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Abstract While it is important to investigate the negative effects of decoherence on
the performance of quantum information processors, Landauer was one of the first
to point out that an equally basic problem, i.e., the effects of unavoidable hardware
flaws in the real-world implementations of quantum gates, needs to be investigated
as well. Following Landauer’s suggestion, we investigated the structural stability of
the quantum Fourier transform (QFT) via significantly changing the analytical form
of its controlled rotation gates, thus modeling structural flaws in the Hamiltonian of
the QFT. Three types of modified rotation gates were investigated, numerically and
analytically, changing the exact QFT rotation angles π/2 j to (1) π/α j , (2) π/2 jβ ,
and (3) π/ logγ ( j + 1), where α, β, and γ are constants and j is the integer distance
between QFT qubits. Surprisingly good performance is observed in all the three cases
for a wide range of α, β, and γ . This demonstrates the structural stability of the QFT
Hamiltonian. Our results also demonstrate that the precise implementation of QFT
rotation angles is not critical as long as the angles (roughly) observe a monotonic
decrease in j (hierarchy). This result is important since it indicates that stringent
tolerances do not need to be imposed in the actual manufacturing process of quantum
information hardware components.

Keywords Quantum Fourier transform · Structure · Stability · Robustness ·
Hierarchy · Topology

1 Introduction

There are many obstacles in the way of realizing a quantum computer. Prominent
among them are gate defects [1,2] and decoherence [1,3,4]. Much work has been
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1180 Y. S. Nam, R. Blümel

focused on decoherence, culminating in methods of quantum error correction [3–8]
that, at least in principle, are capable of controlling the detrimental effects of deco-
herence. However, the problem of decoherence notwithstanding, when it comes to an
actual implementation of a physical quantum computer, the adverse effects of gate
defects on the performance of the quantum computer need to be addressed first. This
is so, because no matter how well we protect our quantum computer from its envi-
ronment, even if we eliminate decoherence effects completely, if the performance of
our quantum computer reacts sensitively to flaws in the implementation of its compo-
nents, a working, physical quantum computer may never be realized. Given the fact
that it is strictly impossible to execute a quantum gate with 100 % accuracy under any
circumstances, we shall focus in this paper on the sensitivity of a quantum processor
with respect to structural changes in its Hamiltonian.

As a testbed algorithm, we use the quantum Fourier transform (QFT) [3,4]. This
choice is justified since the QFT is one of the core ingredients of many important
quantum algorithms, such as Shor’s algorithm [9]. Accordingly, there have already
been a number of studies investigating the performance of the QFT under a variety
of conditions [2,10–15], and one of the findings is extraordinary robustness of the
performance of the QFT with respect to static gate defects [15]. Adding to this result,
we show in this paper that the QFT is also insensitive to structural changes in the
actions of its phase rotation gates. Supporting the idea of the primary importance of
the hierarchy, or the topology, of the QFT circuit [15], we confirm here that even
maintaining only a rough hierarchy in the phase rotation gates of the QFT still allows
us to find a hidden periodicity in a quantum input state with acceptable probability.

Several quantitative measures of phase angle hierarchy are proposed in this paper.
First, we investigate an exponential hierarchy, i.e., the hierarchical type used in the
exact QFT [3,4]. This is followed by a study of a power-law hierarchy, which is fun-
damentally different from its exponential counterpart, since there is no scale factor in
a power law. Structural insensitivity is found in both cases. Finally, further corrobo-
rating our results, we also present an inverse-log hierarchy and a random hierarchy,
after which we discuss our results and conclude the paper.

We note that throughout this paper, we use the banded QFT [14], keeping only
those phase rotation gates that are within b nearest neighbors with respect to the
control qubit, where b is the bandwidth [14]. In particular, we use b = 8. This choice
is motivated by the fact that b = 8 is sufficient for the practical use of the QFT in the
period-finding part of Shor’s algorithm [11,14]. The cases without banding, and how
they relate to their banded counterparts, will be discussed briefly toward the end of
this paper.

2 Numerical results

2.1 Exponential hierarchy

Operating between qubits number k and l, we start by introducing the controlled
phase rotation gate θ̂ j (CROT) [3,4] used in the QFT, where j = |k − l| is the integer
distance between qubits number k and l. If qubit number k acts as the control qubit
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|c〉k ∈ {|0〉, |1〉} and qubit number l acts as the target qubit |t〉l ∈ {|0〉, |1〉}, the CROT
gate θ̂ j is defined as

θ̂ j |c〉k |t〉l =
{

|c〉keiθ j |t〉l , if |c〉k = |1〉 = |t〉l ,

|c〉k |t〉l , otherwise,
(1)

where, in the case of the exact QFT,

θ j = π

2 j
. (2)

The relation (2) defines an exponential hierarchical structure of phase rotation angles,
where the rotation angle of the target qubit decreases exponentially with its distance
from the control qubit. The base 2 of the exponential in (2) is not an accident. It
relates directly to the base-2 arithmetic used in transcribing the abstract QFT unitary
transformation into a realization with qubits that have two possible states. Only in this
way, because of number-theoretical relationships, will the qubit-based QFT perform
perfectly, since desired amplitude cancellations and reinforcements (quantum inter-
ference) will happen exactly [3,4]. One might think, then, that any change of the base
2 in (2), in conjunction with the continued use of qubits, will hopelessly muddle the
inner workings of the QFT algorithm, effectively destroying its function. This seems
especially critical in the case where the base 2 in (2) is changed to an irrational number,
which does no longer correspond to a number system which is in a simple algebraic
relationship to the base-2 number system induced by two-state qubits. However, in an
actual, physical implementation of phase rotation gates, the precise base-2 relationship
of the exponential hierarchy of phase rotations cannot be guaranteed. Therefore, still
keeping the exponential nature of the hierarchy in (2), our first test case of a structural
change in the QFT consists of replacing the exact rotation angles (2) with modified
rotation angles according to

θ j → θ̃
(E)
j = π

α j
. (3)

As discussed above, this is a serious structural change in the QFT, since α is allowed
to be any real number.

The exact n-qubit QFT |s′〉 of an n-qubit integer input state |s〉 is defined as the
sum

|s′〉 = 1√
2n

2n−1∑
l=0

Φ(s, l)|l〉 (4)

over all n-qubit integer output states |l〉, where

Φ(s, l) = exp(2π isl/2n). (5)
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Fig. 1 Normalized performance
P of the exponentially
hierarchical, banded QFT with
bandwidth b = 8 as a function
of the exponential hierarchy
parameter α. Shown are the
cases with n = 12 (pluses),
n = 16 (squares), and n = 20
(asterisks) qubits
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Defining s[ν] and l[μ] as the νth and μth binary digits of s and l, respectively, we may
alternatively write (5) in the form

Φ(s, l) =
n−1∏
l=0

n−l−1∏
j=0

exp
(

iπs[n−l− j−1]l[l]/2 j
)

. (6)

Changing the base 2 in (6) to α according to (3), introducing the bandwidth b, and
resumming, the phase (6) of the exact QFT is transformed into the phase of the general
n-qubit exponentially hierarchical QFT according to

Φ
(E)
b (s, l;α) = exp

[
iϕ(E)

b (s, l;α)
]
, (7)

where

ϕ
(E)
b (s, l;α) = π

⎛
⎝ n−1∑

m′=0

s[m′]l[n−1−m′] +
b∑

j=1

1

α j

n− j−1∑
m=0

s[m]l[n− j−1−m]

⎞
⎠ . (8)

Using the most-prominent-peak criterion [13,14], i.e., choosing the nearest integer
peaks to the Fourier peaks of the QFT except for those trivial peaks that correspond
to the powers-of-2 factor of a given periodicity [15] as our performance measure
of the QFT (assumed here and throughout the paper), Fig. 1 shows the normalized
performance P of the banded (b = 8), exponentially hierarchical QFT as a function of
α, where the normalization is performed with respect to the performance of the exact,
exponentially hierarchical QFT with α = 2 and b = 8. For the input state |s〉, we used
an ω-periodic state, i.e., 〈l + ω|s〉 = 〈l|s〉, with periodicity ω = 30.

As expected, the best performance is achieved for α = 2, which corresponds
to the exact QFT. However, as shown in Fig. 1, even for deviations of up to 5 %
from α = 2, we still obtain better than 90 % performance for qubit numbers up to
n = 20 and better than 50 % performance for deviations up to 10 % from α = 2. This
points to an extraordinary robustness of the QFT with respect to structural changes.
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However, we also observe a rapid decline in the performance for decreasing α (left
wings of the performance curves in Fig. 1). A decreasing α flattens the hierarchy, i.e.,
for decreasing α, π/α j takes longer to decline, erasing the hierarchy completely for
α → 1, accompanied by zero performance. This shows that hierarchy in the rotation
angles of the CROT gates is important. However, as the right wings of the performance
curves in Fig. 1 show, it is not advisable to overemphasize the hierarchy. In fact, for
α > 2, we also see a decline in the performance. The decline is not as fast as in the
exponential case, since larger α effectively corresponds to cutting CROT gates, which
corresponds to tighter banding [14]. This explains the slower decay of the performance
for α > 2, since banding, in itself, is actually beneficial [14], but only to a certain
extent. For α � 2, too many CROT gates are effectively cut, again eliminating the
hierarchy since for α � 2, there are too few effective CROT gates left to define a
hierarchy in the first place. In the limit α → ∞, this results in a QFT where the
hierarchy is eliminated completely and only Hadamard gates remain. Therefore, the
limiting performance for α → ∞ is expected to be the one of a QFT equipped with
Hadamard gates only. This point will be discussed further in more quantitative detail
below.

2.2 Power-law hierarchy

Next, we study a power-law hierarchy. Unlike in the exponential case, we can no
longer vary a scale factor, since there is no scale factor in a power law. Instead, we
characterize our power-law QFT in the following way:

θ j → θ̃
(P)
j = π

2 jβ
, (9)

where the form (9) was chosen such that for j = 1, both θ j and θ̃
(P)
j are π/2. In this

case, the phase of the n-qubit power-law QFT with input state |s〉 and output states |l〉
reads

Φ
(P)
b (s, l;β) = exp

[
iϕ(P)

b (s, l;β)
]
, (10)

where

ϕ
(P)
b (s, l;β) = π

⎛
⎝ n−1∑

m′=0

s[m′]l[n−1−m′] +
b∑

j=1

1

2 jβ

n− j−1∑
m=0

s[m]l[n− j−1−m]

⎞
⎠. (11)

Again using the most-prominent-peak criterion and computing the performance of the
QFT on the basis of (10), we plot, in Fig. 2, the resulting normalized performance
P of the banded (b = 8), power-law hierarchical QFT for revealing the periodicity
ω = 30 as a function of β. As before, the normalization is performed with respect to
the absolute performance of the exact QFT with α = 2 and b = 8.

As shown in Fig. 2, the performance of the power-law hierarchical QFT is qual-
itatively similar to the performance of the exponentially hierarchical QFT shown in
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Fig. 2 Normalized performance
P of the power-law hierarchical,
banded QFT with bandwidth
b = 8 as a function of the
power-law hierarchy parameter
β. Shown are the cases with
n = 12 (pluses), n = 16
(squares), and n = 20
(asterisks)
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Fig. 1. This time, however, we do not have an intuitive prediction for the location of the
maximum of the performance, which occurs at β0 ≈ 1.4. Surprisingly, although the
hierarchy is changed from exponential to power law, a significant qualitative change
in the structure of CROT rotation angles, the peak performance of the power-law hier-
archical QFT at β0 is significantly larger than 90 %. Even for variations of the order of
10 % around β0, we still obtain better than 90 % performance, which drops below 50 %
only for deviations larger than 30 % from β0. Arguments similar to the exponentially
hierarchical case apply to explain, qualitatively, the behavior of the performance on
the left and right wings of the performance curves in Fig. 2.

3 Analytical results

Analytical analysis of QFT performance on the basis of (7) or (10) is not straightfor-
ward. This is due to the intricate nature of the phases Φ and to the fact that the s values
for a given l value in the vicinity of the most prominent Fourier peaks tend to clus-
ter in modulo 2π space. Still, we can extract some useful information regarding the
shape and the location of the maxima of the curves shown in Figs. 1 and 2. Assuming
that we obtain the best performance with the banded, otherwise exact QFT (α = 2),
we see from the use of the phases Φ

(E)
b (α) and Φ

(P)
b (β) in computing the respective

E and P QFTs [the E and P analogs of (4)] that the performances of the exponen-
tially and power-law hierarchical, banded QFTs may be estimated by quantifying the
spreading of the phase angles ϕ

(E)
b and ϕ

(P)
b with respect to the values corresponding

to the exact QFT as functions of α and β. This is so, since the tighter the distribution
of phase angle differences, the closer the E and P QFTs are to the exact QFT, and,
therefore, the better the performance of these QFTs. Choosing the variance as a rep-
resentative measure of the spread, we expect the peaks of the curves to be located at
those αc and βc, which minimize (a) 〈var[ϕ(E)

b (s, l;α) − ϕ
(E)
b (s, l;α = 2)]s〉l(np) and

(b) 〈var[ϕ(P)
b (s, l;β) − ϕ

(E)
b (s, l;α = 2)]s〉l(np) , respectively. Here, var[. . .]s denotes

the variance in the argument s and 〈. . .〉l(np) denotes averaging over l(np), the labels of
those integer output states |l(np)〉 that are closest to a Fourier peak. Minimizing (a) is
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straightforward and follows immediately from

ϕ
(E)
b (s, l;α) − ϕ

(E)
b (s, l;α = 2) = π

b∑
j=1

(
1

α j
− 1

2 j

) n− j−1∑
m=0

s[m]l[n− j−1−m], (12)

which shows that minimization is achieved for α = αc = 2, for which the variance is
zero. This is consistent with the peak location of the curves in Fig. 1.

Minimizing (b) is not so straightforward, and a more sophisticated approach is
required. Let us first state the argument of the variance that is to be minimized:

ϕ
(P)
b (s, l;β) − ϕ

(E)
b (s, l;α = 2) = π

b∑
j=1

(
1

2 jβ
− 1

2 j

) n− j−1∑
m=0

s[m]l[n− j−1−m].

(13)

Assuming (a) that the bits of the binary representations of both s and l(np) are ran-
dom, (b) that s[m] and l[n− j−1−m] are statistically independent, and (c) that the central
limit theorem [16] is applicable, we may replace the m-sum in (13) with a Gaussian-
distributed variable, whose variance is 3(n− j)/64, centered around (n− j)/4. Assum-
ing further that all l(np) respond to the change in hierarchy in unison in the statistical
sense and since the variance of the sum of Gaussian-distributed variables is the sum
of their variances [16], we obtain the minimum of the l(np)-averaged variance of (13)
for

d

dβ

⎡
⎣π2

b∑
j=1

3(n − j)

64

(
1

2 j
− 1

2 jβ

)2
⎤
⎦ ∣∣∣∣

β=βc

= 0. (14)

In the limit n � b, since min(n − j) = n − b ≈ n, (14) further simplifies to

d

dβ

⎡
⎣ b∑

j=1

(
1

2 j
− 1

2 jβ

)2
⎤
⎦ ∣∣∣∣

β=βc

= 0. (15)

Solving (15) in the case b = 8, we obtain β = βc = 1.364, which is close to β0 = 1.4,
and therefore consistent with the peak locations of the curves in Fig. 2.

Along the lines of the discussion above, it is now straightforward to obtain the
approximate shapes of the curves in Figs. 1 and 2. Since, to a good approximation, the
m-sum in (12) and (13) is Gaussian distributed, together with the fact that the sum of
Gaussian-distributed variables is yet another Gaussian-distributed variable [16], we
expect the phase angles ϕ

(E)
b (s, l;α) and ϕ

(P)
b (s, l;β) with respect to ϕ

(E)
b (s, l;α = 2)

to be Gaussian distributed. Now, in order to compute the normalized performance P
of the QFT, we first need to sum over the probabilities of obtaining any one of the most
prominent peaks l(np) as a result of measurement after performing the QFT, which is
computed by taking the absolute square of the sum of Φ(s, l(np)), where Φ(s, l(np))
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1186 Y. S. Nam, R. Blümel

may refer either to the exponential case or to the power-law case. Following this, we
need to normalize these two results by the banded, otherwise exact, QFT. Denoting
the absolute performance of the QFT by P̃ , we obtain

P(E|P)
b (α|β) = P̃(E|P)

b (α|β)

P̃(E)
b (α = 2)

=
∑

l(np)

∣∣∣∑s Φ
(E|P)
b (s, l(np);α|β)

∣∣∣2

∑
l ′(np)

∣∣∣∑s′ Φ
(E)
b (s′, l ′(np);α = 2)

∣∣∣2 , (16)

where E|P and α|β refer to the exponential and power-law cases, respectively. Invoking
the previous assumption that all l(np) respond in unison to a change in hierarchical
structure in a statistical sense, we may approximate P(E|P)

b by dropping the sums over

l(np) and l ′(np) in (16). Writing Φ
(E|P)
b in the form

Φ
(E|P)
b (α|β) = exp

[
iϕ(E)

b (α = 2)
]

exp
{

i
[
ϕ

(E|P)
b (α|β) − ϕ

(E)
b (α = 2)

]}
, (17)

we find that the first exponential term on the right-hand side of (17) is a slowly varying
function of s, while the second exponential term on the right-hand side of (17) is a
rapidly fluctuating function of s. Therefore, assuming statistical independence of the
slowly and rapidly fluctuating terms (separation ansatz), we may cancel the first term
in (17) against the denominator in (16) to obtain

P(E|P)
b (α|β) ≈

∣∣∣∣∣ 1√
K (s)

∑
s

exp
{

i
[
ϕ

(E|P)
b (α|β) − ϕ

(E)
b (α = 2)

]}∣∣∣∣∣
2

, (18)

where K (s) is the number of terms in the s-sum. At this point, we recall that the dis-
tribution function of the phase angles of the complex exponentials in (18) is Gaussian.
Further approximating the s-sum with an integral and extending its limits to ± infinity,
we obtain

P(E|P)
b (α|β) ≈

∣∣∣∣
∫ +∞

−∞
ei x G

σ
(E|P)
b (α|β)

dx

∣∣∣∣
2

, (19)

where G
σ

(E|P)
b (α|β)

is a normalized Gaussian with standard deviation σ
(E|P)
b (α|β), and

x ≡ ϕ
(E|P)
b (α|β) − ϕ

(E)
b (α = 2). (20)

Computing the integral in (19), we obtain

P(E|P)
b (α|β) ≈ exp[−(σ 2

b )(E|P)(α|β)], (21)
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Fig. 3 Normalized performance
P of the a exponentially
hierarchical and b power-law
hierarchical, banded QFT with
bandwidth b = 8 as a function
of the hierarchy parameters α

and β. The lines are the
analytical results (21) with a
(σ 2)(E) defined in (22) and b
(σ 2)(P) defined in (23), for qubit
numbers n = 12 (dashedline),
n = 16 (solidline), and n = 20
(dash − dotline). The
numerical data in a and b,
computed for n = 12 (pluses),
n = 16 (squares), and n = 20
(asterisks) are imported,
unchanged, from Figs. 1 and 2,
respectively
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where

(σ 2
b )(E) = π2

b∑
j=1

3(n − j)

64

(
1

2 j
− 1

α j

)2

(22)

and

(σ 2
b )(P) = π2

b∑
j=1

3(n − j)

64

(
1

2 j
− 1

2 jβ

)2

. (23)

In Fig. 3a, b, together with the corresponding numerical data imported from Figs. 1
and 2, we plot (21) with (22) and (23) for the exponential and power-law cases, respec-
tively. While the agreement between theory and numerical results is far from ideal, the
analytical lines capture the scaling and the overall shape of the data to a good qualita-
tive approximation. Apparently, away from the performance maxima, in the left and
right wings of the performance curves, the analytical curves grossly overestimate the
performance. This, however, is expected since (a) contrary to our simplifying assump-
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tions, and strictly speaking, different l(np) respond (slightly) differently to alterations
in the hierarchy, (b) the correlations between the two terms on the right-hand side
of (17) were neglected (separation ansatz), and (c) the central limit theorem is only
marginally applicable for n ∼ b [see (13) and (14)], which results in only a crude
approximation of the distribution of ϕ

(E|P)
b (α|β) − ϕ

(E)
b (α = 2) in (18) as a Gaussian.

We note that for increasing n, as shown in Figs. 3a, b, the analytical lines become better
approximations, since for increasing n the statistics improves and the three limitations
discussed above become less significant.

4 Discussion

Having explained the locations of peak performance and obtained a qualitative impres-
sion of the shape of the performance curves, let us now take a look at the limits α → 1
and β → 0 in which the performances of both modified QFTs are zero (see Figs. 1, 2,
3). These are the two cases in which the rotation angles θ̃

(E)
j in (3) and θ̃

(P)
j in (9) of

the associated CROT gates are constant as a function of j , the rotation angle hierarchy
is completely wiped out, and zero performance is expected. Quantitatively, we show
this in the following way. For α = 1, ϕ

(E)
b (s, l;α = 1) in (8) is equal to a multiple

of π . As a consequence, the phases Φ
(E)
b (s, l;α = 1) in (7) take only two values,

−1 and 1. Assuming that both s[m] and l[n− j−1−m] assume the two values 0 and 1
randomly as a function of their indices m and n − j − 1 − m, respectively, we see
that Φ

(E)
b (s, l;α = 1) assumes the values −1 and 1 with equal probability. Therefore,

the sum over Φ
(E)
b (s, l;α = 1) in (16) has expectation value zero, explaining the

zero performance of the exponentially hierarchical QFT at α = 1. This explains our
numerical results shown in Fig. 1.

Similar arguments hold for the power-law hierarchical case. Here, for β = 0, the
phase angles ϕ

(P)
b (s, l;β = 0) in (11) are multiples of π/2. Again using the argument

of randomness of the binary digits of s and l, the sum over Φ
(P)
b (s, l;β = 0) in (16)

averages out, resulting in zero performance. This explains our numerical results shown
in Fig. 2.

Now, let us take the other limit, i.e., α → ∞ and β → ∞. In this case, θ̃ (E)
j in (3) and

θ̃
(P)
j in (9) are both 0, except for θ̃

(P)
1 , which is π/2. Hence, for the exponentially hier-

archical, banded QFT, we expect, in the limit α → ∞, the performance corresponding
to a pure Hadamard QFT (b = 0), i.e., the case in which only Hadamard gates and no
CROT gates are present. Also, since for the power-law hierarchical banded QFT the
CROT gates with j = 1 operate correctly, we expect the performance in this case to
be that of the exact QFT with b = 1. For n = 10, . . . , 20 we numerically confirm that
this is indeed the case. All checks were performed for periodicity ω = 30.

So far in this paper, while varying the hierarchical structure, we have considered the
banded QFT. As pointed out earlier, the bandwidth b = 8 was chosen since according
to [14], a QFT with b = 8 is sufficient for its use in code-breaking. While it may
be of limited value for practical applications, the exact QFT may still be studied by
letting b = n − 1 in the analytical results above. In this case, while the qualitative
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Fig. 4 Normalized performance
P of the power-law hierarchical,
banded QFT with bandwidth
b = 8 as a function of the
inverse-log hierarchy parameter
γ . Shown are the cases with
n = 12 (pluses), n = 16
(squares), and n = 20
(asterisks)
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behavior of the performance as a function of α or β should remain roughly the same
for both the exponential and power-law cases, respectively, we expect a reduction
in the peak performance in β, since the minimum of the variance at β = βc [see
(14)] is an increasing function of b, hence n, for the non-banded QFT. Our numerical
investigations confirm this expectation.

To further confirm the vital importance of the hierarchy in the QFT, we also inves-
tigated the logarithmically hierarchical QFT. Specifically, we chose

θ j → θ̃
(L)
j = π

logγ ( j + 1)
, (24)

where γ is a real number. As expected, in Fig. 4, a behavior similar to the one observed
in Figs. 1 and 2 emerges when the normalized performance P is plotted against the
control parameter γ that specifies the strength of the logarithmic hierarchy. Together
with the exponential and power-law hierarchy results, this cements previous indica-
tions [15] that hierarchy is more important than the precise implementation of gates.

Although our paper is theoretical in nature, it may have significant practical implica-
tions for the construction of quantum information processors. Currently, experimental
implementations of the QFT are limited to fewer than five qubits [17], although no
fundamental laws of physics forbid the scaling up of these quantum processors [18]
to reach the number of qubits discussed in this paper. However, while many different
physical realizations of the QFT may be envisioned, they all have one problem in com-
mon, i.e., how to implement, in a practical way, the phase rotation angles required to
operate the QFT. Here our paper provides the insight that the precise implementation
of the theoretically required exponential hierarchy may be unnecessary in practice
for building a realistic QFT processor with acceptable performance. We illustrate this
observation explicitly with two hierarchies (power-law and logarithmic) that are vastly
different, qualitatively and quantitatively, from the exponential hierarchy, but still yield
acceptable performance. It stands to reason, therefore, that many other types of hier-
archies will achieve the same goal. To emphasize this point even further, we recently
investigated yet another hierarchy, which we call the random hierarchy, which may
have a real impact on facilitating actual hardware realizations of the QFT. We gener-
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ated 100 random phase angles between 0 and π and selected those eight phase angles
that best matched the phase angles π/2, π/4, . . ., π/256, required for a b = 8 QFT.
This method emulates a manufacturing process in which quantum gates are gener-
ated at random, selecting those that most closely match requirements. Although this
process, for some gates, results in very large relative errors, this phase angle selec-
tion process yields astonishingly good performance, better than 90 %. This means that
experimentalists and engineers do not have to produce or realize quantum gates with
a targeted specification in mind, but may produce quantum gates at random, choosing
the best matches, irrespective of relative error, according to a method of selection. To
emphasize our point, we reduced the number of random rotation angles generated to
20 in the interval [0, π ], which resulted in even larger individual phase angle errors,
but still resulted in a performance of better than 80 %. More details of this method will
be published elsewhere [19].

We also mention the fact that some quantum error correction schemes [3] require
the resolution of rotation gates into a sequence of elementary, universal gates [20–
25]. Realizing the exponential hierarchy with accuracy ε is expensive and requires
gate sequences of length ∼ log(1/ε) [22]. However, our latest results on the random
hierarchy teach us that it is not necessary to decompose each rotation gate to within
a stringent ε requirement, but that the QFT still works using selected gates from a
random set. This procedure may be re-interpreted as a much relaxed ε, resulting in
much shorter, decomposed realizations of quantum rotation gates that are much easier,
and in particular cheaper, to implement.

Thus, based on the results in this paper, experimentalists and quantum engineers
may take advantage of some significant quantum shortcuts resulting in tremendous
anticipated savings in quantum resources. The best economy of resources is obtained as
a result of a process that optimizes between target QFT performance and the optimal
choice of hierarchy that best achieves the desired QFT accuracy with the minimal
requirement of quantum resources.

5 Conclusion

This research was motivated by Landauer [1], who clearly separated the adverse effects
experienced by a quantum processor into two logically and physically independent
classes: decoherence and hardware flaws. While decoherence may be dealt with using
quantum error correction [3–8], flaws in the hardware implementation of quantum
gates are of a different nature. In fact, the effect of hardware flaws may be considered
more fundamental than decoherence, since the issue of decoherence is a moot point
if, for proper functioning of some quantum processor, the hardware tolerances can be
proved to be too stringent to even consider practical implementation of the processor.

Since in the absence of decoherence any quantum processor may be interpreted
as a unitary transformation of input states into output states governed by a quantum
Hamiltonian, the effect of flaws in the hardware implementation of a quantum proces-
sor may be interpreted as a new quantum processor with an altered Hamiltonian,
executing a different unitary transformation. Whether the new unitary transformation
produces desirable results that are close to those produced by the original, intended
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Hamiltonian, depends on whether the original Hamiltonian governing the quantum
processor is structurally stable. Structural stability is a term derived from dynamical
systems theory [26] and refers to Hamiltonian systems in which small perturbations of
the Hamiltonian lead to only small changes in the dynamics governed by the Hamil-
tonian. In this spirit, investigating the structural stability of the QFT, we changed the
structural form of the phase rotation angles of the QFT’s CROT gates and computed
the resulting change in performance of the QFT thus perturbed. The central result
obtained is that even drastic alterations of the hierarchical structure of the QFT’s
phase rotation angles do not significantly diminish the performance of the QFT. This
result is astonishing since the altered QFT, from a number-theoretical point of view,
is the QFT for a number system that is no longer binary, but rather a number system
defined according to ν = ∑

j φ j x j , where φ j is 0 or 1 and x j may be 1/x j , 1/j x , or
1/ logx ( j + 1), or any other choice, if desired. As an example, let us look at the num-
ber system ν = ∑

j φ j (1/3) j . In this case, the set ν is isomorphic to the well-known
middle-thirds Cantor fractal [26], which has measure zero in the set of real numbers.
As a consequence, the numbers ν that are actually representable in this number sys-
tem, although uncountable, are a vanishing fraction of all real numbers in the unit
interval. This means that this “1/3 number system,” which in our context corresponds
to α = 3, is vastly incomplete. Viewed in this light, it is even more astonishing that
the corresponding QFT performs at all, and, in fact, operates with >10 % efficiency.
Thus, our structural studies presented in this paper are fundamentally different from
our studies of random, static gate defects [15], in which the binary number system,
including its completeness, still holds. Thus, combined with our earlier results on the
stability of the QFT with respect to static gate defects [15], the structural stability with
respect to changes in the gate rotation angle hierarchy shows that the QFT is stable
against all major flaws in potential future hardware implementations of the QFT and
manufacturing tolerances may be relatively relaxed in the actual production of future
quantum hardware.
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