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Abstract A quantum realization of the generalized Arnold transform is designed. A
novel quantum image encryption algorithm based on generalized Arnold transform
and double random-phase encoding is proposed. The pixels are scrambled by the
generalized Arnold transform, and the gray-level information of images is encoded
by the double random-phase operations. The keys of the encryption algorithm include
the independent parameters of coefficients matrix, iterative times and classical binary
sequences, and thus, the key space is extremely large. Numerical simulations and
theoretical analyses demonstrate that the proposed algorithm with good feasibility
and effectiveness has lower computational complexity than its classical counterpart.

Keywords Generalized Arnold transform · Double random-phase encoding ·
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1 Introduction

With the rapid development of multimedia technology, more and more important infor-
mation is embodied in images and videos and the security of private images becomes
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a serious issue. For private images in conventional computers, there have been many
good image encryption algorithms [1–20]. Double random-phase encoding is a clas-
sical method of optical encryption [2]. The phase encoding has been developed and
employed in some encryption schemes [3–8]. An image encryption method based
on compressive sensing and double random-phase encoding was proposed, and the
data volume for encryption was lowered due to the dimensional decrease properties
of compressive sensing [7]. Zhang et al. proposed an image encryption algorithm by
combining fractional Fourier transform with pixel scrambling operation based on dou-
ble random-phase encoding [8]. However, some studies have shown that the double
random-phase encoding scheme is vulnerable to various attacks including known-
plaintext attack [9,10], chosen-ciphertext attack [11] and chosen-plaintext attack [12].
Image scrambling, as a common way to encrypt image data, is to hide image con-
tent from illegal user. Arnold transform is an effective image pixel scrambling tool
called as the “cat’s mapping” [13]. Arnold transform can scramble the matrix-pixel
sequence by encoding a single parameter and reduce the length of the key. A novel
image scrambling and watermarking scheme based on the orbits of Arnold transform
were proposed, where Arnold transform disordered the pixel positions to obtain a
totally visual difference from the original images [14]. An efficient image encryption
algorithm with the generalized Arnold map was proposed, which can resist statistical
analyses, chosen-plaintext attacks and known-plaintext attacks [15]. Arnold transform
is applied widely in digital image scramble. To enhance security of the encryption algo-
rithm, some encryption schemes have been designed by combining Arnold transform
with other transforms [16–20]. Liu et al. [16] designed a double image encryption
algorithm based on Arnold transform and discrete fractional angular transform. A
novel color image encryption method by combining discrete fractional random trans-
form with Arnold transform in the intensity–hue–saturation color space was proposed,
where Arnold transform yields good scrambling results and its periodicity ensures the
implementation of decryption is accurate and easy [20].

Quantum computation has been applied in many fields of information sciences
[21]. The rapid development of quantum computation and quantum computer attracts
people to investigate quantum data security. The quantum images as an important
part of quantum information will make the applications of quantum computers more
widely and comprehensively in the future. A series of methods to represent quantum
images were proposed [22–27]. Moreover, a novel enhanced quantum representation
(NEQR) for digital images was proposed, which improves the flexible representation
of quantum images (FRQI) [28]. Consequently, some new quantum algorithms were
developed to secure quantum images [29–37]. For example, Yang et al. [36] proposed
a novel gray image encryption scheme based on quantum Fourier transform (QFT) and
double random-phase encoding technique, which is heuristic to introduce more optical
information processing techniques into quantum scenarios. Jiang et al. [38] proposed
the Arnold and Fibonacci scrambling quantum circuits based on FRQI, which does
not take advantage of the particularities of “mod 2n ,” multiply by 2 and subtraction
in binary arithmetic. Later, a simplified scheme was presented in [39] to cut down the
network complexity apparently. However, there are no quantum versions of some basic
classical image transforms, such as generalized Arnold transform, fractional Fourier
transform, fractional Mellin transform and so on.
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We will design a quantum version of the generalized Arnold transform and will pro-
pose a quantum image encryption algorithm by combining generalized Arnold trans-
form with double random-phase encoding technology. The algorithm is composed
of two stages, i.e., diffusion and confusion. In the diffusion stage, the random-phase
operations are controlled by the classical binary sequence, which can change different
angles of the color information for different positions. However, in Yang et al’s scheme
[36], the angle of every positions in quantum image is changed with a same angle with
the phase operation, which cannot guarantee the changes for different positions. In the
confusion stage, the generalized Arnold transform is applied to shuffle the positions of
image pixels. It changes not only the gray values of pixels but also the locations of pix-
els. Unlike Yang et al’s scheme, the proposed quantum image encryption algorithm is
expected with good diffusion and confusion performances. Moreover, the generalized
Arnold transform is introduced into the encryption algorithm to increase the number
of keys and then enhances the security. Numerical simulations and theoretical analysis
are presented to illustrate the feasibility and effectiveness of the proposed algorithm.

The rest of this paper is organized as follows. In Sect. 2, the flexible representation
for quantum images and the double random- phase encoding are reviewed. The quan-
tum realization of the generalized Arnold image scrambling is designed in Sect. 3.
The proposed quantum image encryption and decryption algorithm is given in Sect. 4.
Section 5 is devoted to classical simulation analysis and performance comparison.
Finally, a conclusion is drawn in Sect. 6.

2 Flexible representation for quantum images and double random-phase
encoding technique

2.1 Flexible representation for quantum images

Classical image is represented by a matrix with the same size of the image, i.e., the
number of pixels. In a classical gray image, each pixel consists of the grayscale value
and the position information. Inspired by the pixel representation for images in classical
computers, a flexible representation for quantum images on quantum computers was
proposed [23]. For a quantum image, the color information and the corresponding
position information of every pixels are stored into the corresponding quantum states,
respectively. According to the flexible representation for quantum images, suppose M
is a classical image of size 2n × 2n , |M〉 is the storage of the whole quantum states
for a grayscale image, the quantum image representation can be expressed as:

|M〉 = 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g (y, x)〉 |yx〉

|g (y, x)〉 = cos θi |0〉 + sin θi |1〉 , θi ∈
[
0,
π

2

]
, i = yx = 0, 1, . . . , 22n − 1 (1)

where θ=
(
θ0, θ1, . . . , θ22n−1

)
is the vector of angles encoding colors, |g (y, x)〉

encodes the color information of quantum image, |i〉 = |yx〉 = |y〉 |x〉
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= |yn−1 yn−2 . . . y0〉 |xn−1xn−2 . . . x0〉 encodes the corresponding positions of the
quantum image, |yn−1 yn−2 . . . y0〉 encodes the first n-qubit along the vertical location
information while |xn−1xn−2 . . . x0〉 encodes the second n-qubit along the horizontal
location information and n is the number of quantum bits required for encoding.

2.2 Double random-phase encoding technique

The double random-phase encoding technique was proposed by Refregier and Javidi
in 1995 [2]. The technique can encrypt an original image by using two statistically
independent random-phase masks in the input and Fourier planes, respectively. If two
random-phase masks are used to encrypt the image in the input and Fourier planes,
respectively, the encrypted image would be generalized to a stationary white noise of
statistical properties with time shift invariant. If only the random-phase mask is used
to encrypt the original image in the input plane, the encrypted image would be a non-
stationary white noise of statistical properties changing over time. If one only uses the
random-phase mask to encrypt image in the Fourier plane, the encrypted image can
easily be deciphered.

Assume f (x, y) is the plaintext image, while g (x, y) is the cipher one. Let
(x, y) and (μ, v) denote the spatial plane and the Fourier plane coordinates, respec-
tively, φ (x, y) and ϕ (u, v) denote two white noise sequences in input phase and
Fourier phase, which are uniformly distributed from 0 to 1. The random-phase masks
exp [ j2πφ (x, y)] and exp [ j2πϕ (u, v)] as the keys are generated by two white noise
sequences. The encoding and decoding procedures are shown as follows.

g (x, y) = FFT−1 {FFT { f (x, y) exp [ j2πφ (x, y)]} exp [ j2πϕ (u, v)]} (2)

f (x, y) = FFT−1 {FFT {g (x, y)} exp [− j2πϕ (u, v)]} exp [− j2πφ (x, y)] (3)

where FFT and FFT−1 represent the Fourier transform and inverse Fourier transform,
respectively.

3 Realization of generalized Arnold transform

3.1 Quantum representation of generalized Arnold transform

Arnold transform was proposed by Arnold [13] in the research of ergodic theory, it
was also called cat map. Dyson et al. [40] quoted the transform as an image scrambling
method in 1992. The two-dimensional generalized Arnold transform in the form of
matrix is defined as

[
x ′
y′

]
=

[
1 t
m tm + 1

] [
x
y

]
(mod N ) = C

[
x
y

]
(mod N ) (4)
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The inverse transformation is:

[
x
y

]
=

[
1 t
m tm + 1

]−1 [
x ′
y′

]
(mod N ) =

[
tm + 1 −t
−m 1

] [
x ′
y′

]
(mod N ) (5)

where x, y, x ′, y′ ∈ {0, 1, . . . , N − 1}, t and m are positive integers, x and y are the
pixel coordinates of the original image, N is the size of the square image, x ′ and y′
are the pixel coordinates of the generalized Arnold scrambled image. The generalized
Arnold transform in the form of coordinates can be expressed as

{
x ′ = (x + t y)mod N
y′ = (mx + (tm + 1) y)mod N

(6)

The generalized Arnold transform has the features of chaotic mapping, which changes
the positions of two pixels. The generalized Arnold transform focuses on manipulating
the information about the position of each pixel in the image. Corresponding to the
classical image, the quantum representation of the generalized Arnold transform can
be described as { ∣∣x ′〉 = |(x + t y)mod 2n〉∣∣y′〉 = |(mx + (tm + 1) y)mod 2n〉 (7)

3.2 Quantum circuit architecture of generalized Arnold transform

An explicit construction of several elementary quantum networks, i.e., plain adder,
adder modulo N , controlled multiplier modulo N and exponentiation modulo N are
designed in [41]. The plain adder is a quantum network that can calculate the sum
of two numbers. Inputs are encoded in a binary form in the computational basis of
selected qubits usually called a quantum register. The addition of two quantum reg-
isters |a〉 and |b〉 can be written as |a, b〉 → |a, a + b〉. The plain adder network is
illustrated in Fig. 1a. The adder modulo N is a quantum network that can calculate
the modular sum of two numbers. The modular addition of two quantum registers
|a〉 and |b〉 can be expressed as |a, b〉 → |a, (a + b)mod N 〉. The adder modulo N
network is demonstrated in Fig. 1b. However, the plain adder network and the adder
modulo N network require the inputs are two n qubits binary numbers. A quantum
circuit ADDER-MOD2n defined in [39] can accomplish (a + b)mod 2n simply by
ignoring the carry bit from ADDER module. The ADDER-MOD2n network is shown
in Fig. 1c. In the generalized quantum Arnold transform, the states

∣∣x ′〉 and
∣∣y′〉 are

independent of each other, which can be realized by connecting several quantum cir-
cuit ADDER-MOD2n . Hence, the quantum ADDER-MOD2n network is fundamental
to realize the generalized Arnold transform in quantum computer.

Assuming that x and y are both n qubits binary numbers, x = xn−1xn−2 . . . x0,
y = yn−1 yn−2 . . . y0, xi , yi ∈ {0, 1}, i = n − 1, n − 2, . . . , 0. Accord-
ing to the nature of the modulo, (x + y)mod 2n = (xmod 2n + ymod 2n)mod
2n = (x + ymod 2n)mod 2n , so (x + 2y)mod 2n = (x + 2ymod 2n)mod 2n . The
realization of

∣∣x ′〉 is divided into t steps, as shown in Fig. 2. The ADDER-MOD2n

network is used to obtain (t y + x)mod 2n from the first step to the t-th step.
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Fig. 1 a Plain adder network, b adder modulo N network, c ADDER-MOD2n network

|y, x〉 → ∣∣y, (y + x)mod 2n 〉 → · · · →∣∣y, ((t − 1) y + x)mod 2n 〉 → ∣∣y, (t y + x)mod 2n 〉 (8)

The input is the position information |x〉 and |y〉 of original image, and the output is
the position information

∣∣x ′〉 of Arnold scrambled image.
The realization of

∣∣y′〉 is divided into tm + m + 1 steps, as shown in Fig. 3. From
the first step to the (m − 1)-th step, the ADDER-MOD2n network is used to obtain
mxmod 2n , in the m-th step, x is replaced by y, from the (m + 1)-th step to the last
step, the ADDER-MOD2n network is employed to obtain (mx + (tm + 1) y)mod 2n .

|x, x〉 → ∣∣x, 2xmod 2n 〉 → · · · → ∣∣x,mxmod 2n 〉 → ∣∣y,mxmod 2n 〉

→ ∣∣y, (y + mx)mod 2n 〉 → · · · → ∣∣y, (tmy + mx)mod 2n 〉

→ ∣∣y, ((tm + 1) y + mx)mod 2n 〉 (9)

Thus, the
∣∣y′〉 network outputs the position information

∣∣y′〉 of Arnold scrambled image
with inputs |x〉 and |y〉.

From Eq. (5), it is clear that the position information |x〉 and |y〉 is regained only
depending on

∣∣x ′〉 and
∣∣y′〉 of the scrambled image. Hence, the inverse scrambling

circuits are necessary. The inverse scrambling networks are designed to regain |x〉 and
|y〉. A theorem in [39] was related as follows.

(x − y)mod 2n = (x + (ȳ + 1))mod 2n (10)
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Fig. 3
∣∣y′〉 network

where ȳ = ȳn−1 ȳn−2 . . . ȳ0, ȳi = 1 − yi , i = n − 1, n − 2, . . . , 0. According to

Eq. (10), we obtain
(
(tm + 1) x ′ − t y′) mod 2n =

(
(tm + 1) x ′ + t y′ + t

)
mod 2n .

So the realization of |x〉 is divided into t + tm + 3 steps, as shown in Fig. 4. The
ADDER-MOD2n network is used to obtain

(
(tm + 1) x ′) mod 2n from the first step

to the tm-th step, in the (tm + 1)-th step, x ′ is replaced by y′, the ADDER-MOD2n

network is used to retrieve
(
(tm + 1) x ′ + t y′

)
mod 2n from the (tm + 2)-th step to

the (tm + t + 1)-th step, in the (tm + t + 2)-th step, x ′ is replaced by y′, and in the
last step, an ADDER-MOD2n network is involved.

∣∣x ′, x ′〉 → · · · → ∣∣x ′, (tm + 1) x ′mod 2n 〉 →
∣∣∣y′, (tm + 1) x ′mod 2n

〉

→ · · · →
∣∣∣y′,

(
(tm + 1) x ′ + t y′

)
mod 2n

〉

→
∣∣∣t,

(
(tm + 1) x ′ + t y′

)
mod 2n

〉

→
∣∣∣t,

(
(tm + 1) x ′ + t y′ + t

)
mod 2n

〉
(11)

Due to
(−mx ′ + y′) mod 2n =

(
mx ′ + m + y

)
mod 2n , the realization of |y〉 is

divided into m +2 steps, as depicted in Fig. 5. From the first step to the (m −1)-th step,
the ADDER-MOD2n network is exploited to obtain mx ′mod 2n , in the m-th step, x ′ is

replaced with y′, the ADDER-MOD2n operation is used to obtain
(

mx ′ + y′
)

mod 2n

in the (m + 1)-th step, in the (m + 2)-th step, y′ is replaced with m, and in the last

step, ADDER-MOD2n network is necessary to obtain
(

mx ′ + y′ + m
)

mod 2n .
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∣∣x ′,x ′〉 → · · · →
∣∣∣x ′,mx ′mod 2n

〉
→

∣∣∣y′,mx ′mod 2n
〉
→

∣∣∣y′,
(

mx ′ + y′) mod 2n
〉

→
∣∣∣m,

(
mx ′ + y′) mod 2n

〉
→

∣∣∣m,
(

mx ′ + y′ + m
)

mod 2n
〉

(12)

4 Quantum image encryption and decryption algorithm

4.1 Quantum image encryption algorithm

Assume that plaintext quantum image is |M〉 = 1
2n

2n−1∑
y=0

2n−1∑
x=0

|g (y, x)〉 |yx〉, where

|g (y, x)〉 = cos θi |0〉 + sin θi |1〉, θi ∈ [
0, π2

]
, i = yx = 0, 1, . . . , 22n − 1. The

proposed image encryption algorithm consists of the following steps:
Step 1. Perform generalized Arnold transform operation on |M〉 for k times to

obtain |Q1〉, where |xA〉 and |yA〉 represent the horizontal and the vertical location
information of the final scrambled quantum image |Q1〉, respectively. A represents
the generalized Arnold image scrambling, and |Q〉 represents the scrambled quantum
image for once. The quantum version of generalized Arnold transform is defined as

|Q〉 = A (|M〉)=
1

2n

2n−1∑

y=0

2n−1∑

x=0

|g (y, x)〉A (|yx〉)

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g (y, x)〉A (|y〉) A (|x〉)

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g (y, x)〉 ∣∣y′x ′〉 (13)
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where { ∣∣x ′〉 = A (|x〉) = |(x + t y)mod 2n〉∣∣y′〉 = A (|y〉) = |[mx + (tm + 1) y] mod 2n〉 (14)

Step 2. Perform quantum random-phase operation on |Q〉 in the spatial domain to
encode each color angle to a new angle. Random-phase gate Ui is controlled by a
classical binary number ki , where ki ∈ {0, 1}, i = 0, 1, . . . , 22n − 1. Binary sequence
K = k0k1 . . . k22n−1 is the key.

Ti = (Ui )
ki =

{
Ui ,

I,
ki = 1;
ki = 0.

i = 0, 1, . . . , 22n − 1. (15)

Ui =
[

1 0
0 ej2πϕi

]
(16)

whereϕi is a real number and distributed uniformly between 0 and 1. Unitary transform
Ti is used to construct a 2n + 1 qubits-based unitary transform Bi .

Bi = I ⊗
2n−1∑

y=0

2n−1∑

x=0
yx �=i

|yx〉 〈yx | + Ti ⊗ |i〉 〈i | (17)

The controlled phase matrix Bi is a unitary matrix since Bi B†
i =I ⊗2n+1. By applying

a 2n + 1 qubits unitary transform B on quantum image |Q1〉, |Q2〉 is obtained.

B (|Q1〉) =
22n−1∏

i=0

Bi (|Q1〉)

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

Tyx
(
cos θyx |0〉 + sin θyx |1〉) |yAxA〉

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

| f (y, x)〉 |yAxA〉 = |Q2〉 (18)

Step 3. Execute QFT on |Q2〉, then perform quantum random-phase operation in the
Fourier transform domain. Random-phase gate U ′

i is controlled by a binary number
di , where di ∈ {0, 1}, i = 0, 1, . . . , 22n − 1. Binary sequence D = d0d1 . . . d22n−1 is
another key.

Hi = (
U ′

i

)di =
{

U ′
i ,

I,
di = 1;
di = 0.

i = 0, 1, . . . , 22n − 1. (19)

U ′
i =

[
1 0
0 e j2πψi

]
(20)

whereψi is a real number and distributed uniformly between 0 and 1. Unitary transform
Hi is used to construct a 2n + 1 qubits-based unitary transform Ci .
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Ci = I ⊗
2n−1∑

y=0

2n−1∑

x=0
yx �=i

|yx〉 〈yx | + Hi ⊗ |i〉 〈i | (21)

The controlled phase matrix Ci is a unitary matrix since Ci C
†
i =I ⊗2n+1. Apply a 2n+1

qubits unitary transform C on QFT (|Q2〉).

|Q3〉 = C (QFT (|Q2〉)) =
22n−1∏

i=0

Ci (QFT (|Q2〉))

=
22n−1∏

i=0

Ci
1

2n

2n−1∑

y=0

2n−1∑

x=0

QFT (| f (y, x)〉 |yAxA〉)

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

Hyx QFT (| f (y, x)〉 |yAxA〉) (22)

Step 4. Perform the inverse quantum Fourier transform (IQFT) on |Q3〉.

|Q4〉 = IQFT (|Q3〉)

= IQFT

⎛

⎝ 1

2n

2n−1∑

y=0

2n−1∑

x=0

Hyx QFT (| f (y, x)〉 |yAxA〉)
⎞

⎠ (23)

4.2 Quantum image decryption algorithm

The key involved in the encryption process is composed of the independent parameters
t and m of coefficients matrix, iterative times k, the classical binary sequences K =
k0k1 . . . k22n−1 and D = d0d1 . . . d22n−1. According to the encryption, the decryption
process is as follows.

Step 1. Perform QFT on |Q4〉.

QFT (|Q4〉) = QFT (IQFT (|Q3〉)) = |Q3〉 (24)

Step 2. Perform the decryption operation on |Q3〉 with the key D.

C−1 (|Q3〉) =
22n−1∏

i=0

C†
i (|Q3〉)

=
22n−1∏

i=0

C†
i

⎛

⎝ 1

2n

2n−1∑

y=0

2n−1∑

x=0

Hyx QFT (| f (y, x)〉 |yAxA〉)
⎞

⎠
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= 1

2n

2n−1∑

x=0

2n−1∑

y=0

H−1
yx

Hyx QFT (| f (y, x)〉 |yAxA〉)

= 1

2n

2n−1∑

x=0

2n−1∑

y=0

QFT (| f (y, x)〉 |yAxA〉) = QFT (|Q2〉) (25)

where C†
yx

is the Hermitian conjugate of Cyx .
Step 3. Execute the IQFT to obtain |Q2〉 and then perform the decryption operation

on |Q2〉 with the key K .

B−1 (|Q2〉) =
22n−1∏

i=0

B†
i (|Q2〉)

=
22n−1∏

i=0

B†
i

⎛

⎝ 1

2n

2n−1∑

y=0

2n−1∑

x=0

| f (y, x)〉 |yAxA〉
⎞

⎠

= 1

2n

2n−1∑

x=0

2n−1∑

y=0

T −1
yx

Tyx (|g (y, x)〉 |yAxA〉)

= 1

2n

2n−1∑

x=0

2n−1∑

y=0

|g (y, x)〉 |yAxA〉 = |Q1〉 (26)

Step 4. Perform the inverse generalized Arnold transform operation A−1 on quantum
image |Q1〉 for k times. The quantum version of inverse generalized Arnold transform
is defined as

|M〉 = A−1 (|Q〉)=
1

2n

2n−1∑

y=0

2n−1∑

x=0

|g (y, x)〉A−1 (∣∣y′x ′〉)

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g (y, x)〉A−1 (∣∣y′〉) A−1 (∣∣x ′〉)

= 1

2n

2n−1∑

y=0

2n−1∑

x=0

|g (y, x)〉 |yx〉 (27)

where { |x〉 = A−1
(∣∣x ′〉) = ∣∣((tm + 1) x ′ − t y′) mod 2n

〉

|y〉 = A−1
(∣∣y′〉) = ∣∣(−mx ′ + y′) mod 2n

〉 (28)
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5 Numerical simulation and discussion

The experiments are limited to classical simulations on a classical computer with MAT-
LAB, since the lack of quantum hardware. The simulations are based on linear alge-
braic constructions. The quantum states and the quantum operations are simulated by
complex vectors and unitary matrices, respectively. The final step is the measurement
in quantum computation, which converts the quantum information into the classical
form as probability distribution. In a classical computer, the quantum images are trans-
formed into large matrices, and the simulations of the transformation are implemented
by using linear algebraic constructions equivalent to the quantum circuit elements.

To achieve classical numerical simulation, the simulations on encryption process
are completed in two stages. In the confusion stage, the simulation is implemented
by the corresponding classical generalized Arnold transform. In the diffusion stage,
classical binary sequences are used to control the random-phase gates, which makes the
angles of the color information different for different positions. Thus, the simulation
is implemented differently from the corresponding classical double random-phase
encoding. The binary sequences are represented by a matrix with the same size of the
image on the software of MATLAB. All the elements of the matrix are only 0 and 1,
and the matrix is used to control the random-phase mask (random-phase matrix). If the
matrix element is 1 in one position, the random-phase matrix element is replaced by 1
in the corresponding position. Then, the random-phase encoding can be implemented
by the random-phase matrix and the image matrix point multiplication.

According to the definition of the generalized Arnold transform, the independent
parameters of coefficient matrices t and m are any positive integers, which makes
the determinant of coefficient matrix to be 1. The period of the generalized Arnold
transform is connected with image size. The pixel size of all the images is 512 × 512.
Thus, the period of the generalized Arnold transform can be computed as T = 384.
If the iterative times is not exactly a multiple of the period, the generalized Arnold
transform can scramble the positions of image pixels. Therefore, one has a chance
to select these parameters randomly to some degree. The parameters in simulation
are set as: t = 600, m = 300 and k = 45. The binary sequences and random-
phase matrices are generated by the random number generation function in MATLAB
R2012a (version 7.14.0.739). The plaintext image is Lena shown in Fig. 6a, and the
corresponding cipher image is shown in Fig. 6b.

5.1 Statistical analysis

Statistical analysis has been performed with the proposed quantum image encryption
algorithm to demonstrate its confusion and diffusion properties.

5.1.1 Correlation of adjacent pixels

Generally, each pixel in the plaintext image is highly correlated with its adjacent
pixels in horizontal, vertical or diagonal directions. To test the correlations of adjacent
pixels in Lena and encrypted Lena, 8,000 pairs of two adjacent pixels are randomly
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Fig. 6 a Plaintext image Lena, b cipher image

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Pixel gray value on location (x,y)

P
ix

el
 g

ra
y 

va
lu

e 
on

 lo
ca

tio
n 

(x
+1

,y
)

a

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Pixel gray value on location (x,y)

P
ix

el
 g

ra
y 

va
lu

e 
on

 lo
ca

tio
n 

(x
+1

,y
)

b

Fig. 7 Correlation distributions of two horizontally adjacent pixels: a original image Lena and b encrypted
image

selected from horizontal, vertical and diagonal directions, respectively. The correlation
coefficient can be calculated by

Cxy =

N∑
i=1

(xi − x̄)(yi − ȳ)

√
N∑

i=1
(xi − x̄)2

N∑
i=1

(yi − ȳ)2

(29)

where x̄ = 1
N

N∑
i=1

xi and ȳ = 1
N

N∑
i=1

yi . Figures 7, 8, 9 give the correlation distribution

of horizontally, vertically and diagonally adjacent pixels in the plaintext image “Lena”
and its corresponding cipher image. The results of correlation coefficients for the
original images and their corresponding encrypted images are compiled in Table 1.
The correlation of the plaintext is close to 1 in each direction of each component,
while the correlation of the encrypted image is close to 0 in each direction. That is to
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Fig. 8 Correlation distributions of two vertically adjacent pixels: a original image Lena and b encrypted
image
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Fig. 9 Correlation distributions of two diagonally adjacent pixels: a original image Lena and b encrypted
image

Table 1 Correlation coefficients of adjacent pixels

Correlation coefficient Horizontal Vertical Diagonal

Original Lena 0.9770 0.9617 0.9412

Encrypted Lena −0.0050 0.0018 0.0069

Original Baboon 0.7198 0.8351 0.6889

Encrypted Baboon −0.0130 0.0023 0.0012

Original Peppers 0.9752 0.9670 0.9459

Encrypted Peppers 0.0137 −0.0115 0.0104

Original plane 0.9625 0.9698 0.9452

Encrypted plane −0.0116 0.0023 0.0039

say, the proposed algorithm removes the tight correlation among adjacent pixels of the
original image successfully. The results demonstrate that the attackers cannot obtain
useful information according to the statistical analysis.
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Fig. 10 a Peppers; b encrypted Peppers; c histogram of Peppers; d histogram of Lena; e histogram of
encrypted Peppers; and f histogram of encrypted Lena

5.1.2 Histogram analysis

The histogram is one of the most important statistical characteristics of an image and
represents the frequency of all the gray-level values from all over the image. Figure 10a
is the gray image Peppers which is obviously different from the image Lena shown
in Fig. 6a, and it comes to the same conclusion by comparing their histograms shown
in Fig. 10c, d, respectively. The two images are encrypted under the same conditions.
The encrypted result of peppers is shown in Fig. 10b. Figure 10e, f are the histograms
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Table 2 Information entropy of
original and encrypted images

Images (512 × 512) Information entropy (H)

Original images Encrypted images

Lena 7.2185 7.9877

Peppers 7.5925 7.8699

Baboon 7.1391 7.8726

Boat 7.1914 7.9735

Camera 7.0097 7.9410

Bridge 5.7056 7.8222

for encrypted Lena and encrypted Peppers, and they are quite similar. After a number
of parallel experiments, it can be concluded that the ciphertext of different original
images have similar histograms. Thus, the attackers cannot obtain useful information
according to the statistical properties.

5.1.3 Information entropy

Entropy is a statistical measure of randomness to characterize the texture of an image.
The entropy H (s) of a message source s can be calculated as

H (s) = −
2N −1∑

i=0

p (si ) log2 p (si ) (30)

where p (si ) represents the probability of symbol si and the entropy is expressed in
bits. The ideal entropy value for an encrypted image should be 8 bits [42]. For a
cryptosystem able to resist the entropy attacks, the entropy of the ciphertext should
be close to the ideal value [43,44]. The entropy of the six original images and their
corresponding encrypted images are computed and listed in Table 2. From Table 2,
one can see that the entropy of encrypted images is very close to the theoretical value.
The increase in entropy reflects that the distribution of gray scale becomes more even.
Therefore, the encryption algorithm is secure against the entropy attack.

5.2 Key space analysis

The key space of a good image encryption algorithm should be large enough to make
brute-force attack invalid. In the proposed algorithm, assuming key space for gener-
alized Arnold transform is S1 and key space for double random-phase encoding is
S2 then the key space of the entire algorithm is S1 × S2. The keys are composed of
the independent parameters t and m of coefficients matrix, iterative times k, binary
sequences K = k0k1 . . . k22n−1 and D = d0d1 . . . d22n−1. The key space for the gen-
eralized Arnold transform is estimated to be S1 ≈ 108. The key space for the binary
sequences is about S2 = 4512×512. The total key space is a very huge number, and
thus, the proposed algorithm can resist the brute-force attack.
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5.3 Key sensitivity analysis

Key sensitivity is an essential factor for any good cryptosystem, which ensures the
security of the cryptosystem against the brute-force attack. According to the properties
of the generalized Arnold transform, the parameters of coefficients matrix t and m are
any positive integers, so we can select the parameters randomly to some extent. The
period of the generalized Arnold transform is connected with image size. In the simu-
lation, the iteration number in the encryption process is k = 45, and thus, the iteration
number in the decryption process should be multiple of T − k = 339. The attacker
cannot obtain the correct original image if he decrypts the image with the wrong iter-
ation number of the generalized Arnold transform. To analyze the key sensitivity, six
groups of keys are used to decrypt the cipher image. The simulation results are shown
in Fig. 11a–f. Figure 11a is the decrypted image with the correct keys. Figure 11b gives
the decrypted image with an incorrect independent parameter t , while the other keys
are all correct. Figure 11c shows the decrypted image with an incorrect independent
parameter m, while the other keys are all intact. Figure 11d shows the decrypted image
with a wrong iterative times, while the other keys are all right. Figure 11e gives the
decrypted image with an incorrect binary sequence K , while the other keys are all
correct. Figure 11f shows the decrypted image with an incorrect binary sequence D,
while the other keys are all intact. From the results, it is shown that the image can be
reconstructed correctly iff the decryption keys are all right. For a large key space, it is
difficult to reconstruct the plain image if the key distribution is unknown.

5.4 Performance comparison

5.4.1 Diffusion and confusion

Since Yang et al. presented a novel gray-level image encryption scheme based on
QFT and double random-phase encoding technique, it is meaningful to compare the
proposed algorithm with Yang et al.’s scheme. This is the reason why we introduced
the generalized Arnold transform into quantum image encryption. Moreover, we also
compared the proposed algorithm with the method only utilizing the Arnold transform.
The correlations for the proposed algorithm, Yang et al.’s scheme and the Arnold
transform method are shown in Table 3. It can be seen that the correlation of the
proposed quantum encryption algorithm is much weaker than the other two methods.

The security of the proposed encryption system depends on not only the number of
keys, but also the cryptosystem structure. Generally, for a secure encryption algorithm,
the cryptosystem structure meets the principle of confusion and diffusion in cryptogra-
phy. The encryption algorithm based on QFT and double random-phase encoding can
be considered as a kind of encryption of the gray-level information. It is well known
that Arnold transform has the characteristics of chaotic mapping. However, it can
only scramble the position information of quantum image. The proposed encryption
algorithm implements quantum image encryption by combining generalized Arnold
transform with double random-phase encoding technology, which helps to realize the
diffusion and confusion of the image information. What’s more, the parameters and
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Fig. 11 Decrypted images with: a correct keys; b incorrect independent parameter t = 601; c incorrect
independent parameter m = 301; d wrong iterative times k = 46; e incorrect binary sequence K ; f incorrect
binary sequence D

iteration times of generalized Arnold transform are the keys, which enlarges the key
space and consequently enhances the security further.

5.4.2 Computational complexity

Assume that M is a 2n × 2n original image. There are 22n pixels in the original
image. The computational complexity of the proposed encryption algorithm depends
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Table 3 Correlation of three algorithms for encrypted Lena

Encrypted Lena Horizontal Vertical Diagonal

Proposed algorithm 0.0048 −0.0056 0.0028

Yang et al.’s scheme −0.0136 −0.0199 0.0172

Arnold transform method 0.0536 −0.0735 −0.0529

very much on what is considered to be elementary gate. We choose the Control-NOT
gate, NOT gate and phase gate to be basic units. The Toffoli gate can be realized by
six Control-NOT gates [41]. The numbers of elementary gates in basic carry and sum
operations are 13 and 2, respectively. The plain adder includes 2n−1 carry operations,
n sum operations and one Control-NOT gate. Consequently, the elementary gates of the
plain adder are 28n − 12. Because the architecture of ADDER-MOD2n is same as the
plain adder, the elementary gates of ADDER-MOD2n are 28n−12. So, the generalized
Arnold transform needs (tm + t + m) (28n − 12) basic gates. The QFT operation
needs n(n−1)

2 basic gates. The complexity of random-phase operation is O (n). Thus,
the total computational complexity of the encryption algorithm is O

(
n2

)
. By analyzing

the corresponding classical image encryption algorithm, the computational complexity
of the generalized Arnold transform is O

(
22n

)
. The classical random-phase encoding

is realized by using 22n multiplication operations. The computational complexity of the
classical Fourier transform operation is O

(
n22n

)
. Therefore, the total computational

complexity is O
(
n22n

)
. Therefore, the proposed encryption algorithm takes advantage

over its classical counterparts in terms of computational complexity.

6 Conclusion

A quantum version of generalized Arnold transform is defined, and its quantum circuit
is suggested. By combining generalized Arnold transform with double random-phase
encoding, a quantum image encryption algorithm is proposed. The encryption process
can be realized by performing generalized Arnold transform and double random-
phase operations on positions information and gray-level information of the quantum
image, respectively. The independent parameters, the iterative times of the generalized
Arnold transform and the classical binary sequences are used as the keys, therefore,
the key space of the proposed algorithm is very large. Simulation results show the
validity and the reliability of the image encryption algorithm. Moreover, the proposed
image encryption algorithm has lower computational complexity than its classical
counterparts.
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