θ = 0 and s′ = t ′. From Eq. (56),
there should be

∂H(x)

∂x
= − 1

x2
√
1 + kx2

[

ln
1 + x

1 − x
− 2x

(
1 + kx2

)

1 − x2

]

(58)

with the expanding formula

ln
1 + x

1 − x
= 2x

(

1 +
∑

n=1

x2n

2n + 1

)

,

(
1 + kx2

)

1 − x2
= 1 + (1 + k)

∑

n=1

x2n,

and the condition in Eq. (57), we see that ∂H(x)/∂x is nonzero in the parameter range
0 < x < 1. Therefore, H(s′) = H(t ′) can only happen with s′ = t ′. If cz 	= 0, s′ = t ′
has the unique setting θ = π/2. If cz = 0, s′ = t ′ can hold for an arbitrary θ , while
from Eqs. (50–51), we find the optimal setting is either θ = 0 or θ = π/2. Based on
these analyses above, we conclude that the universal solutions are sufficient for the
cases above.

Among all the X -type states, the Bell diagonal state is one of the most interesting
cases, and in the parameterized state model here, it corresponds to the situation
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⎛

⎝
r ′
x
r ′
y
r ′
z

⎞

⎠ =
⎛

⎝
ηxx 0 0
0 ηyy 0
0 0 ηzz

⎞

⎠

⎛

⎝
rx
ry
rz

⎞

⎠ (59)

Now, the parameter k takes the value k = −1/η2⊥ < −1. The symmetric solution
should be s′(π/2, φ̄) = t ′(π/2, φ̄) = η⊥, while the asymmetric solution has a compact
form s′(θ̃ , φ̃) = t ′(θ̃ , φ̃) = |ηzz|. Finally, which kind of solution, the symmetric one
or the asymmetric one, should be viewed as the classic correlation C in Eq. (5), is
decided by the actual values of ηxx , ηyy ,and ηzz . Formally, it an be expressed as

C = 1 − H2

(
1 + ηopt

2

)
, (60)

with ηopt = Max{|ηxx |, |ηyy |, |ηzz|}.
(B) In Ref. [10], a simple density matrix is given as

ρab =

⎛

⎜⎜
⎝

0.0783 0 0 0
0 0.1250 0.1000 0
0 0.1000 0.1250 0
0 0 0 0.6170

⎞

⎟⎟
⎠. (61)

With numerical calculation, we find that the transcendental equations in Eq. (35) have
three solutions, θ = 0, θ = π/2 and θ ≈ 0.155π . Among all these possible settings,
θ ≈ 0.155π is the optimal one. With this simple example, we show that the universal
solutions are not always the optimal one.

7 Conclusions

Our present work has followed the original definition of the quantum discord in
Ref. [2], where the vonNeumann projectivemeasurement is performed. Thismeasure-
ment can also begeneralized to themoregeneral positive operator-valuedmeasurement
(POVM) [3]. Furthermore, the concept of the quantum discord itself has been devel-
oped in recent years. For examples, the relative entropy quantum discord [12], the
geometric quantum discord [13,14] and their relations to the original definition have
been investigated. Although our derivation is the for the original quantum discord,
the general Choi–Jamiolkowski isomorphism used here may also be applied for the
discussion for other types of quantum discord.

In summary, we have applied the general Choi–Jamiolkowski isomorphism as a
convenient tool for constructing the transcendental equations. For the general two-
qubit case, we have shown that the transcendental equations always have a finite set
of universal solutions, and this result can be viewed as a generalization of the one get
with the ARA algorithm. However, for some cases, the transcendental equations can
have solutions beside the universal ones. We also consider a subclass of X state, for
which the transcendental equation may offer analytical solutions.
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