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Abstract We present a way for implementing controlled teleportation of an arbitrary
unknown pure state of a qutrit with the control of two groups of agents via entangle-
ment. In our proposal, the sender can successfully teleport the qutrit state to a distant
receiver with the help of all agents. However, if one agent in each group does not
cooperate, the receiver cannot gain any information (including amplitude information
or phase information or both) about the qutrit state to be teleported. Since a qubit is a
special case of a qutrit when the state lies in a fixed two-dimensional subspace of the
qutrit, the present proposal can be also applied in the implementation of controlled
teleportation of an arbitrary unknown pure state of a qubit with many control agents
in two groups. We note that our proposal is the first one to use two groups of agents
to achieve controlled teleportation.

Keywords Controlled teleportation · Entanglement · Agent · Qutrit · Qubit

1 Introduction

Since the pioneering work by Bennett et al. [1] on teleporting an arbitrary unknown
pure state of a qubit from a sender (Alice) to a distant receiver (Bob) with the aid of
Einstein–Podolsky–Rosen (EPR) correlation, quantum teleportation (QT) has flour-
ished in both theoretical and experimental aspects and become one of the most impor-
tant research fields in quantum information science. During the past decade, much
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1056 X.-L. He et al.

progress in QT has been achieved. On the one hand, a great number of theoretical
schemes for QT using different quantum entanglement channels (resource entangled
states) have been proposed [2–10]. On the other hand, QT has been experimentally
demonstrated in various physical systems such as photons [11], optical fields [12],
nonclassical wave packets of light [13], nuclear magnetic resonance [14], and ions
or atoms [15,16]. Moreover, QT over 16-km free-space link or between two optical
free-space links separated by 97 km has been demonstrated recently [17,18].

In 1998, Karlsson and Bourennane [19] generalized the idea of Bennett et al. and
showed that an arbitrary unknown pure state of a qubit could be teleported to either one
of two receivers using a three-qubit entangled Greenberger–Horne–Zeilinger (GHZ)
state (|000〉 + |111〉) /√2.However, only one of the two (either one) can fully recover
the qubit state conditioned on the measurement outcome of the other. Since then,
Hillery et al. [20] first proposed the idea of quantum secret sharing (QSS), i.e., a
message is split into several parts such that no subset of parts can read the message,
but the entire set does. In their work, it was shown that a qubit of information can be
secretly shared by two agents via a three-qubit GHZ state or by more than two agents
through a four-qubit GHZ state. Note that both works in [19] and [20] were based on
an entangled GHZ state initially shared by the sender, the agents and the receivers.
So far, a large number of QSS schemes using various entangled states as quantum
channels have been proposed [21–24] since the earlier works in [19,20]. Moreover,
several experimental demonstrations of QSS have also been reported [25–27].

Recently, there is much interest in controlled teleportation (CT), i.e., the teleporta-
tion for which a sender sends quantum information to a distant receiver via the control
of agents in a network. The CT plays an important role in quantum communication.
It has many applications such as networked quantum information processing, cryp-
tographic conferencing, data transfer under the control of multiple supervisors as an
application for office networks; remote secure voting, and so on.

In this work, we restrict ourselves to a CT via entanglement. Namely, the CT is
implemented by using an entangled state, which is initially shared by the sender,
the receiver, and the control agents, prior to their CT operations. Up to today, many
schemes for controlled teleportation of a single-qubit or multi-qubit state via entangle-
ment have been proposed [28–41]. In addition, schemes for controlled teleportation
of an unknown quantum pure state of a qutrit [42–45] or a qudit [46–53] via entangle-
ment have been also presented. However, we find that the existing entanglement-
based CT schemes [28–53] or the CT implementations via entangled-based QSS
schemes [19–24] have a drawback, i.e., if one or more agents do not cooperate, the
receiver cannot fully reconstruct the original quantum state but can still gain part
of the original information (e.g., amplitude information about the qubit state, the
qutrit state, or the qudit state to be teleported; for a detailed discussion, see, e.g.,
Ref. [28]). Also, the existing protocols usually only concern with a simple thresh-
old scheme: As long as the number of cooperating agents exceed some number, then
the teleportation goes through. But some more complicated controlling structures
among the agents may be of use in practice. A possible scenario is that when sev-
eral controllers vote to decide whether to allow the transfer of some quantum state,
the votes by some privileged voters may have more weight than those of the other
voters.
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Controlled teleportation with the control of two groups 1057

In this paper, we propose a way of performing controlled teleportation of an arbitrary
unknown pure state of a qutrit (a quantum system of dimension d = 3) with the control
of two groups of agents via entanglement. As shown below, if all agents in the two
groups cooperate, the sender can perfectly teleport the qutrit state to a distant receiver.
However, even if one agent in each group does not cooperate, the receiver cannot gain
any information (including amplitude information or phase information or both) about
the qutrit state to be teleported.

In our protocol, the number of agents in the two groups need not be equal. The choice
of the agent who does not cooperate (see the condition in the previous paragraph) is
independent of the choice in the other group, that is, the protocol does not require a
fixed mapping between the members of the two groups.

This paper is organized as follows. In Sect. 2, we present a way to realize the CT
of an arbitrary unknown pure state of a qutrit with one agent in each group. In Sect. 3,
we consider the CT of the qutrit state with two groups of agents, where each group
may contain an arbitrary number of agents. A brief discussion on the security of this
proposal and the concluding summary are presented in Sect. 4.

2 Controlled teleportation with one agent in each group via entanglement

In this section, we present a way for teleporting an arbitrary unknown pure state of a
qutrit from the sender Alice to a distant receiver Bob, via the control of two agents
1 and 1′ each in one group (Fig. 1). Namely, we wish that Bob can fully recover the
original state of Alice’s qutrit when the two agents cooperate with him; however, Bob
gains no information about Alice’s qutrit state to be teleported if the two agents do not
cooperate with him.

The message qutrit considered here is labeled as qutrit m throughout this paper.
Generally speaking, in terms of a set of orthonormal basis states {|0〉 , |1〉 , |2〉}, any
arbitrary pure state |ϕ〉m of qutrit m can be written as

|ϕ〉m = α |0〉m + β |1〉m + γ |2〉m , (1)

Fig. 1 Controlled teleportation
with one agent in each group.
Alice, Bob, agents 1, and 1′ keep
the qutrits a, b, 1, and 1′,
respectively. Each dashed circle
indicates a group while each dot
represents a qutrit
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where α, β, and γ are coefficients and satisfy the normalization condition |α|2 +
|β|2 + |γ |2 = 1.

The procedure for implementing our task is described below:
Firstly, Alice prepares the following entangled state through her local operations

|Φ〉 =
2∑

j=0

| j〉a | j〉1

(
|00〉1′b + ω j |11〉1′b + ω2 j |22〉1′b

)
, (2)

where ω = ei2π/3, the subscripts a, b, 1, and 1′ represent the qutrits a, b, 1, and
1′, respectively. Here and below, normalization factors are omitted for simplicity.
Then, Alice sends the qutrits 1, 1′, and b to agent 1, agent 1′, and Bob, respectively,
while keeping the qutrit a to herself (Fig. 1). The initial state of the whole system is
|Ψ 〉 = |ϕ〉m ⊗ |Φ〉, which can be written as

|Ψ 〉 =
2∑

r,s=0

|ϕrs〉ma ⊗ |ξrs〉11′b . (3)

Here, |ϕrs〉ma is the basis state of the qutrits m and a, which is given by

|ϕrs〉ma =
2∑

j=0

ω jr | j〉m | j ⊕ s〉a , (4)

while |ξrs〉11′b is the state of the three qutrits 1, 1′, and b, which is given by

|ξrs〉11′b = α |0 ⊕ s〉1

(
|00〉1′b + ωs |11〉1′b + ω2s |22〉1′b

)

+βω−r |1 ⊕ s〉1

[
|00〉1′b + ω1+s |11〉1′b + ω2(1+s) |22〉1′b

]

+ γω−2r |2 ⊕ s〉1

[
|00〉1′b + ω2+s |11〉1′b + ω2(2+s) |22〉1′b

]
, (5)

where j ⊕ s means j + s mod 3 ( j = 0, 1, 2).
Secondly, Alice takes a measurement on her two qutrits m and a along the basis

{|ϕrs〉ma} and sends the measurement result to Bob through classical communication.
From Eq. (3), one can see that if the two qutrits m and a are measured to be in the
basis state |ϕrs〉ma by Alice, then the qutrits 1, 1′, and b will be in the state |ξrs〉11′b
given in Eq. (5).

Thirdly, agents 1 and 1′ perform a Hadamard transformation on their qutrits, which
is described by |0〉 → ∑2

l=0 |l〉 , |1〉 → ∑2
l=0 ω

l |l〉 , and |2〉 → ∑2
l=0 ω

2l |l〉 . As a
result, we have the following state transformation

| j ⊕ s〉 → |0〉 + ω j+s |1〉 + ω2( j+s) |2〉 , (6)

where j, s ∈ {0, 1, 2}. Based on Eq. (6), we can rewrite the above state |ξrs〉11′b as
follows
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Controlled teleportation with the control of two groups 1059

|ξrs〉11′b =
2∑

p,q=0

|pq〉11′ ⊗ |ϕ〉b , (7)

with

|ϕ〉b = α
[
|0〉b + ωs+q |1〉b + ω2(s+q) |2〉b

]

+ ωp−rβ
[
|0〉b + ω1+s+q |1〉b + ω2(1+s+q) |2〉b

]

+ ω2(p−r)γ
[
|0〉b + ω2+s+q |1〉b + ω2(2+s+q) |2〉b

]
, (8)

where p, q ∈ {0, 1, 2}.
Now, agents 1 and 1′ take local measurements on their respective qutrits 1 and 1′ in

the Z basis {|0〉 , |1〉 , |2〉} and tell Bob their measurement outcomes through classical
communication. It can be seen from Eq. (7) that if the outcomes of the measurements
of agents 1 and 1′ are p and q, respectively, the qutrit b will be in the state |ϕ〉b as
described by Eq. (8).

Lastly, Bob performs a Hadamard transformation on his qutrit b. After that, the
state |ϕ〉b becomes

|ϕ〉b = α (x |0〉b + y |1〉b + z |2〉b)

+ ωp−rβ (y |0〉b + z |1〉b + x |2〉b)

+ ω2(p−r)γ (z |0〉b + x |1〉b + y |2〉b) , (9)

with

x = 1 + ωs+q + ω2(s+q),

y = 1 + ω1+s+q + ω2(1+s+q),

z = 1 + ω2+s+q + ω2(2+s+q). (10)

The value taken by s + q involved in Eq. (10) satisfies one of the following three
cases: (A) 3 ⊕ (s + q) = 0, (B) 3 ⊕ (s + q) = 1, and (C) 3 ⊕ (s + q) = 2. The
remaining operations for Bob to recover the original qutrit state (1) depend on these
three cases. Fortunately, as discussed previously, Bob knows the values of r and s
according to the measurement outcomes from Alice as well as the values of p and q
according to the measurement outcomes from the two agents. Thus, Bob can predict
“which of the three cases A, B, and C” the value of s + q falls into. In the following,
we will give a discussion on how Bob recovers the qutrit state (1) for each of the three
cases.

(A) Case for 3 ⊕ (s + q) = 0

For 3 ⊕ (s + q) = 0, we have s + q = 0 or 3. In this case, it follows from Eq. (10)
that x = 3 and y = z = 0. Thus, the state (9) can be written as

|ϕ〉b = α |0〉b + ωp−rβ |2〉b + ω2(p−r)γ |1〉b . (11)
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Define operators Z = ∑2
j=0 ω

j | j〉 〈 j | and U0 = ∑2
j=0 | j ⊕ j〉 〈 j |. One can see that

if Bob performs a unitary operation Z2(p−r)U0 on the state (11), the state (11) changes
to

|ϕ〉b = α |0〉b + β |1〉b + γ |2〉b , (12)

which implies that the original qutrit state (1) is restored through Bob’s qutrit b.

(B) Case for 3 ⊕ (s + q) = 1

For 3 ⊕ (s + q) = 1, we get s + q = 1 or 4. In this case, it follows from Eq. (10)
that z = 3 and x = y = 0. Hence, the state (9) becomes

|ϕ〉b = α |2〉b + ωp−rβ |1〉b + ω2(p−r)γ |0〉b . (13)

Define an operator U1 = ∑2
j=0 | j ⊕ j ⊕ 2〉 〈 j | (here and below, j ⊕ j ⊕ 2 means

j + j + 2 mod 3, and j ⊕ j ⊕ 1 implies j + j + 1 mod 3). It can be seen that if Bob
applies a unitary operation Z2(p−r)U1 on the state (13), the state (13) changes to the
state (12), i.e., the original qutrit state (1).

(C) Case for 3 ⊕ (s + q) = 2

For 3 ⊕ (s + q) = 2, one has s + q = 2. In this case, we obtain from Eq. (10) that
y = 3 and x = z = 0. As a result, the state (9) reduces to

|ϕ〉b = α |1〉b + ωp−rβ |0〉b + ω2(p−r)γ |2〉b . (14)

Define an operator U2 = ∑2
j=0 | j ⊕ j ⊕ 1〉 〈 j |. After Bob applies a unitary operation

Z2(p−r)U2 on the state (14), the state (14) changes to the state (1).
In the above, we have explicitly shown that for any measurement outcomes of Alice

and the two agents, Bob can restore the original qutrit state (1) by performing some
suitable unitary operations on his qutrit b.

We now assume that the two agents 1 and 1′ do not cooperate with Bob. In this
case, one can see from Eq. (3) that if the two qutrits m and a are measured to be in the
basis state |ϕrs〉ma by Alice, then the qutrits 1, 1′ and b will be in the state |ξrs〉11′b
described by Eq. (5). One can verify that for s ∈ {0, 1, 2}, the states |0 ⊕ s〉 , |1 ⊕ s〉 ,
and |2 ⊕ s〉 involved in Eq. (5) are orthogonal to one another. Thus, it can be easily
found from Eq. (5) that after tracing over the qutrits 1 and 1′, the normalized density
operator of qutrit b belonging to Bob is given by

ρb = T r11′ |ξrs〉11′b 〈ξrs |
11′b 〈ξrs | ξrs〉11′b

= Ib, (15)

where Ib = ∑2
j=0 | j〉 〈 j | is the identity operator for qutrit b. This result (15) shows

that if the two agents 1 and 1′ do not cooperate, Bob cannot gain any information
(encoded through amplitude or phase) about Alice’s qutrit message state (1).

123
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3 Controlled teleportation with many agents in each group via entanglement

In this section, we consider a more general case that the sender Alice teleports the
message state (1) of qutrit m to a distant receiver Bob, via the control of n agents
(1, 2, . . . , n) in one group and n′ agents (1′, 2′, . . . , n′) in the other group (Fig. 2). We
hope that Bob can fully restore the message state (1) of Alice’s qutrit m as long as
all agents in the two groups cooperate with him; however, Bob gains no information
about Alice’s qutrit message state (1) to be teleported if one agent in each group does
not collaborate with him.

This task can be implemented using the following prescription:
Firstly, Alice prepares the following entangled state of (n + n′ + 2) qutrits through

her local operations (e.g., using the circuit in Fig. 3)

|Φ〉 =
2∑

j=0

| j〉a | j〉⊗n
(
|0〉⊗n′ |0〉b + ω j |1〉⊗n′ |1〉b + ω2 j |2〉⊗n′ |2〉b

)
, (16)

Fig. 2 Controlled teleportation
with many agents in each group.
Each dashed circle represents a
group while each dot denotes a
qutrit
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Fig. 3 Circuit for preparation of the resource entangled state described in Eq. (16). The operation sequence
is from left to right. Each qutrit is initially in the state |0〉. Each H gate is a Hadamard gate defined before
Eq. (6). Each gate with the symbol circled plus denotes a two-qutrit controlled NOT gate (with control

on the filled circle): CNOT= ∑2
j=0 | j〉c 〈 j | ⊗ X j

t , where X = ∑2
j=0 | j ⊕ 1〉 〈 j |, the subscripts c and t

represent the control qutrit and the target qutrit, respectively
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where subscripts a and b represent qutrits a and b; | j〉⊗n = | j〉1 | j〉2 . . . | j〉n with
subscripts 1, 2, . . . , n representing qutrits 1, 2, . . . , n; and |l〉⊗n′ = |l〉1 |l〉2 . . . |l〉n′
(l = 0, 1, 2) with subscripts 1, 2, . . . , n′ labeling qutrits 1, 2, . . . , n′, respectively.
Then, Alice sends qutrit b to Bob, qutrits 1, 2, . . . , n to agents (1, 2, . . . , n), and
qutrits 1, 2, . . . , n′ to agents (1, 2, . . . , n′), respectively; while she keeps qutrit a to
herself (see Fig. 2). The initial state of the whole system is |Ψ 〉 = |ϕ〉m ⊗ |Φ〉, which
can be written as

|ψ〉 =
2∑

r,s=0

|ϕrs〉ma ⊗ |ξrs〉12...n1′ 2′
...n′ b , (17)

where |ϕrs〉ma is the basis state of the qutrits m and a, given in Eq. (4), while
|ξrs〉12...n1′ 2′

...n′ b is the state of the qutrits 1, 2, . . . , n, 1′, 2′, . . . , n′ and b, which
is given by

|ξrs〉12...n1′2′...n′b = α |0 ⊕ s〉⊗n
(
|0〉⊗n′ |0〉b + ωs |1〉⊗n′ |1〉b + ω2s |2〉⊗n′ |2〉b

)

+βω−r |1 ⊕ s〉⊗n
[
|0〉⊗n′ |0〉b+ω1+s |1〉⊗n′ |1〉b+ω2(1+s)⊗n′ |2〉b

]

+ γω−2r |2 ⊕ s〉⊗n
[
|0〉⊗n′ |0〉b+ω2+s |1〉⊗n′ |1〉b+ω2(2+s)⊗n′ |2〉b

]
.

(18)

Secondly, Alice takes a measurement on her two qutrits m and a along the basis
{|ϕrs〉ma} and sends the measurement result to Bob through classical communication.
From Eq. (17), one can see that if the two qutrits m and a are measured to be in the
basis state |ϕrs〉ma by Alice, then the qutrits 1, 2, . . . , n, 1′, 2′, . . . , n′, and b will be
in the state |ξrs〉12...n1′2′...n′b given in Eq. (18).

Thirdly, all agents perform a Hadamard transformation on their qutrits. As a result,
we find that the state (18) becomes

|ξrs〉12...n1′ 2′
...n′ b =

2∑

p1, p2,...,pn ,q1′ ,q2′ ,...,qn′=0

|p1 p2 . . . pnq1′q2′ , . . . , qn′ 〉 ⊗ |ϕ〉b ,

(19)
with

|ϕ〉b = α
[
|0〉b + ωs+q ′ |1〉b + ω2(s+q ′) |2〉b

]

+ωp′−rα
[
|0〉b + ω1+s+q ′ |1〉b + ω2(1+s+q ′) |2〉b

]

+ω2(p′−r)α
[
|0〉b + ω2+s+q ′ |1〉b + ω2(2+s+q ′) |2〉b

]
. (20)

Here, p′ = ∑n
i=1 pi and q ′ = ∑n′

i ′=1′ qi ′ .
Now, all agents take a measurement on their qutrits in the Z basis and send their

measurement outcomes to Bob. From Eq. (19), one can see that if the outcomes of
the measurements on the qutrits 1, 2, . . . , n, 1′, 2′, . . . , n′ are p1, p2, . . . , pn , q1′ ,
q2′ , . . . , qn′ , respectively, the qutrit b will be in the state |ϕ〉b described by Eq. (20).
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Controlled teleportation with the control of two groups 1063

Lastly, Bob performs a Hadamard transformation on his qutrit b. After that, the
state (20) changes to

|ϕ〉b = α
(
x ′ |0〉b + y′ |1〉b + z′ |2〉b

)

+ωp′−rβ
(
y′ |0〉b + z′ |1〉b + x ′ |2〉b

)

+ω2(p′−r)β
(
z′ |0〉b + x ′ |1〉b + y′ |2〉b

)
, (21)

with

x ′ = 1 + ωs+q ′ + ω2(s+q ′),

y′ = 1 + ω1+s+q ′ + ω2(1+s+q ′),

z′ = 1 + ω2+s+q ′ + ω2(2+s+q ′). (22)

Note that Eq. (21) has the same form as Eq. (9), and Eq. (22) takes the same form
as Eq. (10). In addition, we note that the value taken by s + q ′ involved in Eq. (22)
satisfies one of the following three cases: (A) 3 ⊕ (

s + q ′) = 0 (i.e., s + q ′ = 3m1),
leading to x ′ = 3, y′ = z′ = 0; (B) 3 ⊕ (

s + q ′) = 1 (i.e., s + q ′ = 3m2 + 1), leading
to z′ = 3, x ′ = y′ = 0; and (C) 3 ⊕ (

s + q ′) = 2 (i.e., s + q ′ = 3m3 + 2), resulting
in y′ = 3, x ′ = z′ = 0 (where m1,m2, and m3 are integers). Therefore, for cases A,
B, and C here, the state (21) reduces to the states (11), (13), and (14), respectively,
with p there replaced by p′ now. Furthermore, according to the discussion given in
the previous subsections A, B, and C in Sect. 2, the three reduced states (11), (13),
and (14) can be restored to the original qutrit state (1), by Bob performing unitary
operations Z2(p′−r)U0, Z2(p′−r)U1, and Z2(p′−r)U2 on them, respectively.

The above steps except for the preparation of the resource entangled state in the
first step are illustrated in Fig. 4.

In what follows, we will prove that if one agent in each group does not cooperate,
Bob cannot gain any information about the qutrit state (1) to be teleported.

From Eq. (17), one can see that if the two qutrits m and a are measured to be
in the basis state |ϕrs〉ma by Alice, then the qutrits belonging to all agents and Bob
will be in the state |ξrs〉12...n1′2′...n′b given in Eq. (18). Now suppose that except one
agent (say agent k) in one group and the other agent (say agent l ′) in the other group,
all the remaining agents cooperate with Bob. Namely, they first perform a Hadamard
transformation on their respective qutrits, which leads the state (18) to

|ξrs〉12...n1′2′...n′b =
∑ ∣∣p1 p2 . . . pk−1 pk+1 . . . pnq1′q2′ . . . q(l−1)′q(l+1)′ . . . qn′

〉⊗|ξrs〉kl ′b ,
(23)

with

|ξrs〉kl ′ b = α |0 ⊕ s〉k

[
|00〉 + ωs+q̃ |11〉 + ω2(s+q̃) |22〉

]

l ′ b

+βω p̃−r |1 ⊕ s〉k

[
|00〉 + ω1+s+q̃ |11〉 + ω2(1+s+q̃) |22〉

]

l ′ b

+ γω2( p̃−r) |2 ⊕ s〉k

[
|00〉 + ω2+s+q̃ |11〉 + ω2(2+s+q̃) |22〉

]

l ′ b
, (24)
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1064 X.-L. He et al.

Fig. 4 Quantum circuit for controlled teleportation with many agents in each group. The element con-
taining H corresponds to a Hadamard transformation, the large square box with an arrow and the letters
BM represents a generalized Bell-state measurement, each small square box with an arrow indicates a
measurement in the single-qutrit Z basis, and U denotes Bob’s unitary recovery operation on his qutrit b,

which equals to Z2
(

p′−r
)
U0, Z2

(
p′−r

)
U1, and Z2(p′−r)U2 for the three cases (A), (B), and (C) discussed

in the text, respectively

where p̃ = ∑n
i=1,i 
=k pi , q̃ = ∑n′

i ′=1′,i ′ 
=l ′ qi ′ . Next, they take a measurement on their
qutrits in the Z basis. From Eq. (23), one can see that if they measure their qutrits
in the state

∣∣p1 p2 . . . pk−1 pk+1 . . . pnq1′q2′ . . . q(l−1)′q(l+1)′ . . . qn′
〉
, the qutrits k, l ′,

and b belonging to agents k and l ′ and Bob are in the state |ξrs〉kl ′ b above.
As mentioned previously, the three states |0 ⊕ s〉 , |1 ⊕ s〉 , and |2 ⊕ s〉 are orthog-

onal to one another for s ∈ {0, 1, 2}. Hence, it can be easily found from Eq. (24) that
after tracing over the qutrits k and l ′, the density operator of the qutrit b belonging to
Bob is given by

ρb = T rkl ′ |ξrs〉kl ′b 〈ξrs |
kl ′b 〈ξrs | ξrs〉kl ′b

= Ib. (25)

This result (25) demonstrates that Bob can not gain any information (either encoded
through amplitude or phase) about the qutrit state (1) to be teleported, when agent k
in one group and agent l ′ in the other group do not cooperate with him.

4 Discussion and conclusion

Let us discuss the security of this proposal against eavesdropping attack. Like all exist-
ing entanglement-based proposals for CT, the security of this proposal is determined
by whether the resource state described by Eq. (16) can be safely established among
Alice, Bob, and all agents. In other words, the security of this proposal depends on
whether Alice could securely transmit the n + n′ + 1 qutrits initially prepared in the
state (16) to the n + n′ agents and Bob. Since the procedure for testing whether Alice
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sends a qutrit to each agent is the same as that for testing whether Alice sends a qutrit
to Bob, in the following, let us consider how to test if Alice sends a qutrit to Bob
safely. The testing procedure is described below.

Alice first prepares many pairs of qubits in Bell states
∣∣φ±〉 = |00〉 ± |11〉 and∣∣ψ±〉 = |01〉 ± |10〉. Each pair is randomly chosen to be in one of the four Bell

states. She now sends Bob one of the Bell-state qubits in each Bell pair as well
as the qutrit in a sequence (note that the qutrit is the qutrit b involved in the state
(16)) while keeping the other half of the Bell-state qubits to herself. Note that in an
experimental implementation, each qubit here should be embedded in a qutrit, so that
any eavesdropper cannot tell the difference between the qutrit b from the other qubits
simply by looking at the dimensions of the systems. If a third party Eve intercepts
some of the Bell-state qubits from Alice, replaces them by fakes, and then sends the
false qubits to Bob, or if she entangles those Bell-state qubits with auxiliary systems,
then each of the false or disturbed qubits received by Bob does not preserve the
original correlation with the corresponding Bell-state qubit at Alice’s hand. Thus, the
eavesdropping can be detected in the following way. Alice picks some of her Bell-state
qubits randomly and tells Bob which qubits that he received should be selected for the
testing. Alice and Bob then take measurements on their selected qubits along a single-
qubit Z or X basis that they agree on and then compare their measurement outcomes.
Since Alice knows which Bell state was initially prepared for each pair of qubits
shared by her and Bob, she knows the desired correlation between their measurement
outcomes. If Alice finds that the observed correlation between their measurement
outcomes is not what she expected, she knows that there is eavesdropping. If this
occurs, Alice informs Bob to discard all qubits and the qutrit that he had received,
and then, they restart the whole testing procedure above. On the other hand, if no
eavesdropping is revealed, then Alice tells Bob which particle he received is the qutrit
b, such that Bob can select it out to be used later in the CT protocol.

In conclusion, we have proposed a way for teleporting an arbitrary unknown pure
state of a qutrit to a distant receiver with the control of two groups of multiple agents
via entanglement. We first considered the CT with one agent in each group and then
expanded the number of agents to n agents in one group and n′ agents in the other group.
In our proposal, all agents only need to take single-qutrit measurements and announce
their measurement outcomes to the receiver. A sender can successfully teleport the
qutrit state to a distant receiver, and the success rate of teleportation is unity, when
all agents in the two groups cooperate. However, if one agent in each group does not
collaborate, the receiver cannot gain any information (including amplitude information
or phase information or both) about the qutrit message state to be teleported. In order
for the receiver to see the maximally mixed state of equations (15) and (25), there must
be two agents that do not collaborate, one in each group. It should be mentioned that
if all of the agents in one group, e.g., the agents knowing pi (i = 1, 2, . . . , n), decide
not to cooperate, Bob can still learn some information about the amplitude. But, in
contrast, with just one agent in each group—who does not collaborate, this protocol
can prevent any information leakage.

Note that a qubit is a special case of a qutrit when the state lies in a fixed two-
dimensional subspace of the qutrit. Hence, the present proposal can be also applied in
the implementation of controlled teleportation of an arbitrary unknown pure state of
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a qubit with many control agents in two groups. This protocol might be extended to
controlled teleportation of an arbitrary pure state of a qudit (a d-dimensional quantum
system, where d ≥ 2 is arbitrary), for which no information to be teleported can be
accessed by the receiver even if two agents (one in each group) do not cooperate.
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