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Abstract Quantum maximum-distance-separable (MDS) codes form an important
class of quantum codes. It is very hard to construct quantum MDS codes with relatively
large minimum distance. In this paper, based on classical constacyclic codes, we
construct two classes of quantum MDS codes with parameters

[[λ(q − 1), λ(q − 1) − 2d + 2, d]]q

where 2 ≤ d ≤ (q + 1)/2 + λ − 1, and q + 1 = λr with r even, and

[[λ(q − 1), λ(q − 1) − 2d + 2, d]]q

where 2 ≤ d ≤ (q + 1)/2 + λ/2 − 1, and q + 1 = λr with r odd. The quantum MDS
codes exhibited here have parameters better than the ones available in the literature.
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1 Introduction

Quantum error-correcting codes play an important role in both quantum communica-
tion and quantum computation. It has experienced a great progress since the estab-
lishment of the connections between quantum codes and classical codes (see [4]). It
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was shown that the construction of quantum codes can be reduced to that of classical
linear error-correcting codes with certain self-orthogonality properties.

Let q be a prime power. A q-ary quantum code Q of length n and size K is a K -
dimensional subspace of a qn-dimensional Hilbert space H = C

qn = C
q ⊗ · · · ⊗ C

q .

The error correction and deletion capabilities of a quantum error-correcting code are
the most crucial aspects of the code. If a quantum code has minimum distance d, then
it can detect any d − 1 and correct any �(d − 1)/2� quantum errors. Let k = logq K .
We use [[n, k, d]]q to denote a q-ary quantum code of length n with size qk and
minimum distance d. One of the principal problems in quantum error correction is to
construct quantum codes with the best possible minimum distance. It is well known
that quantum codes with parameters [[n, k, d]]q must satisfy the quantum Singleton
bound: k ≤ n − 2d + 2 (see [14,15]). A quantum code achieving this bound is called
a quantum maximum-distance-separable (MDS) code. Quantum MDS codes are one
of the most useful and interesting quantum codes in quantum error correction.

In recent years, constructing quantum MDS codes has become one of the central
topics for quantum codes. Several families of quantum MDS codes have been con-
structed (see [3,6–11,17,19,20]). As we know, if the classical MDS conjecture holds,
the length of nontrivial q-ary quantum MDS codes cannot exceed q2 + 1 (see [14]).
The problem of constructing quantum MDS codes with n ≤ q +1 has been completely
solved (see [7,8]). Many quantum MDS codes of length between q + 1 and q2 + 1
have also been constructed (see [3,10,11,17–19]). Although so, there are still a lot of
quantum MDS codes difficult to be constructed. It is a great challenge to construct new
quantum MDS codes and a even more challenge to construct quantum MDS codes
with relatively large minimum distance.

As mentioned in [11], except for some sparse lengths, almost all known q-ary
quantum MDS codes have minimum distance less than or equal to q/2 + 1. Recently,
Kai and Zhu constructed two new classes of quantum MDS codes based on classical
negacyclic codes (see [12]) and six new classes of quantum MDS codes based on
classical constacyclic codes (see [13]). These codes have minimum distance larger
than q/2 + 1 in general. Two classes of the quantum MDS codes constructed in [13]
are

1. [[λ(q − 1), λ(q − 1) − 2d + 2, d]]q , where λ = (q + 1)/2 and 2 ≤ d ≤ q,
2. [[λ(q − 1), λ(q − 1)− 2d + 2, d]]q , where 2 ≤ d ≤ (q + 1)/2 and λ = (q + 1)/r

with even r �= 2.

We extend these two classes of quantum codes and obtain our first class of quantum
MDS codes with parameters [[λ(q −1), λ(q −1)−2d +2, d]]q , where 2 ≤ d ≤ (q +
1)/2+λ−1 and q +1 = λr with r even. This class of quantum MDS codes has larger
minimum distance than the quantum MDS codes that they constructed under the case
even r �= 2. In particular, the obtained quantum codes have minimum distance bigger
than q/2+1. Furthermore, we consider the case r is an odd divisor of q +1 and get our
second class of quantum MDS codes with parameters [[λ(q−1), λ(q−1)−2d+2, d]]q ,
where 2 ≤ d ≤ (q + 1)/2 + λ/2 − 1 and q + 1 = λr . It is new in sense that its
parameters are not covered by the codes available in the literature, and it has minimum
distance bigger than q/2 + 1 when q ≥ 11.
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This paper is structured as follows. Section 2 presents a review of classical con-
stacyclic code. In Sect. 3, two classes of quantum MDS codes are derived by using
Hermitian construction. Section 4 concludes the paper.

2 Review of constacyclic codes

Let Fq2 be the Galois field with q2 elements, where q is a prime power. A q2-ary linear
code C of length n is a nonempty subspace of F

n
q2 . A q2-ary linear code C of length

n is called η-constacyclic if it is invariant under the η-constacyclic shift of F
n
q2 :

(c0, c1, . . . , cn−1) → (ηcn−1, c0, . . . , cn−2),

where η is a nonzero element of Fq2 . Each code word c = (c0, c1, . . . , cn−1) is custom-
arily identified with its polynomial representation c(x) = c0 + c1x +· · ·+ cn−1xn−1,
and the code C is in turn identified with the set of all polynomial representations of

its code words. Then, in the ring
Fq2 [x]
〈xn−η〉 , xc(x) corresponds to a η-constacyclic shift

of c(x). It is well known that a linear code C of length n over Fq2 is η-constacyclic if

and only if C is an ideal of the quotient ring
Fq2 [x]
〈xn−η〉 . Moreover,

Fq2 [x]
〈xn−η〉 is a principal

ideal ring, whose ideals are generated by monic factors of xn − η, i.e., C = 〈 f (x)〉
and f (x)|(xn − η).

Given two vectors x = (x0, x1, . . . , xn−1) and y = (y0, y1, . . . , yn−1) ∈ F
n
q2 , their

Hermitian inner product is defined as

〈x, y〉 = x0 ȳ0 + x1 ȳ1 + · · · + xn−1 ȳn−1 ∈ Fq2 ,

where ȳi = yq
i . The vectors x and y are called orthogonal with respect to the Hermitian

inner product if 〈x, y〉 = 0. For a q2-ary linear code C of length n, the Hermitian dual
code of C is defined as

C⊥H =
{

x ∈ F
n
q2 |〈x, y〉 = 0 f or all y ∈ C

}
.

A linear code C of length n over Fq2 is called Hermitian self-orthogonal if C ⊆ C⊥H ,
and it is called Hermitian self-dual if C = C⊥H .

We assume gcd(q, n) = 1. Let δ be a primitive rnth root of unity in some extension
field of Fq2 such that δn = η. Let ξ = δr , then ξ is a primitive nth root of unity.
Hence,

xn − η =
n−1∏
i=0

(x − δξ i ) =
n−1∏
i=0

(x − δ1+ir ).

Let � = {1 + ir |0 ≤ i ≤ n − 1}. For each j ∈ �, let C j be the q2-cyclotomic
coset modulo rn containing j . Let C be an η-constacyclic code of length n over Fq2
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with generator polynomial g(x). Then, the set Z = { j ∈ �|g(δ j ) = 0} is called the
defining set of C . It is clear to see the defining set of C is a union of some q2-cyclotomic
cosets modulo rn and dim(C) = n − |Z |. It is also easily to see C⊥H has defining set
Z⊥H = {z ∈ �| − qz mod rn �∈ Z} (see Ref. [13]).

Similar to cyclic codes, there exists the following BCH bound for constacyclic code
(see [2, Theorem 2.2] or [16, Lemma 4]).

Theorem 2.1 (The BCH bound for constacyclic codes) Assume that gcd(q, n) =
1. Let C = 〈g(x)〉 be an η-constacyclic code of length n over Fq2 with the roots
{δ1+ir |0 ≤ i ≤ d − 2}, where δ is a primitive rnth root of unity. Then, the minimum
distance of C is at least d.

The following result presents a criterion to determine whether or not a given q2-ary
η-constacyclic code is dual containing (see [13, Lemma 2.2]).

Lemma 2.2 Let r be a positive divisor of q + 1 and η ∈ F
∗
q2 be of order r . Let C

be an η-constacyclic code of length n over Fq2 with defining set Z ⊆ �, then C
contains its Hermitian dual code if and only if Z

⋂
Z−q = ∅, where Z−q = {−qz

mod rn|z ∈ Z}.

3 Codes construction

Let r = (q +1)/gcd(v, q +1) and q be an odd prime power. In the next two parts, we
give the construction of quantum MDS codes due to the case r is even or odd by using
Hermitian construction. First, we recall the Hermitian quantum code construction:

Lemma 3.1 [1] If C is a q2-ary [n, k, d]-linear code such that C⊥H ⊆ C, then there
exists an [[n, 2k − n,≥ d]]q quantum code.

A. Length n = λ(q − 1) with λ a divisor of q + 1 and r even

Let r = (q+1)/gcd(v, q+1) be even, for some v ∈ {1, 2, . . . , q}. Let ξ = ωv(q−1)

and λ = (q + 1)/r . Based on ξ -constacyclic codes, we first construct q-ary quantum
MDS codes of length λ(q −1). It is easy to see that the q2-cyclotomic coset containing
1 + jr + r−2

2 (q + 1) modulo nr has only one element 1 + jr + r−2
2 (q + 1), i.e.,

C1+ jr+ r−2
2 (q+1) = {1 + jr + r−2

2 (q + 1)} under the case 0 ≤ j ≤ r+2
2r (q + 1).

Lemma 3.2 Let r = (q + 1)/ gcd(v, q + 1) be even and r �= q + 1, for some v ∈
{1, 2, . . . , q}. Let n = λ(q−1) with λ = (q+1)/r . Suppose that C is an ξ -constacyclic
code of length n over Fq2 with defining set Z = ⋃δ

j=1 C1+r( j−1)+ r−2
2 (q+1), where

1 ≤ δ ≤ r+2
2r (q + 1) − 2, then C⊥H ⊆ C.

Proof Suppose that C does not contain its Hermitian dual code, then by Lemma 2.2,
Z

⋂
Z−q �= ∅. Hence, there exist two integers k, l ∈ {1, 2, . . . , r+2

2r (q + 1)− 2} such
that

1 + r(k − 1) + r − 2

2
(q + 1) ≡ −

[
1 + r(l − 1) + r − 2

2
(q + 1)

]
q mod rn,
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which is equivalent to

k + ql − λ ≡ 0 mod λ(q − 1). (1)

Let r = 2s with some integer s ≥ 1. Then, 1 ≤ l ≤ λ(s + 1) − 2. We express l in
the form l = uλ + v, where 0 ≤ u ≤ s and 0 ≤ v ≤ λ − 2 (except for the case
u = v = 0). We now consider it due to the following two cases.

(1) 0 ≤ u ≤ s and 1 ≤ v ≤ λ−2. The congruence (1) yields k +l +(q −1)v−λ ≡ 0
mod λ(q − 1). Since 1 ≤ k, l ≤ r+2

2r (q + 1) − 2 < q − 1, it follows that
k + l + (q − 1)v − λ < (q − 1) + (q − 1) + (λ − 2)(q − 1) − λ = λ(q − 2).
This gives a contradiction.

(2) 1 ≤ u ≤ s and v = 0. The congruence (1) yields k + l − λ ≡ 0 mod λ(q − 1).
But k + l − λ < 2(q − 1) − λ < 2(q − 1) and λ > 1. This gives a contradiction.

This completes the proof. ��
Theorem 3.3 Let r be an even divisor of q + 1 and r �= q + 1, and let n = λ(q − 1)

with λ = (q + 1)/r . Then, there exist an [[n, n − 2d + 2, d]]q quantum MDS code,
where 2 ≤ d ≤ r+2

2r (q + 1) − 1.

Proof Let ξ = ωλ(q−1), where ω is a primitive element of Fq2 . Let C be the ξ -

constacyclic code of length n over Fq2 with defining set Z =⋃δ
j=1 C1+r( j−1)+ r−2

2 (q+1),

where 1 ≤ δ ≤ r+2
2r (q + 1) − 2. It follows from Lemma 3.2 that C contains its Her-

mitian dual code, and dim(C) = n − δ. The BCH bound for constacyclic codes
gives that the distance of C is at least δ + 1. Hence, C is a constacyclic code with
parameters [n, n − δ,≥ δ + 1]q2 . Using the Hermitian construction, we obtain an
[[n, n − 2δ,≥ δ + 1]]q quantum code. Combining the quantum Singleton bound
yields a quantum code with parameters [[n, n − 2δ, δ + 1]]q , which is the desired
quantum MDS code. ��

Taking r = 2 in Theorem 3.3, we obtain a quantum MDS code with parameters
[[(q2 −1)/2, (q2 −1)/2−2d +2, d]]q , where 2 ≤ d ≤ q, which is the quantum MDS
codes got in [13, Theorem3.2]. But when r is an even divisor of q +1 and r �= 2, there
exists a quantum code in [13] with parameters [[λ(q − 1), λ(q − 1) − 2d + 2, d]]q ,

where 2 ≤ d ≤ (q + 1)/2. However, the construction in Theorem 3.3 produces some
new quantum MDS codes with parameters [[λ(q −1), λ(q −1)−2d +2, d]]q , where
(q + 1)/2 + 1 ≤ d ≤ (q + 1)/2 + λ − 1. These codes have much larger minimum
distance in general. Hence, we unite the results of r = 2 and r �= 2 in [13], and more
quantum MDS codes are obtained in our construction.

Example 3.4 Let q = 19. Applying Theorem 3.3 produces four new quantum
MDS codes with parameters [[90, 70, 11]]19, [[90, 68, 12]]19, [[90, 66, 13]]19, and
[[90, 64, 14]]19.

Example 3.5 Let q = 23. Applying Theorem 3.3 produces some new quantum MDS
codes in Table 1.
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Table 1 New quantum MDS
codes

λ r n [[n, k, d]]q
2 12 44 [[44, 20, 13]]23

3 8 66 [[66, 42, 13]]23

3 8 66 [[66, 40, 14]]23

4 6 88 [[88, 64, 13]]23

4 6 88 [[88, 62, 14]]23

4 6 88 [[88, 60, 15]]23

6 4 132 [[132, 108, 13]]23

6 4 132 [[132, 106, 14]]23

6 4 132 [[132, 104, 15]]23

6 4 132 [[132, 102, 16]]23

6 4 132 [[132, 100, 17]]23

B. Length n = λ(q − 1) with λ a divisor of q + 1 and r odd

In [13], the authors only consider the case r is an even divisor of q + 1, but how
about the case r is an odd divisor of q + 1. In this part, we consider this problem and
construct a new class of quantum MDS codes under such case.

Let r = (q +1)/gcd(v, q +1) be odd, for some v ∈ {1, 2, . . . , q}. Let ξ = ωv(q−1)

and λ = (q +1)/r . Based on ξ -constacyclic codes, we construct q-ary quantum MDS
codes of length λ(q − 1). It is easy to see that the q2-cyclotomic coset containing
1 + jr + r−1

2 (q + 1) modulo nr has only one element 1 + jr + r−1
2 (q + 1), i.e.,

C1+ jr+ r−1
2 (q+1) = {1 + jr + r−1

2 (q + 1)} under the case 0 ≤ j ≤ r+1
2r (q + 1).

Lemma 3.6 Let r = (q + 1)/ gcd(v, q + 1) be odd, for some v ∈ {1, 2, . . . , q}. Let
n = λ(q − 1) with λ = (q + 1)/r . Suppose that C is an ξ -constacyclic code of
length n over Fq2 with defining set Z = ⋃δ

j=1 C1+r( j−1)+ r−1
2 (q+1), where 1 ≤ δ ≤

r+1
2r (q + 1) − 2, then C⊥H ⊆ C.

Proof Suppose that C does not contain its Hermitian dual code, then Z
⋂

Z−q �= ∅.
Hence, there exist two integers k, l ∈ {1, 2, . . . , r+1

2r (q + 1) − 2} such that

1 + r(k − 1) + r − 1

2
(q + 1) ≡ −

[
1 + r(l − 1) + r − 1

2
(q + 1)

]
q mod rn,

which is equivalent to

k + ql ≡ 0 mod λ(q − 1). (2)

Let r = 2s + 1 with some integer s ≥ 1. Then, 1 ≤ l ≤ λ(s + 1) − 2. We express l
in the form l = uλ + v, where 0 ≤ u ≤ s and 0 ≤ v ≤ λ − 2 (except for the case
u = v = 0). We now consider it due to the following two cases.

(1) 0 ≤ u ≤ s and 1 ≤ v ≤ λ − 2. The congruence (2) yields k + l + (q − 1)v ≡ 0
mod λ(q − 1). Since 1 ≤ k, l ≤ r+1

2r (q + 1) − 2 < q − 1, it follows that
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Table 2 New quantum MDS
codes

λ r n [[n, k, d]]q
2 9 32 [[32, 16, 9]]17

6 3 96 [[96, 80, 9]]17

6 3 96 [[96, 78, 10]]17

6 3 96 [[96, 76, 11]17

k + l + (q − 1)v < (q − 1) + (q − 1) + (λ − 2)(q − 1) = λ(q − 1). This gives
a contradiction.

(2) 1 ≤ u ≤ s and v = 0. The congruence (2) yields k + l ≡ 0 mod λ(q − 1). But
k + l < 2(q − 1) and λ > 1. This gives a contradiction.

This completes the proof. ��
Theorem 3.7 Let r be an odd divisor of q + 1 and n = λ(q − 1) with λ = (q + 1)/r .
Then, there exist an [[n, n − 2d + 2, d]]q quantum MDS code, where 2 ≤ d ≤
r+1
2r (q + 1) − 1.

Proof Let ξ = ωλ(q−1), where ω is a primitive element of Fq2 . Let C be the ξ -

constacyclic code of length n over Fq2 with defining set Z =⋃δ
j=1 C1+r( j−1)+ r−1

2 (q+1),

where 1 ≤ δ ≤ r+1
2r (q+1)−2. It follows from Lemma 3.6 that C contains its Hermitian

dual code. Note that dim(C) = n − δ and d(C) ≥ δ + 1. So, C is a ξ -constacyclic
code with parameters [n, n − δ,≥ δ + 1]q2 . Combining the Hermitian construction
and the quantum Singleton bound, we obtain an [[n, n − 2δ, δ + 1]]q quantum code,
which is the desired quantum MDS code. ��

The construction in Theorem 3.7 produces some quantum MDS codes with para-
meters [[λ(q−1), λ(q−1)−2d+2, d]]q , where (q+1)/2 ≤ d ≤ (q+1)/2+λ/2−1.
These codes are new in the sense that their parameters are not covered in the literature,
and this class of quantum MDS codes has larger minimum distance than the known
ones. Recently, we notice that this class of quantum MDS code can also be obtained
from Ref. [11] by deleting the evaluation point at 0 in Theorem 3.9.

Example 3.8 Let q = 17. Applying Theorem 3.7 produces four new quantum MDS
codes in Table 2.

Example 3.9 Let q = 29. Applying Theorem 3.7 produces some new quantum MDS
codes in Table 3.

In Ref. [5], the authors constructed several classes of pure asymmetric quantum
codes based on subclass of alternant codes, such as nested Goppa codes and Euclid-
ean self-orthogonal generalized Reed–Solomon codes. However, in this paper, we
construct classical Hermitian dual-containing constacyclic codes by computing cyclo-
tomic cosets in detail. Based on such constacyclic codes, we obtain two classes of
quantum MDS codes by using the known Hermitian construction.
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Table 3 New quantum MDS
codes

λ r n [[n, k, d]]q
2 15 56 [[56, 28, 15]]29

6 5 168 [[168, 140, 15]]29

6 5 168 [[168, 138, 16]]29

6 5 168 [[168, 136, 17]]29

10 3 280 [[280, 252, 15]]29

10 3 280 [[280, 250, 16]]29

10 3 280 [[280, 248, 17]]29

10 3 280 [[280, 246, 18]]29

10 3 280 [[280, 244, 19]]29

4 Conclusion

We have constructed two classes of quantum MDS codes whose parameters are given
by [[λ(q−1), λ(q−1)−2d+2, d]]q , where 2 ≤ d ≤ (q+1)/2+λ−1 and q+1 = λr
with r even, and [[λ(q−1), λ(q−1)−2d+2, d]]q , where 2 ≤ d ≤ (q+1)/2+λ/2−1
and q + 1 = λr with r odd. The first class of quantum MDS codes has much larger
minimum distance than the known ones. The second class of quantum MDS codes is
new in the sense that its parameters are different from all the known ones and they
also have much larger minimum distances. It would be interesting to go on this line of
study, and more new quantum codes with good parameters may be constructed from
classical constacyclic codes.

Acknowledgments We would like to thank the referees for their invaluable comments and a very
meticulous reading of the manuscript. This research is supported by the National Natural Science Founda-
tion of China under Grant No. 61370089, and the Fundamental Research Funds for the Central Universities
under Grant No. 2013HGCH0024.

References

1. Ashikhmin, A., Kill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inf. Theory 47(7), 3065–
3072 (2001)

2. Aydin, N., Siap, I., Ray-Chaudhuri, D.J.: The structure of 1-generator quasi-twisted codes and new
linear codes. Des. Codes Cryptogr. 24, 313–326 (2001)

3. Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Comb. Des. 8(3), 174–188 (2000)
4. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over

G F(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)
5. Fan, J., Chen, H.: Construction of pure asymmetric quantum alternant codes based on subclasses of

alternant codes (2014). arXiv:1401.3215v2
6. Feng, K.: Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p p ≥ 3 exist. IEEE Trans. Inf. Theory 48(8),

2384–2391 (2002)
7. Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2(1), 757–775

(2004)
8. Grassl, M., Rötteler, M., Beth, T.: On quantum MDS codes. In: Proceedings of the International

Symposium on Information, Chicago, USA, p. 356 (2004)

123

http://arxiv.org/abs/1401.3215v2


New quantum MDS codes 889

9. Hu, D., Tang, W., Zhao, M., Chen, Q., Yu, S., Oh, C.H.: Graphical nonbinary quantum error-correcting
codes. Phys. Rev. A. 78(1), 012306(1–11) (2008)

10. Jin, L., Ling, S., Luo, J., Xing, C.: Application of classical Hermitian self-orthogonal MDS codes to
quantum MDS codes. IEEE Trans. Inf. Theory 56(9), 4735–4740 (2010)

11. Jin, L., Xing, C.: A construction of new quantum MDS codes. IEEE Trans. Inf. Theory 60(5), 2921–
2925 (2014)

12. Kai, X., Zhu, S.: New quantum MDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2),
1193–1197 (2013)

13. Kai, X., Zhu, S., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf.
Theory 60(4), 2080–2085 (2014)

14. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields.
IEEE Trans. Inf. Theory 52(11), 4892–4914 (2006)

15. Knill, E., Laflamme, R.: Theory of quantum error-correcting codes. Phys. Rev. A 55(2), 900–911
(1997)

16. Krishna, A., Sarwate, D.V.: Pseudocyclic maximum-distance-separable codes. IEEE Trans. Inf. Theory
36(4), 880–884 (1990)

17. La Guardia, G.G.: New quantum MDS codes. IEEE Trans. Inf. Theory 57(8), 5551–5554 (2011)
18. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev.

Lett. 77(1), 198–201 (1996)
19. Li, Z., Xing, L.J., Wang, X.M.: Quantum generalized Reed–Solomon codes: unified framework for

quantum MDS codes. Phys. Rev. A 77(1), 012306(1–4) (2008)
20. Li, R., Xu, Z.: Construction of [[n, n − 4, 3]]q quantum codes for odd prime power q. Phys. Rev. A.

82(5), 052316(1–4) (2010)

123


	New quantum MDS codes derived from constacyclic codes
	Abstract
	1 Introduction
	2 Review of constacyclic codes
	3 Codes construction
	4 Conclusion
	Acknowledgments
	References


