
Quantum Inf Process (2015) 14:813–829
DOI 10.1007/s11128-014-0909-5

Quantum algorithm to find invariant linear structure
of MD hash functions

WanQing Wu · HuanGuo Zhang · ShaoWu Mao ·
HouZhen Wang

Received: 9 August 2014 / Accepted: 24 December 2014 / Published online: 7 January 2015
© Springer Science+Business Media New York 2015

Abstract In this paper, we consider a special problem. “Given a function f : {0, 1}n →
{0, 1}m . Suppose there exists a n-bit string α ∈ {0, 1}n subject to f (x ⊕ α) = f (x)

for ∀x ∈ {0, 1}n . We only know the Hamming weight W (α) = 1, and find this α.”
We present a quantum algorithm with “Oracle” to solve this problem. The successful

probability of the quantum algorithm is (2l−1
2l)n−1, and the time complexity of the

quantum algorithm is O(log(n − 1)) for the given Hamming weight W (α) = 1. As
an application, we present a quantum algorithm to decide whether there exists such
an invariant linear structure of the M D hash function family as a kind of collision.
Then, we provide some consumptions of the quantum algorithms using the time–space
trade-off.

Keywords MD Hash functions · Invariant linear structure · Quantum algorithm ·
Quantum network

1 Introduction

In this paper, we consider a special collision problem. “Given a function f : {0, 1}n →
{0, 1}m for any n, m. Suppose there exists a n-bit string α ∈ {0, 1}n such that f (x ⊕
α) = f (x) for ∀x ∈ {0, 1}n . It only knows the Hamming weight W (α) = 1 and find
this α.” In this problem, the string α is called invariant linear structure of function f (x).

In cryptography, the original work of the collision problem was used to collision
resistant of hash functions. Thus, finding the invariant linear structures of MD hash
function is an important task as a special collision.

W. Wu (B) · H. Zhang · S. Mao · H. Wang
Computer School of Wuhan University, Wuhan 430072, People’s Republic of China
e-mail: wuwanqing8888@126.com

123

814 W. Wu et al.

In quantum computation, Simon firstly present an efficiently quantum algorithm
only for a special case of this collision problem, where the function f is defined
as f : {0, 1}n → {0, 1}m with n ≤ m in [1]. The Simon algorithm needs poly(n)

queries on average, where the ploy(n) is a polynomial in n. Aaronson [2] showed
that there needs a lower bound of Ω(n1/7) quantum algorithm with bounded error
probability to solve this collision problem. Soon after, Shi [3] pointed the quantum
lower bound of Ω((n/m)1/3) for the collision in m-to-1 function, but the size is
at least 3n/2. Kutin [4] extended the results and removes the restriction. Ambainis
[5] presented a Ω(n1/3) quantum algorithm for this collision problem with small
range.

In classical computation, Wang et al. present the collision differential path to find
the collision for more weak messages of M D4 and other hash functions in [6–9].

By the above motivation, we present a quantum algorithm to decide whether there
exists such an invariant linear structure of the MD hash function family as a kind
of collision. This paper is structured as follows: In Sect. 2, we present a quantum
algorithm and analysis it. In Sect. 3, we present a quantum algorithm to find invariant
linear structure of MD4 hash function as a kind of collisions. In Sect. 4, we present the
consumptions of quantum algorithm for other hash functions. In Sect. 5, we summarize
our paper.

2 Quantum algorithm of ILS problem

In this paper, we present a special problem and offer a quantum algorithm to solve it.
It obtains the concrete results as follow.

Definition 1 Let n-ary function f : {0, 1}n → {0, 1}m . The α ∈ {0, 1}n is called
invariant linear structure of function if f (x ⊕ α) ⊕ f (x) = 0 for ∀x ∈ {0, 1}n .

ILS Problem: Given a function f : {0, 1}n → {0, 1}m . Suppose there exists a n-bit
string α ∈ {0, 1}n such that f (x ⊕ α) = f (x) for ∀x ∈ {0, 1}n . We only know the
Hamming weight W (α) = 1 and find this α.

Theorem 1 There is an efficiently quantum algorithm to solve the I L S problem.

The successful probability is (2l−1
2l)n−1, and time complexity is O(log(n − 1)) in the

quantum algorithm, where the Hamming weight of the string α is 1 and the l is the
times of quantum measurement in quantum algorithm.

3 The proof of Theorem 1

In this section, we present the proof of the theorem 1 as follows. We firstly describe the
quantum algorithm of the problem. Then, we illustrate the correctness of the algorithm.
Thirdly, we illustrate the successful probability of the quantum algorithm. Fourthly,
we illustrate the time complexity of the quantum algorithm.

123

Quantum algorithm to find invariant linear structure 815

3.1 The quantum algorithm of ILS problem

We present the following two unitary transformations in our algorithm. The first one
is the standard quantum oracle U f : |x > |b >→ |x > |b ⊕ f (x) > in [10], where
the f is a function from {0, 1}n to {0, 1}m . The second one Hadamard transformation

H = 1√
2

(
1 1
1 −1

)
. (1)

The quantum gate works on a single qubit as follows H |0〉 = 1√
2
|0〉+ 1√

2
|1〉, H |1〉 =

1√
2
|0〉 − 1√

2
|1〉. In following, we present the quantum algorithm.

Algorithm 1 The quantum algorithm of ILS Problem.
Step1 Put the first register in the uniform superposition states of n-qubits. This leaves our machine in state

2n−1∑
x=0

1/
√

2n |x〉n |0〉. (2)

Step2 Compute f (x) in the second register. Since we keep x in the first register this can be done reversibly. This
leaves our machine in state

2n−1∑
x=0

1/
√

2n |x〉| f (x)〉. (3)

Step3 Perform Hadamard transformation on the first register. It has

2n−1∑
x=0

1/
√

2n(H⊗n |x〉)| f (x)〉. (4)

Step4 Measure the first quantum register and obtain the state |c′〉.
a) If the W (c′) = 1, we obtain the result α = c′ and output it, where the c′ denotes the compensation value
of string c′.
b) If the W (c′) �= 1, we repeat the above algorithm again and obtain |c′′〉. Then, we calculate the |c〉 =
|c′〉 ∨ |c′′〉, where “ ∨ “ denote the bitwise OR operation. Repeat the above process until the

W (c) = W (|c′〉 ∨ |c′′〉 ∨ · · ·) = n − 1.

Step5 Output the α.

3.2 Correctness and an example

Without loss of generality, let the string α = |0〉n−1|1〉 and |x〉 = |x1 ‖ x2〉, where
x1 ∈ {0, 1}n−1 and x2 ∈ {0, 1}. Thus, the |x ⊕ α〉 = |x1 ‖ x2〉, where |x2〉 denote the
compensation value of single qubit |x2〉.

In steps 1 and 2 of algorithm, it obtains the quantum states
∑2n−1

x=0 1/
√

2n|x〉| f (x)〉.
By the property f (x ⊕ α) = f (x), it obtains

123

816 W. Wu et al.

2n−1∑
x=0

1/
√

2n|x〉| f (x)〉 =
2n−1∑
x=0

1/
√

2n(|x〉 + |x ⊕ α〉)| f (x)〉

= 1/
√

2n
2n−1−1∑

x1=0

(|x1 ‖ x2〉 + |x1 ‖ x2〉)| f (x1 ‖ x2)〉.

In step 3, it obtains the quantum states

H⊗n
(

1/
√

2n
2n−1−1∑

x1=0

(|x1 ‖ x2〉 + |x1 ‖ x2〉)| f (x1 ‖ x2)〉
)

= 1/
√

2n−1
2n−1−1∑

x1=0

(H⊗n−1|x1〉)|0〉| f (x1 ‖ x2)〉,

since 1√
2

H(|0〉 + |1〉) = |0〉. Note that the H transforms the behind single qubits of
the first quantum register to |0〉. It reflects the characteristics of α.

In step 4, it measures the first quantum register and obtains the state |c(1)〉. If the
W (c(1)) = n − 1, it obtains the result α = c(1) and output it. Otherwise, if the
W (c(1)) < n −1, it repeats the above algorithm again and obtains |c(2)〉. Furthermore,
it can obtain a series of strings c(i) ∈ {0, 1}n to implement the bitwise O R as c =
c(1) ∨ c(2) Finally, the W (c) = n − 1 (or W (c) = 1) then it obtains the success
string α = c.

In following, we present a concrete example.

Example 1 Suppose n = 3 and W (α) = 1. Given a Boolean function f :
{0, 1}3 → {0, 1}2 satisfies f (000) = f (001), f (010) = f (011), f (100) =
f (101), f (110) = f (111). Find α.

Let the initial state be |000〉|00〉 and applying H⊗3 for the first quantum register.
Compute f (x) in the second register, we obtain

(
1√
8
|000〉 + 1√

8
|001〉

)
f (000) +

(
1√
8
|010〉 + 1√

8
|011〉

)
f (010)

+
(

1√
8
|100〉 + 1√

8
|101〉

)
f (100) +

(
1√
8
|110〉 + 1√

8
|111〉

)
f (110)

Thus, we perform Hadamard transformation on the first register again and obtain the
quantum states

1

4

(
(|000〉 + |010〉 + |100〉 + |110〉) f (000) + (|000〉 − |010〉 + |100〉 − |110〉) f (010)

+ (|000〉 + |010〉−|100〉−|110〉) f (100) + (|000〉 − |010〉−|100〉 + |110〉) f (110)
)
.

123

Quantum algorithm to find invariant linear structure 817

It measures the first quantum register and obtains the state |110〉 with probability 1
4 .

If it obtains the string c′ = |100〉, then implements the quantum algorithm again. Let us
suppose that it obtains a string c′′ = |010〉. Then, it calculates |c〉 = |c′〉∨|c′′〉 = |110〉.
So, output α = |c〉 = |001〉.

3.3 Correctness probability

In this paper, l denotes the times of measurement. For general l and n, we consider the
equation c = x1 ∨ x2 ∨ . . .∨ xl , where xi ∈ {0, 1}n, i = 1, . . . , l. We determine firstly
the failure case, i.e., c = 000 . . . 000, 010 . . . 000, 100 . . . 000, . . ., and 111 . . . 100
after bitwise O R. When the |c〉 = | 0X X . . . X︸ ︷︷ ︸

n−1

0〉, we obtain the (2l)n−2 cases, where

X is an undecided element. If we observe the |c〉 = | 10X X . . . X︸ ︷︷ ︸
n−1

0〉, we obtain

(2l − 1) × (2l)n−3 cases. For general state | 1 . . . 1︸ ︷︷ ︸
y

0 X X . . . X︸ ︷︷ ︸
n−2−y

0〉, we obtain (2l −

1)y × (2l)n−2−y cases. Let the symbol P(l,n) denote the successful probability of the
quantum algorithm after l measurements and “∨′′ operate. So we obtain the successful
probability

P(l,n) = 1 − (2l)n−2 + (2l − 1) × (2l)n−3 + · · · + (2l − 1)n−2 × 1

(2l)n−1

= (2l)n−1 − (2l)n−2 − (2l − 1) × (2l)n−3 − · · · − (2l − 1)n−2 × 1

(2l)n−1

= (2l)n−2 × (2l − 1) − (2l − 1) × (2l)n−3 − · · · − (2l − 1)n−2 × 1

(2l)n−1

= (2l − 1)n−1

(2l)n−1 =
(

2l − 1

2l

)n−1

.

Thus, the more measurements, the higher probability of the quantum algorithm. In
Table 1, we present some examples.

3.4 The time complexity on average

In this section, we consider the time complexity of the quantum algorithm on average.
Let the time complexity as T (n) for general n.

Table 1 The successful
probability of the quantum
algorithm, when the l > 2

n W (α) Times (l) Pr

100 1 7 0.4600

100 1 8 0.6788

100 1 9 0.8240

123

818 W. Wu et al.

We firstly evaluate a special case, i.e., n = 2. Assume α = |01〉. After the measure,
we only have two states |00〉, |10〉 and each probability is 1

2 . If we obtain the state |10〉,
the algorithm finishes the task. Otherwise, it performs the quantum algorithm again.
Thus, it has

T = 1 × 1

2
+ 2 ×

(
1

2

)2

+ 3 ×
(

1

2

)3

+ · · · =
∞∑
j=1

j

(
1

2

) j

From the equation
∑∞

a=1 axa = x
(1−x)2 for |x | < 1, it has T = 2.

Next, we roughly estimate the solution of T (n). Let the W (α) = 1, then the result of
measurement is the string α = | 1 . . . 1︸ ︷︷ ︸

n−1

0〉. After the measure of the quantum algorithm,

it can obtain the half of n − 1 bits hold one on average. If it repeats the processing one
time, the half of the rest about � n−1

2 � bits holds one on average. If it repeats log(n −1)
times, only the rest one bit of α is unknown. By the T = 2, it obtains the approximate
value, i.e.,

T (n) ≈ 2 + log(n − 1). (5)

4 The quantum algorithm to find invariable linear structure of MD4

In this section, we present a quantum algorithm to decide whether there exists a
invariant linear structure as a kind of collision of the MD4, while we provide a time–
space trade-off to save the consumption.

4.1 The MD4 algorithm

1. The padding message. Given any arbitrary bit length message M , the MD4 algo-
rithm firstly pads M into a multiple of 512-bit length message. We can skip the
padding technology, since it has no impact on the quantum attack.

2. The blocks of message. The MD4 algorithm divides the padding message into a
sequence of 512-bit length message blocks, i.e., M1, . . . , Mn .

3. Set the initial value. The MD4 algorithm provides a 128-bit length register to
store the intermediate values of Hash function. Let the 128-bit length register be
(a, b, c, d), where a, b, c, d, respectively, are 32-bit. Let the initial value H0 =
(a, b, c, d) = (0x67452301, 0xe f cdab89, 0x98badc f e, 0x10325476).

4. The iterative compression. For each 512-bit length message Mi , we compute the
128-bit length hash value Hi+1 using the compression function f , i.e., Hi =
f (Hi−1, Mi).

5. Output the message digest. The Hn+1 is the output as the message digest of MD4
algorithm.

123

Quantum algorithm to find invariant linear structure 819

4.2 The MD4 compression function

1. The function f compresses the 128-bit intermediate variable and 512-bit mes-
sage block into 128-bit length hash value. Let the intermediate variable Hi =
(aa, bb, cc, dd). If the first message block is M1, the H0 = (aa, bb, cc, dd) are
set to be the initial value. Otherwise, the input of algorithm is the compressing
variable from the previous operation.

2. Each round of the compression function performs 48 steps operations as follows:
For j = 0, 1, 2 and i = 0, 1, 2, 3,

a = f j (a, b, c, d, w j,4i , s j,4i)

d = f j (d, a, b, c, w j,4i+1, s j,4i+1)

c = f j (c, d, a, b, w j,4i+2, s j,4i+2)

b = f j (b, c, d, a, w j,4i+3, s j,4i+3)

Each step updates the register (a, b, c, d). The w j,4i+k is a 32-bit string from
message extension, where k = 0, 1, 2, 3. Here, s j,4i+k is a constant, and ≪ s j,4i+k

is circularly left-shift by s j,4i+k-bit positions. Each round of the compression
function implements 16 step operations, and these operations f j , j = 0, 1, 2 are
defined as:

f0(a, b, c, d, wk , s) = ((a + F(b, c, d) + wk) mod 232) ≪ s

f1(a, b, c, d, wk , s) = ((a + G(b, c, d) + wk + 0x5a827999) mod 232) ≪ s

f2(a, b, c, d, wk , s) = ((a + H(b, c, d) + wk + 0x6ed9eba1) mod 232) ≪ s

The compression function has three rounds. Each round contains a different non-
linear Boolean function as follows:

F(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z)

G(X, Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)

H(X, Y, Z) = X ⊕ Y ⊕ Z

These functions are all bitwise operation, and the X, Y, Z are 32-bit string. The
∧,∨,⊕ are, respectively, the bitwise AN D, O R, X O R and the ¬X is a string
obtained by reversing all bits of X as 0 ↔ 1.

3. In MD4 algorithm, it computes the (Hi ⊕ Hi+1) mod 232 as the intermediate
variables Hi+1 after updating. The process is as follows.

aa = (a + aa) mod 232

bb = (b + bb) mod 232

cc = (c + cc) mod 232

dd = (d + dd) mod 232

123

820 W. Wu et al.

4.3 The elementary quantum arithmetic operations

The quantum computation is constituted by quantum logic gates and measurement. It
can accept superposition states input and output corresponding superposition states.
This process is as follow

U f : |x, 0〉 → |x, f (x) ⊕ 0〉, (6)

where f is any function and U f is a unitary operator.
In order to realize quantum algorithm, we use the three quantum gates NOT,

control-NOT, Toffoli to construct the operation in this paper.

AND and OR operation. We describe the two n-bit length strings a, b ∈ {0, 1}n .
We have a = a1a2 . . . an and b = b1b2 . . . bn , where ai , bi ∈ {0, 1} for i = 1, . . . , n.
We define the bitwise AN D operation as c = a ∧ b ∈ {0, 1}n , where ci = ai bi for
i = 1, . . . , n. We define the bitwise O R operation as c = a ∨ b ∈ {0, 1}n , where
ci = max(ai , bi) for i = 1, . . . , n. In Fig. 1, we present the quantum network of AN D
and O R operation, where the control qubits are represented by a dot, the target qubits
by a plus.

Rotate and Shift operation. Let ROT Ln and SH Ln(or ROT Rn and SH Rn) are,
respectively, the left-rotate and left-shift (or right-rotate and right-shift) by place n-bits.

The ROT Ln(or ROT Rn) is an important arithmetic operation in block cipher. We
can achieve the quantum network of rotate operation through some control − N OT
gates, i.e., see Fig. 2(1) for n = 1.

Let |x〉 be a n-qubit state, and ROT Lm denotes left-shift m-bits. In quantum net-
work, we initialize the state |x〉⊗n|0〉⊗m and implement ROT Lm(|x〉⊗n|0〉⊗m) oper-
ation. We only consider the first n-qubit of ROT Lm(|x〉⊗n|0〉⊗m) as the result of
SH Lm and omit the last m-bits, i.e., see Fig. 2(2) for n = 1.

In Fig. 2, we present two examples, i.e., ROT L1 and SH L1 operation.

Fig. 1 1 The AN D operation. 2
The O R operation

Fig. 2 1 The ROT L1 operation; 2 The SH L1 operation

123

Quantum algorithm to find invariant linear structure 821

4.4 The quantum network for nonlinear Boolean function

These are three different nonlinear Boolean functions in MD4 algorithm. They are
constituted by the four elementary arithmetic operations AN D, O R, X O R, and ¬.
By combining the circuit diagram of the Fig. 1, the first nonlinear Boolean function
F(X, Y, Z) can be written as

UF |X, Y, Z , 0, 0, 0〉 → |X, Y, Z , X ∧ Y,¬X ∧ Z , F(X, Y, Z)〉. (7)

The nonlinear Boolean function F(X, Y, Z) is stored in the last temporary register.
Thus, the operation of the function F(X, Y, Z) can be completed. In order to optimize
this operation, we will consider a slight changes and rewrites the function computation.
The function F(X, Y, Z) can be rewritten as

UF |X, Y, Z , 0〉 → |X, Y, Z , F(X, Y, Z)〉. (8)

This way is the most optimal, that is, the number of qubits is minimal. The reason is
as follow. Assume the function G(X, Y, Z) can be written as

UF |X, Y, Z〉 → |X, Y, F(X, Y, Z)〉, (9)

Without loss of generality, we suppose that each string X, Y, Z , F(X, Y, Z) has 1-bit
size and the output is |X, Y, F(X, Y, Z)〉. Thus, we obtain the two same states |100〉
as output. This is a contradiction with the uniqueness of the element representation.

So the operation of the functions F(X, Y, Z), G(X, Y, Z), and H(X, Y, Z) are
illustrated in Fig. 3. In Fig. 3(1), the × denote the component of element X .

In addition, the inverse operation of the U f can be implemented in the reverse path.
The inverse operation can be denoted by f U . Thus, the FU,G U,H U , respectively,
are the inverse operation of UF , UG , UH .

4.5 The quantum network for compression function f j

The compression function f j (j = 0, 1, 2) contains two operations, i.e., adder modulo
and left-shift. Vedral presented the quantum network of adder module in [11]. The
adder module of two registers |a〉 and |b〉 can be written as

|a, b〉 → |a, (a + b) mod 2N 〉, (10)

Fig. 3 1 F(X, Y, Z); 2 G(X, Y, Z); 3 H(X, Y, Z)

123

822 W. Wu et al.

Fig. 4 1 The adder module of two registers. 2 The adder module of three registers

Fig. 5 The compression function f j of MD4 algorithm

where the N = 232 in MD4 algorithm. Thus, we can obtain adder module of three
registers |a〉, |b〉, and |c〉 through combining these adder modules. The adder module
is illustrated in Fig. 4. So we can obtain the compression function f j for j = 0, 1, 2
through combining the adder module and shift operation as above discussion.

4.6 The construction of compression function of MD4 algorithm

In MD4 algorithm, it has three rounds; each round of compression function implements
16 step operations and every four steps update the register (a, b, c, d).

In Fig. 5, we present the quantum network of register update. In order to com-
plete quantum computation, we made a slight changes, i.e., convert each states
a, b, c, d, 0, w, x0, x1, x2 into a′, b′, c′, d ′, 0′, w′, x ′

0, x ′
1, x ′

2 satisfying x ′ = x ‖
0 . . . 0︸ ︷︷ ︸

s

, where s is the largest number of displacement in MD4.

The first UF implements a nonlinear Boolean function F(X, Y, Z) as follow,

UF : |b′, c′, d ′, 0 . . . 0︸ ︷︷ ︸
32+s

〉 = |b ‖ 0 . . . 0︸ ︷︷ ︸
s

, c ‖ 0 . . . 0︸ ︷︷ ︸
s

, d ‖ 0 . . . 0︸ ︷︷ ︸
s

, 0 . . . 0︸ ︷︷ ︸
32+s

〉

→ |b ‖ 0 . . . 0︸ ︷︷ ︸
s

, c ‖ 0 . . . 0︸ ︷︷ ︸
s

, d ‖ 0 . . . 0︸ ︷︷ ︸
s

, F(b, c, d) ‖ 0 . . . 0︸ ︷︷ ︸
s

〉.

Then, the state |a′〉 is exchanged with the states |b′, c′, d ′〉.

123

Quantum algorithm to find invariant linear structure 823

Fig. 6 The “box“ operation

Furthermore, it applies the “box” operation for computation in Fig. 6. The com-
pression function f j can be defined as following

U fi : |a′, F(b, c, d)|| 0 · · · 0︸ ︷︷ ︸
s

, w′
j,4i , x ′

j 〉

= |a ‖ 0 · · · 0︸ ︷︷ ︸
s

, F(b, c, d)|| 0 · · · 0︸ ︷︷ ︸
s

, w′
j,4i , x j || 0 · · · 0︸ ︷︷ ︸

s

〉

→ |a|| 0 · · · 0︸ ︷︷ ︸
s

, F(b, c, d)|| 0 · · · 0︸ ︷︷ ︸
s

, w′
j,4i , fi (a

′, b′, c′, d ′, w′
j,4i , s)〉,

where the fi (a′, b′, c′, d ′, w′
j,4i , s) are (32+s) qubits. In “box” operation, there are

only first 32-qubits to participate the adder modulo N operation.
Next, the states |b′, c′, d ′〉 are exchanged with the state |a′〉 and performs the reserve

of UF . After FU , it obtains the initial states |a′, b′, c′, d ′, 0〉. The state w′
j,4i as a

output has no change after the “box“ operation. Furthermore, we obtain the state
| fi (a′, b′, c′, d ′, w′

j,4i , s), b′, c′, d ′, 0〉 as the input of the next operation. So the MD4
algorithm completes 1 step operation.

In this way, the MD4 algorithm can complete the all round computations. The “box”
operation includes three adder modules and two subtractors and one shift operation.
In Fig. 6, we present the quantum network of “box” operation.

4.7 The quantum algorithm for a kind of collision of MD4

In Fig. 5, the compression function f j of algorithm MD4 transforms the state
|x ′

j , x ′
j , x ′

j , x ′
j > into the state |a′

1, b′
1, c′

1, d ′
1 >. Thus, the algorithm needs 16 reg-

isters to store the intermediate variables |a′
1, b′

1, c′
1, d ′

1, . . . , a′
4, b′

4, c′
4, d ′

4 > in first
round. For the all three rounds, the quantum algorithm needs 48 registers to store the
intermediate variables |a′

1, b′
1, c′

1, d ′
1, . . . , a′

12, b′
12, c′

12, d ′
12 >. While it needs a 32-

bits temporary register used to store the module N = 232 and a one bit to complement
the adder module in [11]. The all adder module operations only need a temporary 33-
bits in our quantum algorithm. For convenience, we ignore its existence in quantum
network and it is included in the “box” operation. By the [12], the largest number of
displacement is s = 19 in MD4. So the quantum algorithm of MD4 needs 3,552-qubits

123

824 W. Wu et al.

length registers to complete the computation in total. The specific conditions are as
follows.

As a hash function, it can be written as

f : |w1, . . . , w16 >→ | f (M) >, (11)

where the M = w1 ‖ . . . ‖ w16 is 512-bits length message block and f (M) is 128-bits
length message digest. This computational procession can be written as

U f |a′, b′, c′, d ′, 0, w′
1, . . . , w

′
16, x ′

0, . . . , x ′
0︸ ︷︷ ︸

16

, x ′
1, . . . , x ′

1︸ ︷︷ ︸
16

, x ′
2, . . . , x ′

2︸ ︷︷ ︸
16

>

→ |a′, b′, c′, d ′, 0, w′
1, . . . , w

′
16, a′

1, b′
1, c′

1, d ′
1, . . . , a′

11, b′
11, c′

11, d ′
11,

f (x) ‖ s ‖ s ‖ s ‖ s >, (12)

where the function f is the compression function of algorithm MD4 and each register is
51-qubits. By above discussion, we present the quantum algorithm to find the invariant
linear structure as a kind of collision of MD4 as follows.

4.8 Time–space trade-off

The time–space trade-off is a trade-off strategy between the time complexity and space
complexity. In general, the more bits are utilized the faster it implement the algorithm.
But, if the number of bits are too much, it is not easy to achieve. In the quantum
algorithm, we present a trade-off method to find a kind of the collision of MD hash
function family.

We increase some measure steps and control steps in the quantum circuit
of compression function of MD4 algorithm for saving the qubits. During the
process of the quantum algorithm, we need some qubits to store the inter-
mediate variables |a′

i , b′
i , c′

i , d ′
i >, i = 1, . . . , 12. In order to save the cost

of qubits, we omit the storage of intermediate variables. In Fig. 5, we obtain
the |a′

1, b′
1, c′

1, d ′
1, 0′, w′

j,4i , a′, w′
j,4i+1, b′, w′

j,4i+2, c′, w′
j,4i+3, d ′ > as the out-

put in the first step. Thus, we implement the measure for the specific qubits
states |a′, b′, c′, d ′ > in the output. Furthermore, quantum states can be con-
verted into classical state including only 0 or 1. Then, we implement ¬ oper-
ation for classical state |a′, b′, c′, d ′ >, if the qubit is 1. Otherwise do noth-
ing. Now, the classical states |a′, b′, c′, d ′ > are written as |0′, 0′, 0′, 0′ >. For
the next step computation, we setup the |0′, 0′, 0′, 0′ >→ |x ′

j , x ′
j , x ′

j , x ′
j >

through ¬ operation, since the known state |x ′
j > is also a classical state. So we

obtain the state |a′
1, b′

1, c′
1, d ′

1, 0′, w′
j,4i , x ′

0, w
′
j,4i+1, x ′

0, w
′
j,4i+2, x ′

0, w
′
j,4i+3, x ′

0 >

as the input in the second step. Similarly, we implement the same operations
for other intermediate variables. Thus, the input of quantum algorithm can be
written as

123

Quantum algorithm to find invariant linear structure 825

F
ig

.7
T

he
qu

an
tu

m
ne

tw
or

k
of

S
H

A
-2

56

123

826 W. Wu et al.

Fig. 8 1 The quantum network of C H ; 2 The quantum network of M J

Algorithm 2 The quantum algorithm for finding a kind of collision of MD4.
Step1 Setup the initial state. Let the classical states a′, b′, c′, d ′, 0′, x ′

0, x ′
1, x ′

2 satisfy x ′ = x ‖ 0 · · · 0︸ ︷︷ ︸
19

. The initial

state can be defined as

|x >in= | 0′, · · · , 0′︸ ︷︷ ︸
16

> |a′, b′, c′, d ′, 0′, x ′
0, · · · , x ′

0︸ ︷︷ ︸
16

, x ′
1, · · · , x ′

1︸ ︷︷ ︸
16

, x ′
2, · · · , x ′

2︸ ︷︷ ︸
12

> |x ′
2, x ′

2, x ′
2, x ′

2 >, (13)

where the a = 0x67452301, b = 0xe f cdab89, c = 0x98badc f e, d = 0x10325476, x1 =
0x5a827999, x2 = 0x6ed9eba1 and put the other qubit state into |0 >.

Step2 Apply U⊗16
H operations on the first 16 quantum registers. Thus, it has

U⊗16
H |x >in=

216×51−1∑
x=0

λx |x > |a′, b′, c′, d ′, 0, x ′
0, · · · , x ′

0︸ ︷︷ ︸
16

, x ′
1, · · · , x ′

1︸ ︷︷ ︸
16

, x ′
2, · · · , x ′

2︸ ︷︷ ︸
12

> |x ′
2, x ′

2, x ′
2, x ′

2 >,

(14)

where λx denotes probability amplitude.
Step3 Apply the quantum oracle U f and store the functions f (x) in the last four quantum registers. Thus, it has

216×51−1∑
x=0

λx |x > |a′, b′, c′, d ′, 0, a′
1, b′

1, c′
1, d ′

1, · · · , a′
11, b′

11, c′
11, d ′

11 > | f (x) ‖ s ‖ s ‖ s ‖ s >, (15)

where the function f is the quantum algorithm of MD4 and f (x) = (a12, b12, c12, d12) is 128-qubits.
Step4 Apply U⊗n

H operations for the first 16 quantum registers again. It has

216×51−1∑
x=0

λx (U⊗16
H |x >)|a′, b′, c′, d ′, 0, a′

1, b′
1, c′

1, d ′
1, · · · , a′

11, b′
11, c′

11, d ′
11 > | f (x) ‖ s ‖ s ‖ s ‖ s >,

(16)

Step5 We perform {0, 1} measurements for the first 16 quantum register and obtain the state |c′ >. If the
W (c′) = w, we obtain α = c′ and output it. If the W (c′) �= w, we rerun the above algorithm again and
obtain |c′′ >. Then, we calculate |c >= |c′ > ∨|c′′ >, where “∨′′ denote the bitwise OR operate.

Step6 Compute f (x) and f (x ⊕ α). If the f (x ⊕ α), we obtain the result α = c and output it. Otherwise, it
returns fails.

123

Quantum algorithm to find invariant linear structure 827

Table 2 The consumption of hash functions

Hash functions MD4 MD5 SH A-0 SH A-1 SH A-224/256 SH A-384/512

Word(w) 32 32 32 32 32 64

Block 512 512 512 512 512 1,024

Digest 128 128 160 160 224/256 384/512

The number of
qubits

3,552 5,473 7,925 7,925 15,041 37,249

Quantum time
complexity

<24 <24 <24 <24 <24 <25

The number of
qubits (tradeoff)

1,308 1,408 1,459 1,459 1,611 3,000

Quantum time
complexity
(tradeoff)

<28 <28 <28 < 28 < 28 < 29

|x >in= | 0′, . . . , 0′︸ ︷︷ ︸
16

> |a′, b′, c′, d ′, 0′, x ′
0, x ′

0, x ′
0, x ′

0 >, (17)

In summary, we need ((32+ s)×25+33)-qubits to complete the quantum algorithm,
where the s = 19. At the same time, it needs to increase 16 steps measurement and
control, that is, the time complexity is expanded 16 times.

5 Conclusions

At present, there are many hash functions based on the MD4 [12]. The variant versions
of MD4 include M D5 [13], SH A-0 [14], SH A-1 [15], SH A-224/256, SH A-384/512
[16]. They can be called MD hash function family.

The M D4, M D5 hash functions have same structure; then, we can obtain similar
quantum networks from MD4 as above discussion. The structure of SH A hash func-
tions is different with MD4. In Fig. 7, we provide the quantum network of SH A-256
to explain the quantum algorithm for finding invariable linear structure, where the
adder can be defined as |a, b, 0〉 → |a, b, (a + b) mod N 〉. In Fig. 8, we provide the
quantum network of C H and M J operation used in algorithm SH A-256.

These hash functions have similar structures called by Merkle-Damgard method.
These different round functions include only bitwise AND, OR, XOR, and ¬. These
elementary arithmetic operations can be implemented by the quantum network in
[11,17]. Thus, we can find a kind of collisions of other hash functions using the above
quantum algorithm. In Table 2, we provide the results of consumption for some hash
functions.

6 Summary

The quantum algorithm can solve some intractable problems in classical computers.
For example, the Shor algorithm can solve the discrete logarithm and factorization

123

828 W. Wu et al.

problem in polynomial time in [18]. The Shor algorithm is a serious threat for the
classical public key cryptosystems such as RSA, ELGamal, ECC. In 2003, Proos and
Zalka pointed out that there exists an effective quantum algorithm to solve the K -bits
elliptic curves on N -qubits quantum computer in [19], where the N = 5k + 8

√
k +

5logk
2. In 2003, Beauregard pointed that there exists an effective quantum algorithm to

solve the K -bits factorization problem on N -qubits quantum computer in [19], where
the N = 2k. Thus, we believe that 1,448-qubits quantum computer can solve the 256-
bits elliptic curves, and 2,048-qubits quantum computer can compute the 1,024-bits
RS A in [20]. Thus, our quantum algorithm is also effective to find the invariant linear
structure as a kind of collision of the MD hash function family using the quantum
“Oracle”. Since the number of qubits are from 1,000 to 3,000.

In this paper, we consider a special version of this collision. We present a quantum
algorithm with “Oracle” to solve this problem. As an application, we present a quan-
tum algorithm to decide whether there exists such an invariant linear structure of the
MD hash functions family. Finally, we provide some consumptions of these quantum
algorithms through the time–space trade-off.

Acknowledgments WanQing Wu: Supported by the Fundamental Research Funds for the Central Uni-
versities (No. 2012211020213). HuanGuo Zhang: Supported by the Major Research Plan of the National
Natural Science Foundation of China (No. 91018008), the National Natural Science Foundation of
China (No. 61303212, 61202386), and Major State Basic Research Development Program of china (No.
2014CB340600). E-mail: liss@whu.edu.cn

References

1. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)
2. Aaronson, S.: Quantum lower bound for the collision problem. In: Proceedings of the Thiry-Fourth

Annual ACM Symposium on Theory of Computing, pp. 635–642. ACM, New York (2002)
3. Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. In: Proceedings

of the 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002, pp. 513–519. IEEE
(2002)

4. Kutin, S.: Quantum lower bound for the collision problem with small range. Theory Comput. 1(1),
29–36 (2005)

5. Ambainis, A.: Polynomial degree and lower bounds in quantum complexity: collision and element
distinctness with small range. Theory Comput. 1(1), 37–46 (2005)

6. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. Advances in Cryptology-
EUROCRYPT. Springer, Berlin (2005)

7. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. Advances in Cryptology-CRYPTO.
Springer, Berlin (2005)

8. Wang, X., Lai, X., Feng, D., et al.: Cryptanalysis of the Hash Functions MD4 and RIPEMD. Advances
in Cryptology-EUROCRYPT. Springer, Berlin (2005)

9. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. Advances in Cryptology-
CRYPTO, 1st edn. Springer, Berlin (2005)

10. Kashefi, E., Kent, A., Vedral, V., et al.: Comparison of quantum oracles. Phys. Rev. A 65(5), 050304
(2002)

11. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev.
A 54(1), 147 (1996)

12. Rivest, R.L.: The MD4 Message-Digest Algorithm. Advances in Cryptology, Crypto’90. Springer,
Berlin (1991)

13. Rivest, R.L.: The MD5 Message-Digest Algorithm, Request for Comments (RFC 1320), Internet
Activities Board, Internet Privacy Task Force (1992)

123

Quantum algorithm to find invariant linear structure 829

14. Secure Hash Standard. Federal Information Processing Standard Publication 180, U.S. Department of
Commerce, National Institute of Standards and Technology (1993)

15. National Institute of Standards and Technology (NIST) FIPS Publication 180-1: secure Hash Standard
(1994)

16. National Institute of Standards and Technology (NIST), FIPS 180–2(2002). http://csrc.nist.gov/
encryption/tkhash.html

17. Cleve, R.: An introduction to quantum complexity theory. In: Collected Papers on Quantum Compu-
tation and Quantum Information Theory, pp. 103–127 (2000)

18. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Rev. 41(2), 303–332 (1999)

19. Proos, J., Zalka, C.: Shor’s discrete logarithm quantum algorithm for elliptic curves. Quantum Inf.
Comput. 3, 317–344 (2003)

20. Darrel, H., Alfrend, M., Scott, V.: Guide to Elliptic Curve Cryptography. Springer, Berlin (2004)

123

http://csrc.nist.gov/encryption/tkhash.html
http://csrc.nist.gov/encryption/tkhash.html

	Quantum algorithm to find invariant linear structure of MD hash functions
	Abstract
	1 Introduction
	2 Quantum algorithm of ILS problem
	3 The proof of Theorem 1
	3.1 The quantum algorithm of ILS problem
	3.2 Correctness and an example
	3.3 Correctness probability
	3.4 The time complexity on average

	4 The quantum algorithm to find invariable linear structure of MD4
	4.1 The MD4 algorithm
	4.2 The MD4 compression function
	4.3 The elementary quantum arithmetic operations
	4.4 The quantum network for nonlinear Boolean function
	4.5 The quantum network for compression function fj
	4.6 The construction of compression function of MD4 algorithm
	4.7 The quantum algorithm for a kind of collision of MD4
	4.8 Time--space trade-off

	5 Conclusions
	6 Summary
	Acknowledgments
	References

