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Abstract We propose a scheme to realize a three-qubit controlled phase gate and
a multi-qubit controlled NOT gate of one qubit simultaneously controlling n-target
qubitswith a four-level quantum system in a cavity. The implementation time formulti-
qubit controlled NOT gate is independent of the number of qubit. Three-qubit phase
gate is generalized to n-qubit phase gate with multiple control qubits. The number of
steps reduces linearly as compared to conventional gate decomposition method. Our
scheme can be applied to various types of physical systems such as superconducting
qubits coupled to a resonator and trapped atoms in a cavity. Our scheme does not
require adjustment of level spacing during the gate implementation. We also show the
implementation of Deutsch–Joza algorithm. Finally, we discuss the imperfections due
to cavity decay and the possibility of physical implementation of our scheme.
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1 Introduction

Quantum computing has the potential ability to carry out certain computational task
much faster than classical computing. For example, factorization of a large number via
Shor’s algorithm [1] and the search of an item in an unsorted database containing N
elements [2]. Two-qubit gates and one-qubit gates are the building blocks for quantum
computing networks [3]. Many physical systems have been proposed as candidates
for implementation of quantum information processing like atoms in cavity quantum
electrodynamics (QED) and nuclear magnetic resonance (NMR). Among them, cavity
QED analogs with superconducting qubit systems are getting favorable attention [4].
A two-qubit gate was experimentally realized using superconducting qubit systems
coupled through capacitors [5,6], mutual inductance [7], or cavities [8].

Multi-qubit gates constructed by the conventional gate decomposition method [9],
usually makes the procedure complicated for the case of a large number of qubits.
Typically, the number of single-qubit gate and two-qubit gates required for the imple-
mentation depends on the number of qubits. In this regard, multi-qubit quantum gates
play a significant role in quantum information processing system which involves a
large number of qubits. Experimentally, a three-qubit controlled NOT gate has been
demonstrated with trapped ions [10] and superconducting circuits [11]. The purpose
of this work is to realize three-qubit controlled phase gate and multi-qubit controlled
NOT gate of one qubit simultaneously controlling n qubits (which we denote as NTC-
NOT gate) in cavity QED using a four-level system. We have generalized the scheme
to realize an n-qubit-phase gate with multiple control qubits. Our scheme does not
require adjustment of level spacing during the gate implementation. Interestingly, the
implementation time for multi-qubit controlled NOT gate is independent of number
of qubits. We first introduce these gates below before their implementation.

1.1 Two kind of multi-qubit quantum gates

In three-qubit quantum controlled phase gates when two control qubits |q1〉 and |q2〉
are in state |1〉, phase shift eiη induces to the state |1〉 of the target qubit |q3〉. When
control qubits are in state |0〉, nothing happens to the target qubit. This transformation
can be written as [12]

U 3
η |q1, q2, q3〉 = e(iηδq1,1δq2,1,δq3,1) |q1, q2, q3〉 . (1)

Here, δq1,1, δq2,1, and δq3,1 are the standard Kronecker delta functions and |q1〉 , |q2〉
and |q3〉 stand for basis states |0〉 or |1〉 for qubits 1, 2 and 3. Circuit for three-qubit
controlled phase gate is the same as shown in Fig. 1a. Thus three-qubit quantum phase
gate introduces a phase η only when the input state of all three qubits is |1〉 . In this
proposal, we discuss the implementation of a three-qubit quantum phase gate with
η = π . It may be mentioned that three-qubit controlled NOT gate (known as a Toffoli
gate) can also be achieved using present proposal. Toffoli gate is equivalent to a three-
qubit controlled phase gate plus twoHadamardgates on target qubit as shown inFig. 1b.
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Fig. 1 a Three-qubit controlled phase gate. Z represents Pauli rotation σz . If control qubits 1 and 2 (shown
by filled circle) are in state |1〉 then phase of π is induced only on state |1〉 at Z. When control qubits are
in state |0〉 nothing happens to the target qubit. b Relationship between a three-qubit CNOT gate (known
as a Toffoli gate) and a three-qubit controlled phase gate. The circuits on left side and right side of (b) are
equivalent to each other. The symbol ⊕ on left side of (b) represents NOT gate on target qubit. If control
qubits 1 and 2 are in state |1〉, then the state at⊕ is flipped such that |1〉 → |0〉 and |0〉 → |1〉. However,when
control qubits 1 and 2 are in state |0〉, then the state at ⊕ remains unchanged. For right side of (b), portion
enclosed in dashed box represents a three-qubit controlled phase gate. The element H is called a Hadamard
gate and leads to the transformation |0〉 → |+〉 = (1/

√
2)(|0〉 + |1〉) and |1〉 → |−〉 = (1/

√
2)(|0〉 − |1〉)

Next, we consider NTCNOT gate which consists of control qubit 1 and n target
qubits labeled as 2, 3, . . . , n shown in Fig. 2a. We define control qubit in |0〉 , |1〉
basis and each target qubit in |+〉 , |−〉 basis. Thus, the input state can be written as

|ψ〉i = |0〉
n∏

k=2

(|+〉k + |−〉k) + |1〉
n∏

k=2

(|+〉k + |−〉k) . (2)

When the NTCNOT gate is applied to the state given by Eq. (1), we obtain

|ψ〉 f = |0〉
n∏

k=2

(|+〉k + |−〉k) + |1〉
n∏

k=2

(|−〉k + |+〉k) . (3)

It is clear from Eqs. 2 and 3 that when control qubit is in state |1〉, then the state at
each target qubit is flipped as |+〉 → |−〉 and |−〉 → |+〉 . If control qubit is in state
|0〉, nothing happens to each target qubit. It may be mentioned that the NTCNOT
gate can be defined in |+〉 , |−〉 basis. However, two Hadamard gates on control qubit
before and after the phase gate with one qubit simultaneously controlling n target
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(a)

(b) (c)

Fig. 2 a Schematic circuit of the NTCNOT gate with qubit 1 simultaneously, controlling n target qubits.
The NTCNOT gate is equivalent to n two-qubit CNOT gates each having a shared control qubit 1 with
different target qubits 2, 3, . . . , n. In this case, qubit 1 is defined in |0〉 , |1〉 basis while the target qubits
2, 3, . . . , n are defined in |+〉 , |−〉 basis. b Equivalent circuit of NTCNOT gate in |+〉 , |−〉 basis. The
symbol Z represents a phase shift of π on each target qubit. If control qubit 1 is in state |−〉 then the state
|−〉 at each Z is phase-shifted as |−〉 → − |−〉 while state |+〉 remains unchanged. However, if control
qubit 1 is in state |+〉 , then states |+〉 or |−〉 at each Z remain unchanged. c Equivalent circuit of NTCNOT
gate in |0〉 , |1〉 basis. The symbol Z represents phase shift of π on each target qubit. If control qubit 1
is in state |1〉 then state |1〉 at each Z is phase-shifted as |1〉 → − |1〉 while state |0〉 remains unchanged.
However, if control qubit 1 is in state |0〉 , then states |0〉 or |1〉 at each Z remain unchanged. It may be
noted that 2(n − 1) Hadamard gates are required in this case

qubits would be required as shown in Fig. 2b. The NTCNOT gate can also be defined
in |0〉 , |1〉 basis. However, in this case, Hadamard gate on each target qubit before
and after the n-target controlled phase gate [i.e., 2(n − 1) Hadamard gate] would be
required as shown in Fig. 2c. In contrast, defining the control qubit in |0〉 , |1〉 basis and
each target qubit in |+〉 , |−〉 basis do not require Hadamard gate (as shown in Sec. III
B) which makes the procedure for the implementation of NTCNOT gate quite simple.

1.2 Motivation and advantages

Multi-qubit quantum controlled phase gate as shown in Fig. 1 plays a key role in the
realization of quantum error correction [13] and implementation of Grover’s algorithm
for eight objects [14,15]. Quantum gate with multiple target qubits shown in Fig. 2 are
of great importance for the realization of entanglement preparation [16], error correc-
tion [17], discrete cosine transform [18], and quantum cloning [19]. Some interesting
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scheme for the realization ofmulti-qubit quantumgates have been proposed. For exam-
ple, Chang et al. [20] presented a three-qubit quantum phase gate with a four-level
atom in a cascade configuration initially prepared in their ground state interacting with
a three-mode optical cavity. Yang et al. [21,22] presented an n-qubit controlled phase
gate with superconducting quantum interference devices (SQUIDs) by coupling them
to a superconducting resonator. Recently, some interesting schemes are also proposed
for the realization of amulti-qubit phase gatewith a fixed phase shift ofπ on each target
qubit andmulti-qubit phase gatewith a randomphase shift on each target qubit [23–25].

Our goal here is to realize a three-qubit controlled phase gate shown in Fig. 1a
and a NTCNOT gate shown in Fig. 2a with a four-level quantum system in a cavity
or coupled to a superconducting resonator. Our proposal has several advantages, for
example (1) Decoherence due to spontaneous decay of level |3〉 is suppressed because
the excited level |3〉 is unpopulated during the gate operation. (2) The adjustment of
level spacing of the qubit system during the gate operations is not needed which may
cause decoherence. (3) Operation time for the realization of the NTCNOT gate is
independent of the number of qubits. (4) In case of a flux (SQUID) qubit system, each
qubit can have much longer storage time. (5) We do not require identical coupling
constants for each qubit system with cavity mode. Similarly, detuning of the cavity
mode with the transition of the relevant levels in every target qubit system is not
identical; therefore our scheme is tolerable to inevitable non-uniformity in device
parameters. (6) Finite second-order detuning δ = �c − �µ is not required which
improves the gate speed by one order. (7) Three-qubit controlled phase gate shown in
Fig. 1 is generalized to n-qubit quantumgatewithmultiple control qubits. Interestingly,
complexity (number of operations) reduces linearly as compared to the conventional
gate decomposition method. In addition, our proposal is quite general and can be
applied to various kind of four-level physical systems like superconducting devices
coupled to a superconducting resonator and trapped atoms in a cavity.

2 System dynamics

We consider here a four-level qubit system which could be either natural atoms or
artificial atoms as shown in Fig. 3. It may be mentioned that Fig. 3 applies to (a) a
superconducting charged qubit [26], (b) a phase qubit system [27–29], (c) a flux qubit
system [26,30] and (d) a SQUID [31]. The four-level energy diagram shown in Fig.
3b could also be applied to atoms [24].

2.1 System-cavity-pulse resonance Raman interaction

We consider a four-level qubit system 1 and 2 coupled to a single-mode cavity field
and driven by a classical microwave pulse as shown in Figs. 4a and b. Consider qubit
system 1 for which cavity mode is coupled to |2〉1 ↔ |3〉1 transition, however, highly
decoupled from the transition between any other two levels. In addition, microwave
pulse is also applied which is coupled to |1〉1 ↔ |3〉1 transition however, highly
decoupled from the transition between any other two levels as shown in Fig. 4a. The
Hamiltonian of the system can be written as
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(a) (b) (c) (d)

Fig. 3 Desired four-level qubit systems with four energy levels |0〉 , |1〉 , |2〉 , and |3〉, respectively. a
Represents a charged qubit system: the transition frequencies between the levels satisfy the conditions
ν21 > ν10, ν32 and ν32 < ν10.b Represents a phase qubit system: the transition frequencies between the
levels satisfy the conditions ν10 > ν21 > ν32. c Represents a flux qubit system: the transition frequencies
between the levels satisfy the conditions ν21 > ν10, ν32 and ν32 > ν10. d Represents a SQUIDs qubit
system: the transition frequencies between the levels satisfy the conditions ν32 < ν21 < ν20 < ν31 < ν30.
The levels |0〉 and |2〉 lie in right well of SQUID while level |1〉 lies in left well of SQUID (see Fig. 7), such
that their is potential barrier between these two wells

H = h̄ωca
†a +

3∑

n=1

En |n〉1 〈n| + h̄g1
(
a† |2〉1 〈3| + H.c.

)

+ h̄
13

(
eiωµt |1〉1 〈3| + H.c

)
, (4)

where a†(a) is the photon creation (annihilation) operator for the cavity mode with
frequencyωc and g1 is the coupling constant between the cavitymode and |2〉1 ↔ |3〉1
transition of qubit system 1. The Rabi frequency of pulse is
13 having frequency ωμ.
We assume that the cavitymode is off-resonant with |2〉1 ↔ |3〉1 transition of the qubit
system 1 (i.e., �c = ω32 − ωc >> g1). Here, �c is the detuning between |2〉1 ↔
|3〉1 transition frequency ω32 of the qubit system 1 and cavity field frequency ωc.
Microwave pulse is off-resonant with |1〉1 ↔ |3〉1 transition of the qubit system 1 (i.e.,
�μ = ω13 − ωμ >> 
13 ). Here, �μ is the detuning between |1〉1 ↔ |3〉1 transition
frequencyω13 of the qubit system1 and pulse frequencyωμ. The level |3〉1 can be elim-
inated adiabatically as discussed in Ref.[32]. Thus, for the case when �μ = �c, the
effectiveHamiltonian in the interaction picture (assuming h̄ = 1) can bewritten as [31]

HI = −
[


2
13

�c
|1〉1 〈1| + g21

�c
a†a |2〉1 〈2| + 
13g1

�c
(a† |2〉1 〈1| + H.c.

]
(5)

The last two terms describe resonance Raman coupling between levels |1〉1 and
|2〉1 . For 
13 = g1, initial state |2〉1 |1〉c and |1〉1 |0〉c of the qubit system 1, under
the Hamiltonian given by Eq.(5) can be written as
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(a) (b) (c)

Fig. 4 a System-cavity-pulse resonance Raman coupling for qubit system 1. Here, �c = ω32 − ωc is the
detuning between |2〉1 ↔ |3〉1 transition frequency ω32 of the qubit system 1 and frequency of cavity field
ωc , while�μ = ω13−ωμ is the detuning between |1〉1 ↔ |3〉1 transition frequencyω13 of the qubit system
1 and frequency of pulse ωμ. Both detunings are set to be equal (i.e., �μ = �c) to establish resonance
Raman coupling between level |1〉1 and |2〉1 . Rabi frequency of pulse applied is
13 and g1 is the coupling
constant between the cavity mode and |2〉1 ↔ |3〉1 transition of qubit system 1. b System-cavity-pulse
resonance Raman coupling between level |0〉2 and |2〉2 for qubit system 2. Rabi frequency of pulse applied
is 
03 and g2 is the coupling constant between the cavity mode and |2〉2 ↔ |3〉2 transition of qubit system
2. c System-cavity off-resonant interaction for qubit system k = 2, 3, . . . , n. Cavity mode is off-resonant
with |2〉k ↔ |3〉k transition of qubit system k with detuning �c,k and coupling constant gk

|1〉1 |0〉c → eiθ [cos(θ) |1〉1 |0〉c − isin(θ) |2〉1 |1〉c], (6)

|2〉1 |1〉c → eiθ [cos(θ) |2〉1 |1〉c − isin(θ) |1〉1 |0〉c]. (7)

Here, θ = g21 t/�c and |0〉c (|1〉c) is the vacuum state (single-photon state) of the
cavity field. The state |0〉1 |0〉c remains unchanged under the Hamiltonian given by
Eq.(5). For pulse duration t1 = π�c/(2g21) (i.e., θ = π

2 ), we obtain the transformation
|1〉1 |0〉c → |2〉1 |1〉c and |2〉1 |1〉c → |1〉1 |0〉c for qubit system 1 and cavity field. We
denote this transformation as G1. In case of qubit system 2, for notation convenience
we denote ground state (first excited state) as level |1〉2 (|0〉2) as shown in Fig. 4b.
The cavity mode is coupled to |2〉2 ↔ |3〉2 transition, while microwave pulse is
coupled to |0〉2 ↔ |3〉2 transition of qubit system 2 as shown in Fig. 4b. In a similar
fashion, for pulse duration t2 = π�c/(2g22), we obtain the transformation |0〉2 |0〉c →
|2〉2 |1〉c and |2〉2 |1〉c → |0〉2 |0〉c for qubit system 2 and the cavity field. We denote
this transformation as G2. The states |1〉2 |0〉c and |1〉2 |1〉c of qubit system remain
unchanged under the transformation G2.

2.2 System-cavity off-resonant interaction

Next we, consider qubit system k, for which cavity field interacts off-resonantly with
|2〉k ↔ |3〉k transition (i.e., �c,k = ωc − ω32 >> gk) while remains decoupled from
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any transition between the other levels as shown in Fig. 4c. Here, �c,k is the detuning
between |2〉k ↔ |3〉k transition frequency ω32 of qubit system k and ωc is the cavity
field frequency while gk is the coupling constant between the resonator mode and
|2〉k ↔ |3〉k transition. The effective Hamiltonian for the system in the interaction
picture can be written as [33]

H1 = h̄g2k
�c,k

(|3〉k 〈3| − |2〉k 〈2|)a†a. (8)

In the presence of a single photon in the cavity, the evolution of the initial state |2〉 |1〉c
and |3〉 |1〉c is given by

|2〉k |1〉c → eig
2
k t/�c,k |2〉k |1〉c ,

|3〉k |1〉c → e−ig2k t/�c,k |3〉k |1〉c . (9)

It is clear that the phase shift of eig
2
k t/�c,k (e−ig2k t/�c,k ) is induced to the state

|2〉k |1〉c (|3〉 |k1〉c) for qubit system k. However, states |2〉k |0〉c and |3〉k |0〉c remain
unchanged.

2.3 System-pulse resonant interaction

Let us assume that we apply a microwave pulse which is resonant to | j〉 → |2〉
transition of each qubit system. Here, j = 1 for qubit system 1 and k, while j = 0 for
qubit system 2. Then, the evolution of state is given by [34]

| j〉 → cos(
 j2τ) | j〉 − ie−iϕsin(
 j2τ) |2〉 ,

|2〉 → cos(
 j2τ) |2〉 − ieiϕsin(
 j2τ) | j〉 , (10)

where
 j2 is the Rabi frequency between the two levels | j〉 and |2〉. Here τ represents
interaction time of qubit system with microwave pulse and ϕ is the associated phase.
For pulse duration τ = π/(2
 j2) and phase ϕ = π/2, transformation |2〉 (| j〉) →
| j〉 (− |2〉) is obtained which is denoted by R. For phase ϕ = −π/2, we obtain the
transformation |2〉 (| j〉) → −| j〉 (|2〉) denoted by R†. It may be mentioned that the
resonant interaction of microwave pulse with qubit system can be carried out in a very
short time by increasing the Rabi frequency of the pulse.

3 Implementation of multi-qubit gates

The goal of this section is to demonstrate how a three-qubit quantum phase gate and
an NTCNOT gate can be realized based on system dynamics described in Sect. 2.

3.1 Three-qubit controlled phase gate

We consider a qubit system 1, 2 and k (with k = 3) as shown in Fig. 4 for the
implementation of a three-qubit controlled phase gate. For each qubit system, two
lowest energy levels |0〉 and |1〉 represent logical state of each qubit while other higher
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energy levels |2〉 and |3〉 are utilized for gate realization. We assume that the cavity is
initially prepared in a vacuum state |0〉c . The three-qubit controlled phase gate can be
realized using the following steps:

Step (i): Apply transformation G1 to qubit system 1 for time t1. When qubit 1 is
initially in state |1〉1, a photon is emitted inside cavity. However, the state |0〉1 |0〉c
remains unchanged under the transformation G1.

Step (ii): Apply transformation R to qubit system 1 and R† to qubit system 2,
simultaneously. In this step, we set τ = π/(2
02) = π/(2
12) by adjusting the
intensities of the two microwave pulses.
Step (iii): After the above operations, level |2〉1 of qubit system 1 is unpopulated.
While the level |0〉2 of qubit system 2 transforms to level |2〉2 . Apply transforma-
tionG2 (for time duration t2) to qubit system 2which absorbs a single photon from
the cavity. However, if qubit system 2 is in state |1〉, the single photon remains
there.
Step (iv): Apply transformation R† (for time duration τ ) to qubit system k = 3.
After this operation, when cavity is in a single-photon state, level |2〉 of both qubit
system 1 and 2 are unpopulated. Under this condition, cavity field interacts off-
resonantly to |2〉3 → |3〉3 transition of qubit system 3. It is clear from Eq. (9) that
for t3 = (π�c,3)/g23, state |2〉3 |1〉c of qubit system 3 changes to − |2〉3 |1〉c. In
Fig. 5, Gπ represents this transformation. However, states |0〉3 |0〉c , |0〉3 |1〉c and
|2〉3 |0〉c of qubit system 3 remain unchanged. Finally, apply transformation R (for
time duration τ ) to qubit system 3.
Step (v): Apply transformation G2 (for time duration t2) to qubit system 2.
Step (vi): Apply transformation R† to qubit system 1 and R to qubit system 2,
simultaneously, for time duration τ .
Step (vii): Apply transformation G1 to qubit system 1 for time t1. As a result,
qubit 1 is transformed back to state |1〉1 while the cavity field returns to its original
vacuum state.

All these operations are schematically presented in Fig. 5. The states of the whole
system after these operations are summarized as

|100〉 |0〉c
|101〉 |0〉c
|110〉 |0〉c
|111〉 |0〉c

1→
|200〉 |1〉c
|201〉 |1〉c
|210〉 |1〉c
|211〉 |1〉c

2→
|120〉 |1〉c
|121〉 |1〉c
|110〉 |1〉c
|111〉 |1〉c

3→

|100〉 |0〉c
|101〉 |0〉c
|110〉 |1〉c
|111〉 |1〉c

4→
|100〉 |0〉c
|101〉 |0〉c
|110〉 |1〉c
- |111〉 |1〉c

5→
|120〉 |1〉c
|121〉 |1〉c
|110〉 |1〉c
- |111〉 |1〉c

6→
|200〉 |1〉c
|201〉 |1〉c
|210〉 |1〉c
- |211〉 |1〉c

7→
|100〉 |1〉c
|101〉 |1〉c
|110〉 |1〉c
- |111〉 |1〉c .

(11)
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Fig. 5 Schematic diagram for the implementation of three-qubit controlled phase gate. Here G1 represents
the system-cavity-pulse resonance Raman coupling between level |1〉1 and |2〉1 for qubit system 1 while
G2 represents system-cavity-pulse resonance Raman coupling between level |0〉2 and |2〉2 for qubit sys-
tem 2.Gπ is system-cavity off-resonant interaction where as R and R† represents system-pulse resonant
interaction

Here, state |abc〉 is the abbreviation for the states |a〉1 , |b〉2 and |c〉k for qubit
(1, 2, and 3) with a, b, c ∈ [0, 1, 2]. On the other hand, states |000〉 |0〉c , |001〉 |0〉c ,

|010〉 |0〉c and |011〉 |0〉c remain unchanged. It is due to the fact that the state |0〉1 of the
qubit system 1 is not effected by the application of transformation G1 i.e., no photon
is emitted inside cavity when qubit 1 is in state |0〉1 . Hence, it is clear from Eq. (11)
that a three-qubit controlled phase gate can be achieved with three qubits (i.e., control
qubit 1, 2, and target qubit 3). Present proposal provides a simple way to realize the
Toffoli gate shown in Fig. 1b. It is well known that at least six two-qubit controlled
NOT gates and ten single-qubit gates (i.e., two Hadamard, one phase , and seven π/8
gates) are required to construct a Toffoli gate by conventional gates decomposition
methods [35,36]. The two-qubit CNOT gate is equivalent to two Hadamard gate and
a single two-qubit phase gate. If we assume that the realization of single-qubit gate
and two-qubit phase gate requires only one step operation, then by using conventional
gate decomposition method, at least 28 steps will be required to realize Toffoli gate.
However, present proposal requires only nine steps i.e., seven steps for three-qubit
phase gate plus two steps operations for two Hadamard gate which is quite interesting.

Our scheme can easily be generalized to n-qubit controlled phase gate withmultiple
control qubits. For this purpose, we need to apply transformation (1)G1 and R to qubit
1. (2) R† and G2 to qubit system 2, 3, . . . , n − 1. (3) R†, Gπ , and R to last qubit.
(4) G2 and R to qubit system 2, 3, . . . , n − 1. (5) R† and G1 to qubit 1. Hence, n-
qubit controlled phase gate can be achieved by a sequence of operations which are
summarized as
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Fig. 6 Plot of the gate implementation steps against the number of qubits

Un
η = G1 ⊗ R† ⊗

i=2∏

n−1

[
i
R ⊗ i

G2

]
⊗(R ⊗ Gπ

⊗R†) ⊗
n−1∏

i=2

[
i
G2 ⊗

i

R†

]
⊗R ⊗ G1, (12)

where
∏i=2

n−1

i
G = 2

G⊗ 3
G⊗ . . .⊗n−1

G while
∏n−1

i=2

i
G = n−1

G ⊗ . . .⊗ 3
G⊗ 2

G. Realization
of n-qubit CNOT gate with multiple control qubit can be implemented through H ⊗
Un

η ⊗ H transformations.
The total number of steps, required for n-qubit quantum phase gate with multiple

control qubits and n-qubit CNOT gate are 4n−5 and 4n−3, respectively. According to
conventional gate decomposition method, 2n−5 Toffoli gates are required for n-qubit
CNOT gate [35,36]. As mentioned above, single Toffoli gate required at least 28 steps
of operations. Thus, total number of steps for n-qubit CNOT gate are (2n−5)×28 =
56n − 140, and for n-qubit controlled phase gate are 56n − 142. In order to make a
quantitative comparison of the two approaches, we show the plot of the number of
steps for the gate operation as a function of number of qubits n in Fig. 6. It can be
seen that the number of steps for gate decomposition method increases rapidly with n
as compared to multi-qubit gate. The reduction in the number of steps is 52n − 137.
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It is clear that , our scheme reduces the number of steps (complexity) linearly as
compared to conventional gate decomposition method.

3.2 NTCNOT gate

In order to implement NTCNOT gate, we consider qubit system 1 (as shown in Fig.
4a) initially prepared in state (|0〉1 + |1〉1) /

√
2. In this case, we consider n − 1 qubit

system of type k as shown in Fig. 4c with k = 2, 3, . . . n. Each qubit system k is
initially prepared in state |0〉k . In the new rotated basis for qubit system k, the state of
the whole system can be written as

|ψ〉 = 1

2
(|0〉1 + |1〉1) ⊗

n∏

k=2

(|+〉k + |−〉k), (13)

where, |±〉k = 1/
√
2(|0〉k ± |1〉k). The operations required for realizing NTCNOT

gate are described as follow:

Step (i): Apply transformation G1 to qubit system 1 for time t1. Namely, when
qubit 1 is initially in state |1〉1, a photon is emitted in cavity. However, the state
|0〉1 |0〉c remain unchanged under transformation G1.

Step (ii): Apply transformation R to qubit system 1 and R† to each qubit system
k for time duration τ , simultaneously. As a result transformation |+〉k (|−〉k) →
|a〉k (|b〉k) is obtained for each qubit system k. Here, |a〉k = 1/

√
2(|0〉k + |2〉k)

and |b〉k = 1/
√
2(|0〉k − |2〉k).

Step (iii): After above operations, when cavity is in single photon state, level
|2〉1 and level |3〉1 of qubit system 1 is unpopulated. Under this condition, cavity
field interacts off-resonantly to |2〉k → |3〉k transition of each qubit system k. It
is clear from Eq. (9) that for tk = (π�c,k)/g2k , the state |2〉k |1〉c of each qubit
system k changes to − |2〉k |1〉c. In the presence of single photon in cavity, the
state |a〉k |1〉c of each qubit system k changes to |b〉k |1〉c while |b〉k |1〉c of each
qubit system k changes to |a〉k |1〉c. However, states |a〉2 |0〉c and |b〉2 |0〉c remain
unchanged.
Step (iv): Apply transformation R† to qubit system 1 and R to each qubit system
k for time duration τ , simultaneously.
Step (v): Apply transformation G1 to qubit system 1 for time t1. As a result, qubit
1 is transformed back to state |1〉1 while cavity field returns to its original vacuum
state.

After the above operations, one can easily see that controlled NOT gate of one qubit
simultaneously controlling n qubits described by Eqs. (2) and (3) is achieved with n
qubit system (i.e., control qubit 1 and target qubit systems k = 2, 3, . . . n ).

In order to get an insight, here we consider an example of three-qubit case. In this
case, states of the whole system after the above operations can be summarized as
follows:
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|1 + +〉 |0〉c
|1 + −〉 |0〉c
|1 − +〉 |0〉c
|1 − −〉 |0〉c

1→
|2 + +〉 |1〉c
|2 + −〉 |1〉c
|2 − +〉 |1〉c
|2 − −〉 |1〉c

2→
|1aa〉 |1〉c
|1ab〉 |1〉c
|1ba〉 |1〉c
|1bb〉 |1〉c

3→

|1bb〉 |1〉c
|1ba〉 |1〉c
|1ab〉 |1〉c
|1aa〉 |1〉c

4→
|2 − −〉 |1〉c
|2 − +〉 |1〉c
|2 + −〉 |1〉c
|2 + +〉 |1〉c

5→
|1 − −〉 |0〉c
|1 − +〉 |0〉c
|1 + −〉 |0〉c
|1 + +〉 |0〉c .

(14)

Hence, it can be concluded from Eq. (14) that three-qubit controlled NOT gate of
one qubit simultaneously controlling 2 qubits with k = 2, 3 is achieved with 3 qubit
system (i.e., control qubit 1 and two target qubit systems 2 and 3). It is clear from
the above steps of operations that Hadamard gate is neither required before step 1 nor
after step 6. For k = 2 in Eqs. (2) and (3), our scheme reduces to two-qubit controlled
NOT gate which can be used to implement two-qubit Deutsch–Jozsa algorithm as
described below. It may be pointed out that as compared to earlier proposal Ref. [24]
which requires 8 steps of operations to implement NTCNOT gate, present proposal
accomplishes the task in just five steps.

3.2.1 Deutsch–Jozsa algorithm

Deutsch–Jozsa algorithm is designed to distinguish between the constant and balanced
functions on 2n inputs [37]. For constant function, the function f (x) = constant
for all 2n inputs. For the balanced function, the function f (x) = 0 for half of all
possible inputs, and f (x) = 1 for other half. A classical algorithm needs 2n/2 + 1
queries to determine whether function is constant or balanced since there may be 2n/2
zero’s before finally a one appears, showing that function is balanced. In contrast, the
Deutsch–Jozsa algorithm requires only one query.

Here, we discuss the scheme to implement two-qubit Deutsch-Jozsa algorithm
using four-level qubit system shown in Fig. 3 coupled to a cavity or a resonator. The
qubit system 1 shown in Fig. 4a represents query qubit while qubit system k = 2
shown in Fig. 4c represents auxiliary qubit. We prepare the two-qubit system in the
state |ψ〉 = 1/

√
2(|0〉1 + |1〉1) ⊗ |1〉2 which can be written in rotating basis for qubit

system k = 2 such that

|ψ〉 = 1

2
(|0〉1 + |1〉1) ⊗ (|+〉2 − |−〉2). (15)

The function f (x) is characterized by the unitary mapping transformation U f , and
|x, y〉 → |x, y ⊕ f (x)〉, where ⊕ represents addition modulo 2. After unitary trans-
formation U f , initial state of the system changes to

1

2

[
(−1) f (0) |0〉1 + (−1) f (1) |1〉1

]
⊗ (|+〉2 − |−〉2). (16)
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There are four possible transformations: (1)U f,1 corresponding to f (0) = f (1) = 0;
(2)U f,2 corresponding to f (0) = f (1) = 1; (3)U f,3 corresponding to f (0) = 0 and
f (1) = 1; and (4) U f,4 corresponding to f (0) = 1 and f (1) = 0. Then Hadamard
gate is applied on query qubit. As a result, state of query qubit becomes | f (0) ⊕ f (1)〉.
If f (x) is constant then, the state of query qubit becomes |0〉1. On other hand, if f (x)
is balanced, the state of the query qubit becomes |1〉1. Therefore, a measurement on
query qubit provides the desired information whether the function f (x) is constant or
balanced. The U f,n operations are applied to the state |ψ〉 as follow:

U f,1 operation: This is an identity operation. Both qubit system are kept far off
with the cavity field and microwave pulse. As a result, system remains in the state
|ψ〉.
U f,2 operation: We first apply two-qubit controlled NOT gate as described earlier.
Next, we apply single-qubit rotations |0〉 → |1〉 and |1〉 → − |0〉 on qubit system
1. Then we repeat two-qubit controlled NOT operation and perform the single-
qubit rotations |0〉 → − |1〉 and |1〉 → |0〉 on qubit system 1. Finally, we obtain

|ψ〉2 = 1

2
(− |0〉1 − |1〉1) ⊗ (|+〉2 − |−〉2) . (17)

U f,3 operation: Next, we apply two-qubit controlled NOT operation, as a result,
state of the system evolves to

|ψ〉3 = 1

2
(|0〉1 − |1〉1) ⊗ (|+〉2 − |−〉2) . (18)

U f,4 operation: We then apply single-qubit rotations |0〉 → |1〉 and |1〉 → − |0〉
on qubit system 1. Then we perform controlled NOT operation. Finally, we again
apply single-qubit rotations |0〉 → − |1〉 and |1〉 → |0〉 on qubit system 1. The
resultant state becomes

|ψ〉4 = 1

2
(− |0〉1 + |1〉1) ⊗ (|+〉2 − |−〉2) . (19)

In this way, we obtain the unitary mapping transformation U f . After Hadamard
transformation on qubit system 1, if the state of qubit system 1 becomes |0〉1, then the
function f (x) is constant. On other hand, if the state of qubit system 1 becomes |1〉1,
then the function f (x) is balanced.

4 Possible experimental implementation

In this section, we give a detailed discussion on experimental possibilities of three-
qubit controlled phase gate andNTCNOTgate. The total operation time for three-qubit
controlled phase gate is given by

τ3cp = 2t1 + 2t2 + t3 + 4τ
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= 2

(
π�c

2g21

)
+ 2

(
π�c

2g22

)
+

(
π�c,3

g23

)
+ 4

(
π

2
12

)
. (20)

Similarly, the total operation time for NTCNOT gate is given by

τntcnot = 2t1 + 2τ + tk = 2

(
π�c

2g21

)
+ 2

(
π

2
12

)
+

(
π�c,k

g2k

)
. (21)

The operation time τcp and τntcnot should be shorter than (1) energy relaxation
time γ −1

2 of level |2〉 (it may be mentioned that level |3〉 is unpopulated during the
entire operations), and (2) the life time of the cavitymode κ−1 = Q/2πνc, where, Q is
quality factor of the cavity and νc is the resonator frequency. In principle, these require-
ments can be achieved using the following: (1) reducing operation time by increasing
the coupling constant and Rabi frequencies, (2) increasing κ−1 by employing high-Q
cavity or resonator, and (3) choosing qubit system (e.g., atoms) or designing qubits
(e.g., superconducting devices) such that the energy relaxation time γ −1

2 of level |2〉
is sufficiently long.

Here, we consider without loss of generality g1 ∼ g2 ∼ gk ∼ g. On choosing
�c ∼ �c,3 ∼ �c,k ∼ 10g, and 
12 ∼ 10g, the total operation time required for
the gates implementation would be τ3cp ∼ 30.2π/g and τntcnot ∼ 20π/g. Here,
we assume g/π ∼ 440MHz, which could be achieved for superconducting qubits
coupled to a one-dimensional standing-wave coplanar waveguide (CPW) transmis-
sion resonator [38]. As a result, we have τ3cp ∼ 0.068µsand τntcnot ∼ 0.045µs,
which is much shorter than γ −1

2 ∼ 1µs, and κ−1
∼ 5.3µs for resonator with fre-

quency νc ∼ 3GHz and Q ∼ 105 [8]. It may be mentioned that superconducting
CPW resonator with a quality factor Q ∼ 106 has been experimentally demonstrated
[39].

The schemes proposed here are quite general which can be implemented using
different physical systems as pointed out earlier. However, here we consider a spe-
cific example of superconducting quantum interference devices (SQUIDs) as a poten-
tial qubit system for the implementation of our scheme. For SQUID, the desired
level structure can easily be obtained by changing external control parameters e.g.,
magnetic flux φx [31]. For example, consider rf SQUID shown in Fig. 7 with junc-
tion capacitance C = 90 f F , loop inductance L = 100 pH, junction’s damping
resistance R ∼ 1G
, potential shape parameter βL = 1.12, and external flux
φx = 0.4995φ0. Here, φ0 = h/2e is flux quantum. It may be mentioned that
SQUIDs with these parameters are available currently [31]. With these choices, decay
time of level |2〉 would be γ −1

2 ∼ 100µs, the |2〉 → |3〉 coupling matrix ele-
ment is φ32 ∼ 7.8 × 10−2, and |2〉 → |3〉 transition frequency is ν32 ∼ 4.9GHz.
We choose cavity mode frequency νc = ωc/(2π) = 3.6GHz, Q ∼ 105, and
κ−1

∼ 4.42µs. The SQUID-cavity coupling constant for |2〉 → |3〉 transition is
given by g = (1/L)

√
ωc/2µ0h̄φ32φ0

∫
S Bc(r).dS. Here, S is the surface bounded by

the SQUID ring and Bc(r) is the magnetic component of cavity mode in the SQUID
loop. For standing- wave cavity, Bc(z) = µ0

√
2/V cos kz, where k, V , and z are

wave number, cavity volume, and cavity axis, respectively. For g ∼ 4.3 × 108s−1
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| 3

| 2

| 1
| 0

Fig. 7 An rf SQUID with first four energy levels. Magnetic dipole coupling between two ground levels
|0〉 and |1〉 is much smaller than that between any other levels due to potential barrier between two wells.
Transition frequencies between the excited levels and ground levels are ν30 ∼ 24.4 GHz, ν31 ∼ 21.4 GHz,
ν12 ∼ 16.5 GHz, ν20 ∼ 19.5 GHz, which are much larger than transition frequency ν32 ∼ 4.9 GHz

the time required for (1) three-qubit phase gate would be τ3cp ∼ 0.219µs and
(2) for NTCNOT gate would be τntcnot ∼ 0.146µs. These implementation times
are much shorter than γ −1

2 and κ−1. Moreover, we have an additional advantage
in case of flux qubit system that is tunneling between the levels |1〉 and |0〉 is
not needed during the gates operation. Therefore, potential barrier between lev-
els |1〉 and |0〉 can be adjusted a priory such that decay from level |1〉 becomes
negligibly small [27–29]. As a result, each qubit can have much longer storage
time.

Although, in our scheme, both gates can be carried out faster than γ −1
2 and κ−1,

we should study the imperfection induced due to cavity decay. In ideal case, emission
and absorption of a single photon take place with unit probability due to transforma-
tion G1 and G2. As a result occupation probability of levels |1〉 , |2〉 of qubit 1, and
levels |0〉 , |2〉 of qubit 2 should be exactly one. However, these occupation probabil-
ities are likely to decay exponentially due to cavity decay. Assuming that no photon
actually leaks out during implementation, corresponding conditional Hamiltonian can
be written as Hc = HI − iκa†a [15]. Suppose each qubit is initially prepared in
generic state cos ν |0〉 + sin ν |1〉 for three-qubit controlled phase gate, and each tar-
get qubit is initially prepared in state cos ν |+〉 + sin ν |−〉 for NTCNOT gate. In
ideal case, when κ = 0, state of system after steps of operations (as described in
Sec. III) becomes |ψid(τ )〉 which is given by Eqs. 11 and 14. However, when cav-
ity decay is incorporated under the assumption of weak cavity decay, time evolution
of the system becomes rather complex which is not presented here. Average fidelity
over all possible initial states can be computed using Fave = 1

2

∫ π

0 F sin νdν, where
F = |〈ψid(τ )

∣∣ψdecay(τ )
〉 |2. Next, we show the plot of average fidelity for three-qubit

phase gate (red dots) and NTCNOT gate (black dots) as a function of κ/g in Fig. 8.
It can be seen that fidelity decreases as cavity decay rate increase. For the choice of
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Fig. 8 Average fidelity of multi-qubit quantum gates as a function of κ/g. Red (black) dots indicates the
fidelity of three qubit controlled phase gate (three-qubit NTCNOT gate) (Color figure online)

κ/g = 0.000145 [38] we have Fave ≈ 99%. It is clear from Fig. 8 that both gates
are of high fidelity as long as the cavity decay is small enough. However performance
of these gates in the light of further experimental errors like effect of γ −1

2 , delay in
pulse durations along with cavity decay requires a rather lengthy and complex analysis
which should be further investigated.

Here, we discuss some other issues related to gate operations. During the operation
of step (ii) or (iv) or (vi) for three-qubit phase gate and of step (ii) or (iv) for NTCNOT
gate, a single photon is populated in the cavity mode while state |2〉 of each qubit
system is occupied. The unwanted system-cavity-pulse resonance Raman interaction
and system-cavity off-resonant interaction between resonator mode and |2〉 → |3〉
transition of qubit system induces an accumulated phase shift to state |2〉 of each qubit
system, which can effect the desire gate performance. However, when τ << t1, t2, tk
this unwanted phase shift is sufficiently small and can be neglected. Note that for

12 = 
02, we have τ = π/ (2
12), t1 = π�c/(2g21), t2 = π�c/(2g22), and
tk = π�c,k/g2k . Thus condition turns into 
12 >> 2g21/�c, 2g22/�c, g2k/�c,k

which can be achieved by increasing the Rabi frequency of pulse (i.e, by increas-
ing the intensity of resonant pulse). For �c,k = 10gk , the occupation probability
of level |3〉 for target qubits is approximately 0.04 which reduces the gate error
[31].

5 Conclusion

We have proposed a scheme for realizing a three-qubit controlled phase gate and an
NTCNOT gate with three types of interactions. These interactions are system-cavity-
pulse resonance Raman coupling, system-cavity off-resonant interaction, and system-
pulse resonant interaction. The proposal can be applied to various kind of physical
system with four-level configuration. For different systems, frequency regimes of
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cavity mode could be different, e.g., optical cavities in case of atoms and microwave
cavities in case of superconducting qubits.

We have shown that our proposal has following advantages: (1) Decoherence due
to spontaneous decay of level |3〉 is suppressed because the excited level |3〉 is unpop-
ulated during the gates operation. (2) The adjustment of level spacing of the qubit
system during the gate operations is not needed which may cause decoherence. (3)
Finite second-order detuning is not requiredwhich improves the gate speed. (4) For the
quantum gate with multiple control qubit, the number of steps (complexity) reduces
linearly for number n of the qubit, as compared to conventional gate decomposition
method. (5) The operation time for the realization of NTCNOT gate is independent of
the number of qubits.
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