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Abstract How to use shared entanglement and forward classical communication to
remotely prepare an arbitrary (mixed or pure) state has been fascinating quantum
information scientists. Berry has given a constructive scheme for remotely preparing
a general pure state, using a pure entangled state and finite classical communication.
To optimize the classical communication cost, Berry employed a coding of the high-
dimensional target state. Though working in the high-dimensional cases, the coding
method is inapplicable for low-dimensional systems, such as a pure qubit. Since qubit
plays a central role in quantum information theory, here we propose an optimization
procedure which can be used to minimize the classical communication cost in prepar-
ing a general pure qubit. Interestingly, our optimization procedure is linked to the
uniform arrangement of N points on the Bloch sphere, which provides a geometric
description.

Keywords Remote state preparation · Quantum information · Quantum protocol

1 Introduction

In the field of quantum information processing, remote state preparation (RSP) is a
kind of protocol that transmits a quantum state from a sender (“Alice”) to a receiver
(“Bob”) using preshared entanglement and forward classical communication [1–6].
Unlike the teleportation protocols [7], in an RSP protocol the sender does not possess
a copy of the target state, but has complete classical knowledge of the state, which she
chooses from a given ensemble. RSP protocols can be divided into two categories:
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exactly (non-asymptotically) faithful and asymptotically faithful. The exactly faithful
RSP produces the desired states one at a time, while the asymptotically faithful RSP
only has an asymptotic efficiency. In the present paper, we are concerned with exactly
faithful RSP.

The first RSP protocol is proposed for preparing a qubit chosen from a great circle
on the Bloch sphere, using one maximally entangled state (ebit) and one classical bit
(cbit) communication [2]. Later, Lo [1], Leung and Shor [8] showed that two cbits
communication is necessary and sufficient for the RSP of an arbitrary pure qubit
with one ebit preshared. Though the above investigations are based on presharing
maximally entangled states, RSP can be performed with non-maximally entangled
state. The imperfection of entanglement may occur when the quantum resource is
delivered through a noisy channel or exposed to a noisy environment, which is common
in the real world and leads the cbits cost to a higher level.

Ye et al. [9] proofed that it is possible to remotely prepare a general pure state using
finite classical communication and one non-maximally entangled pure state. Soon
after, Berry proposed a step-by-step scheme for performing this RSP [10]. Because
the scheme is not optimized for classical communication cost, to minimize the cbits
cost an extra optimization method needs to be included. When the system dimension
N is large, Berry employed a coding method for the scheme to minimize cbits cost.
But when the system dimension N is small, such as the qubit case (N = 2), no
optimization method is given, and thus, the cbits cost is still far from minimized.

To solve this optimization problem, we propose a novel optimization procedure
for the remote preparation of a general pure qubit. Starting with giving a geometric
description of the scheme, we link the optimization procedure to the construction of
uniformly distributed points on the Bloch sphere. We introduce an algorithm called
spiral points [11], which can be used for easy construction of considerably uniformly
distributed points on a sphere. We use the spiral points to demonstrate the optimization
procedure. In order to show that the cbits cost after the optimization has been certainly
minimized, we calculate that the cbits versus ebits trade-off is between an upper bound
and a lower bound of theoretical limit.

2 Remote preparation of a general pure qubit

Here, we describe Berry’s scheme for preparing a general pure qubit. Assume Alice
and Bob share an entangled state of the form

|A〉 =
1∑

k=0

αk |k〉|k〉, (1)

αk > 0,
∑1

k=0 α
2
k = 1. Any two-qubit pure entangled state can be brought to this form

via local unitary operations at Alice’s location. We also denote the target state Alice
wants to prepare at Bob’s side by |β〉, which is known to her but unknown to Bob.

In Ref. [10], Berry summarizes this scheme as a three-step process. But we will
prepend a Step 0 to these three steps and thus make the scheme to be a four-step process.
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The Step 0 is generalized from the state approximating scheme in Berry’s work [10].
Later, we will see that the Step 0 is the key step leading to the optimization procedure.

To avoid unnecessary elaboration, we will treat Step 1 and Step 2 briefly based on
the following proposition. For more details, we refer to Ref. [10].

Proposition By allowing Alice and Bob to perform local operations and communi-
cate 2 bits of classical information, the possession of an entangled state in Eq. (1)
guarantees Alice the ability to remotely prepare an arbitrary qubit of the form

|ψ〉 =
1∑

k=0

ψkeiϕk |k〉, (2)

where ψ0 ≥ √
1 − r2, r = min{αi }.

We find that from the perspective of Bloch sphere, the ensemble of states satisfying
Eq. (2) can be represented by a |0〉-centered spherical cap, denoted by c0. And the
less entanglement [12] |A〉 has, the smaller spherical cap c0 Alice can prepare. With
this knowledge, we can restate the scheme for preparing a general pure qubit in a
geometric way, instead of Berry’s formularized description.

Here is the four-step process:
Step 0. Construct a distribution of N points (or states) |β ′

i 〉, i = 1, 2, . . . , N , on
the Bloch sphere. N should be large enough to make the set of spherical caps C =
{c1, c2, . . . , cN }, where ci = {|e〉 | |〈β ′

i |e〉|2 ≥ 1 − r2}, a cover of the Bloch sphere.
Further, define N unitary transformations Ui , each transforms c0 into ci , respectively.

Step 1–2. Alice prepares at Bob’s location a state |ψ〉 in c0 such that Bob can bring
|ψ〉 to the desired state |β〉 in ci by some unitary transformation Ui . This can be done
by an entanglement transformation followed by a disentangling measurement, and
costs 2 bits of classical information [10,13,14].

Step 3. Alice send Bob log N bits classical information to indicate him which Ui

should be used to bring |ψ〉 to |β〉.
Step 0 has been generalized from Berry’s approximate scheme, and one can see

clearly that the log N cbits cost in Step 3 depends on the point distribution given
in Step 0. To optimize the scheme, one needs an algorithm for constructing suitable
points’ distributions on the Bloch sphere. If we have an algorithm that can distribute
the centers of the spherical caps more uniformly in Step 0, less number of spherical
caps will be needed to cover the Bloch sphere on base of the same entanglement of |A〉,
so more classical communication will be saved in Step 3. To minimize the cbits cost,
what exactly one needs is an algorithm that constructs uniformly distributed points on
the Bloch sphere.

Before we come to the algorithm which is suited to the optimization, we show
the original algorithm (Berry’s approximate scheme) constructs non-uniform points’
distributions on the Bloch sphere, thus will lead to an unsatisfying classical commu-
nication cost. In the next section, we also make a quantitative comparison between the
original scheme and the one we come up with for optimization.
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Fig. 1 Points distribution given the Berry’s algorithm in Ref. [10] in the case of N = 43. Since some
points coincide with each other, only 28 (instead of 64) points are distinguishable (view along the negative
z direction)

Below is how Berry’s algorithm locates N spherical caps. Assume the state located
at the center of a spherical cap is expressed as

|β̃ ′〉 =
1∑

k=0

βk |k〉, (3)

where β0 is real, and β1 is complex. The state |β̃ ′〉 is not necessarily normalized, and
the corresponding normalized state will be denoted by |β ′〉. Berry begins with finding
on the interval [0, 1] D uniformly distributed numbers

(2n − 1)/D − 1, (4)

n = 1, 2, . . . , D. By picking 3 such numbers (repetition is allowed) as β0, the real
and imaginary parts of β1, a spherical cap is located. The total number of spherical
caps constructed by this algorithm satisfies N = D3.

In the above algorithm, although the spherical caps are represented by N points that
are uniformly distributed in the unit box, the actual distribution of the spherical caps on
the Bloch sphere is non-uniform. Worse, as two or more different |β̃ ′〉 may correspond
to one the same |β ′〉, lots of spherical caps coincide with each other. Figure 1 illustrates
the case of N = 43.

In this section, we have showed that the original scheme uses an algorithm for
non-uniform points’ distributions, thus suffers from an unsatisfying classical commu-
nication cost. And to optimize the scheme, we need an algorithm for constructions of
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uniformly distributed points on the Bloch sphere. However, except for some special
cases such as the arrangements of 4, 8, 6, 12, 20 points on a sphere, in which cases
we can use the vertices of the Platonic solids due to their perfect symmetry, finding
an algorithm that can uniformly arrange an arbitrary number of points on a sphere is
still an open question. Fortunately, there is still a variety of algorithms that can con-
struct quite uniform points distribution on a sphere. One simple way to describe and
compute algorithm is spiral points, which we will use to demonstrate the optimization
procedure in the next section.

3 Demonstrating the optimization procedure via spiral points

The problem of how to uniformly distribute points on a sphere has long been receiving
attention in researches like searching for large stable carbon molecules and locating
identical charged particles so that they are in equilibrium according to Coulomb’s law,
etc. Spiral point is an algorithm proposed for the explicit construction of considerably
uniformly distributed points on the sphere. It has the advantage of being simple to
describe and compute, thus suitable for the demonstration of the optimization proce-
dure in remote preparation of a pure qubit.

Just like the algorithm’s name, the construction of the spiral points is like drawing a
spiral path along the surface of the unit ball. One begins from setting the first spiral point
at the south pole of the sphere. To obtain the next spiral point, one proceeds upward
from the current point along a meridian to the height that is 2/(n−1) higher and travels
counterclockwise along a latitude for a fixed distance of 3.6/

√
N to arrive at the next

point. The entire path will end up at the north pole. Using spherical coordinates, the
i th spiral point pi is given by

θi = arccos (zi ) , (5)

zi = −1 + 2(i − 1)

N − 1
, 1 ≤ i ≤ N , (6)

φ1 = φN = 0, (7)

φi =
⎛

⎝φi−1 + 3.6√
N

1√
1 − z2

i

⎞

⎠ (mod2π), 2 ≤ i ≤ N . (8)

In Fig. 2, one can see how uniform the distribution of 64 spiral points looks.
Now let us calculate the cbits versus ebits trade-off for the scheme using spiral

points. But before we can calculate the trade-off, we must introduce the concept of
Voronoi diagram [15]. A Voronoi diagram is a way of dividing space into numbers of
regions. In the context of Voronoi diagram, the spiral points pi are called sites. For
each site, there will be a corresponding polygon-shaped region consisting of all points
closer to this site than to any other. These regions are called Voronoi cells, whose
edges are equidistant from two sites, and vertices equidistant from three or more sites
(Figure 2 gives an illustration of Voronoi cells corresponding to the 64 spiral points.).
Let us denote by v{i, j} the j th vertex of the Voronoi cell corresponding to pi .
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Fig. 2 Spiral points for N = 64. The mesh on the sphere shows the Voronoi cells corresponding to spiral
points (view along the negative z direction)

Since every spherical cap ci is centered at the spiral point pi , C will not be a cover
of the Bloch sphere until every ci covers the Voronoi cell corresponding to pi . One
can measure the size of ci by the infidelity radius rI, which is defined by 1 minus the
fidelity between the central state and a boundary state, i.e., rI = r2. Similarly, one can
measure the size of the hardest to cover Voronoi cell by

ρI(N ) = max
{

1 − ∣∣〈v{i, j}|pi
〉∣∣2 | for any pi and related v{i, j}

}
. (9)

In order to make C a cover of the Bloch sphere, N should be large enough to ensure
ρI(N ) ≤ rF . To compute ρI(N ), we need to obtain the coordinates of all v{i, j}.

In the problem of generating a Voronoi diagram from a given set of points, except
for some special points’ distributions, it is generally hard to find analytic solutions.
One different approach that is commonly seen is to adopt a numerical solution. There
are several algorithms developed for computing the spherical Voronoi diagram [15–
17]. We write our program in Mathematica to implement the spherical version of
the sweep line algorithm, which requires time O(N log N ) for constructing Voronoi
Diagram [17]. By taking the spiral points as input, the program is executed for the
input size N from 3 to 1,024. We list part of the result (for N = 2n , n = 1, 2, . . . , 10)
in the table.

Based on the obtained values of ρI(N ), we can compute the classical bits cost versus
entanglement of the resource state. The smallest integer N which satisfies the equation
rF ≥ ρI(N ) is used to calculate the classical bits cost log N , and the entanglement
is calculated by −r2 log r2 − (1 − r2) log(1 − r2). We show the result in Fig. 3.
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N 2 4 8 16 32
ρI 0.5 0.5 0.259739 0.120679 0.054644
N 64 128 256 512 1024
ρI 0.026443 0.013054 0.006607 0.003326 0.001669

Fig. 3 The cbits cost versus
ebits for RSP of pure qubits
using partially entangled state.
The dotted curve is that based on
the original scheme given in
Ref. [10], and the solid curve is
the result obtained when spiral
points are used. The
dashed-dotted curve and the
dashed curve are an upper bound
and a lower bound on the
optimized classical
communication cost for RSP
scheme of this type. The red dots
are drawn from the cases which
are presented in table (Color
figure online)
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Comparing with that of the original scheme proposed in Ref. [10], we can see that
the classical bits cost after using spiral points is significantly reduced. Actually, the
classical bits cost is reduced to a level very close to the limit for RSP scheme of this
type, because it is between an upper bound and a lower bound of this limit (refer to
Eqs. (23) and (24), respectively, of Ref. [10]).

It must be emphasized that Fig. 3 only shows the classical bits cost in Step 3. The
total classical bits cost for RSP schemes of this type should count the 2 bits in Step 2.

4 Conclusions

In this paper, we propose an optimization procedure which can be used to minimize the
classical communication cost in remotely preparing a general pure qubit. By restating
the RSP scheme in a geometric way, we related the optimization of the scheme to an
algorithm that constructs uniformly distributed points on the Bloch sphere. Unlike an
extra procedure adds to the scheme, the algorithm that the optimization needed can be
integrated into the scheme directly.

To give a clear demonstration of this optimization procedure, we use an algorithm
named spiral points, which gives a quite uniform points distribution with considerable
simplicity. We calculate the cbits versus ebits trade-off, and the result shows that using
a uniform points distribution algorithm like spiral points in the scheme reduced the
classical bits cost to a level near optimal.
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