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Abstract A quantum Boolean image processing methodology is presented in this
work, with special emphasis in image denoising. A new approach for internal image
representation is outlined together with two new interfaces: classical to quantum and
quantum to classical. The new quantum Boolean image denoising called quantum
Boolean mean filter works with computational basis states (CBS), exclusively. To
achieve this, we first decompose the image into its three color components, i.e., red,
green and blue. Then, we get the bitplanes for each color, e.g., 8 bits per pixel, i.e.,
8 bitplanes per color. From now on, we will work with the bitplane corresponding to
the most significant bit (MSB) of each color, exclusive manner. After a classical-to-
quantum interface (which includes a classical inverter), we have a quantum Boolean
version of the image within the quantum machine. This methodology allows us to
avoid the problem of quantum measurement, which alters the results of the measured
except in the case of CBS. Said so far is extended to quantum algorithms outside
image processing too. After filtering of the inverted version of MSB (inside quantum
machine), the result passes through a quantum-classical interface (which involves
another classical inverter) and then proceeds to reassemble each color component and
finally the ending filtered image. Finally, we discuss the more appropriate metrics for
image denoising in a set of experimental results.
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1 Introduction

Quantum computation and quantum information is the study of the information
processing tasks that can be accomplished using quantum mechanical systems. Like
many simple but profound ideas, it was a long time before anybody thought of doing
information processing using quantum mechanical systems [1].

Quantum computation is the field that investigates the computational power and
other properties of computers based on quantum-mechanical principles. An important
objective is to find quantum algorithms that are significantly faster than any classical
algorithm solving the same problem. The field started in the early 1980s with sugges-
tions for analog quantum computers by Benioff [2] and Feynman [3,4], and reached
more digital ground when in 1985 Deutsch [5] defined the universal quantum Turing
machine. The following years saw only sparse activity, notably the development of
the first algorithms by Deutsch and Jozsa [6] and by Simon [7], and the development
of quantum complexity theory by Bernstein and Vazirani [8]. However, interest in the
field increased tremendously after Peter Shor’s [9] very surprising discovery of effi-
cient quantum algorithms (or simulations on a quantum computer) for the problems
of integer factorization and discrete logarithms in 1994.

Since most of current classical cryptography is based on the assumption that these
two problems are computationally hard, the ability to actually build and use a quan-
tum computer would allow us to break most current classical cryptographic systems,
notably the Rivest, Shamir and Adleman (RSA) system [10,11]. In contrast, a quan-
tum form of cryptography due to Bennett and Brassard [12] is unbreakable even for
quantum computers.

On the other hand, and as well say Hirota et al. [13] inside the introduction of their
work:

Quantum computation has appeared in various areas of computer science such
as information theory, cryptography, image processing, etc. [1] because there
are inefficient tasks on classical computers that can be overcome by exploiting
the power of the quantum computation. Processing and analysis of images in
particular and visual information in general on classical computers have been
studied extensively [14–17]. On quantum computers, the research on images
has faced fundamental difficulties because the field is still in its infancy. To start
with, what are quantum images or how do we represent images on quantum
computers? Secondly, what should we do to prepare and process the quantum
images on quantum computers?

Precisely, these two questions represent the essence on which this paper is based,
i.e., the correct (and more efficient) internal representation of an image in a quan-
tum context, and its recovery, once processed internally. Thus, we recognize only 3
milestones in the brief history of quantum image processing, namely:

– All starts with the pioneering work of Prof. Salvador E. Venegas-Andraca [18–21]
at Keble College, Oxford University, UK (currently at Tecnológico de Monterrey,
Campus Estado de México), where he proposes quantum image representations
such as Qubit Lattice [22]; in fact, this is the first doctoral thesis in the specialty,
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– The history continues with the quantum image representation via the Real Ket [23]
of Prof. Jose I. Latorre Sentís, at Universitat de Barcelona, Spain, with a special
interest in image compression in a quantum context, and

– Finally, we arrive at the proposal of Prof. Hirota et al. [13] from Tokyo Institute
of Technology, for a flexible representation of quantum images to provide a rep-
resentation for images on quantum computers in the form of a normalized state
which captures information about colors and their corresponding positions in the
images.

These works marked the path and viability of quantum image processing; however,
we believe that a new type of internal representation of images, which enable an easier
representation of traditional algorithms of traditional digital image processing in a
quantum computer, as well as more easy and efficient recovery of images processed
outside the quantum computer is imperative. This is the essence of this work, which
is organized as follows:

The new approach for internal image representation is outlined in Sect. 2, where we
present the development of quantum Boolean image processing concept. Besides, in
this section, we show the proposed new interfaces classical to quantum and quantum
to classical, and a new quantum Boolean image denoising called quantum Boolean
mean filter (QBMF). In Sect. 3, we discuss the more appropriate metrics for image
denoising in a set of experimental results. Finally, Sect. 4 provides a conclusion and
future works proposal of the paper.

2 Quantum Boolean image processing (QuBoIP)

QuBoIP is presented as a branch of quantum image processing that is composed of
the following steps, namely:

– Color decomposition and bit slicing
– Classical-to-quantum interface (C2QI)
– Quantum Boolean image denoising
– Quantum-to-classical interface (Q2CI)
– Bit reassembling and color recomposition

On the other hand, QuBoIP needs a particular type of qubit, being that the fundamental
concept of quantum computation and quantum information. In its general shape, the
qubit forms linear combinations of states, often called superpositions [24–26]:

|ψ〉 = α|0〉 + β |1〉, (1)

where |α|2 + |β|2 = 1, with the states |α〉 and |β〉 are understood as different polar-
ization states of light, where α and β are complex numbers. The special states |0〉 and
|1〉 are known as computational basis states (CBS) and form an orthonormal basis for

this vector space, being |0〉 =
[
1
0

]
and |1〉 =

[
0
1

]
. The final and general form of

|ψ〉 is
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|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉 (2)

where 0 ≤ θ ≤ π, 0 ≤ φ < 2π , with α = cos θ
2 and β = eiφ sin θ

2 [1].

2.1 Color decomposition and bit slicing

We decompose the original noisy image in its color components (i.e., red, green and
blue), and in turn, each color component in their corresponding bitplanes thanks to
bit slicing, in this case thanks to an own MATLAB� function [27] called slicer(.),
and from which we get many bitplanes as depth in bit has the image to be treated. In
Fig. 1, we get 8 bitplanes, where bitplane 7 is called most significant bit (MSB) and
it is the most morphologically committed bitplane with the original image [28]. In
return, bitplane 0 is the least significant bit (LSB), and it is the least morphologically
committed bitplane with the gray image.

Two important aspects:

– From here to the end of this paper, we are going to work with MSB, i.e., with we
will say “image,” we are saying MSB.

– The classical version of the slicer(.) function in MATLAB� code is as follows:

function Ibpp = slicer(I,bpp)

% Casting of algorithm:
% bpp = bit-per-pixel
% I = Each color component of the image
% Ibpp = I in bpp bitplanes (strictly binary)

[ROW,COL] = size(I);
for r = 1:ROW

for c = 1:COL
aux = d2b(I(r,c)-1,bpp);
for b = 1:bpp

Ibpp(r,c,b) = aux(b);
end

end
end

return;

function bvpp = d2b(p,bpp)

% Casting of algorithm:
% d = bit depth
% p = pixel value
% bvpp = binary vector per pixel

bvpp = zeros(1,bpp);
d = 1;
while p > 0,

bvpp(d) = mod(p,2);
p = p/2;
p = floor(p);
d = d+1;

end
bvpp = rot90(rot90(bvpp));

return;

If wewere to highlight the advantage of working inQuBoIP rather than inQuIP [13,
18–23], it would certainly be the fact that as QuBoIP working with CBS exclusively,
the measurement is not a problem as in the rest of quantum physics, because when
we measured an |1〉, the result is an unchanged |1〉, and when we measured an |0〉, the
result is an unchanged |0〉.

Figure 2 shows us—in detail—the eight bitplanes of Angelina, from MSB (bit-
plane 7) to LSB (bitplane 0). Let observe that as we move from MSB to LSB, dif-
ferent bitplanes are increasingly unrecognizable compared with the original image,
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Fig. 1 Bitplanes of the red component for Angelina obtained by slicing, with special remarks for MSB
and LSB (Color figure online)

i.e., Angelina. As we can see, LSB is completely different regarding original Angelina
morphology. This is one reasonwhy the LSB is steganography territory [28]. The other
reason is that any change in the LSB does not produce visually detectable changes in
the original image.
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Fig. 2 Angelina and her eight bitplanes, including MSB and LSB

2.2 Classical-to-quantum interface (C2QI)

In this section, a complete description of the operating principle of this interface is
presented. This includes the relationship between external and internal representation
of MSB (bitplane 7) for each color.
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Fig. 3 Relationship between classical 0, α and IMSB

Fig. 4 Relationship between classical 1, α and IMSB

Figure 3 shows us the relationship between classical 0, α and IMSB. In this case,
α = 1 when IMSB = 0 and |ψ〉 = |0〉, with θ = 0◦ and for any φ.

On the other hand, in Fig. 4, we can see the relationship between classical 1, α

and IMSB. This case is the opposite of the previous, with α = 0 when IMSB = 1 and
|ψ〉 = |1〉, with θ = π and for any φ too.

As we can see, the geometric relationship between Figs. 3 and 4 is inverted. This
happens to limiting values on the Bloch’s sphere such as the CBS, that is to say, |0〉
and |1〉.

We use only theMSB of each color (see Figs. 1, 2), and we introduce the mentioned
MSB to the C2QI. The output of such interface will go to the quantum algorithm,
directly. See Fig. 5.
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Fig. 5 Classical-to-quantum interface

This interface is automatic and direct because we need the following correspon-
dences, i.e., 0 → |0〉 and 1 → |1〉, only. According to this, obviously, α = 1 − IMSB,
this task is performed by a classical investor, see Fig. 5. Therefore, we obtain the rest
of the wave function component as follows: |β| =

√
1 − |α|2, for any φ (see Sect. 2).

This latter task is performed by an actuator, which builds a wave function ψin consid-
ering that the key factor of its task is the projection on the z axis (for this reason, it
is called Actuatorz), i.e., α. As we can see in Figs. 3 and 4, α is inverted with respect
to IMSB, i.e., if IMSB = 0, then α = 1, when |ψ〉 = |0〉; however, if IMSB = 1, then
α = 0, when |ψ〉 = |1〉. That is to say, it is only necessary to consider the z axis of
Bloch’s sphere when we work with CBS (see Figs. 3, 4), i.e., when we work with one
qubit only, which is all that is used in this technology.

Everything mentioned here not only facilitates the construction of future interfaces,
but also makes themmore simple and robust while maintaining the quality of process-
ing within the quantum computer, for both quantum image processing [18–23] and
quantum signal processing [29,30].
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Fig. 6 The selection mask on the noisy QuBo |IMSB〉 in a horizontal rafter produce the denoised QuBo
|IMSB〉

2.3 Quantum Boolean (QuBo) image denoising

In this section, we present a method for quantum Boolean image denoising called
QBMF, which works on an internal representation (inside quantum computer) of bit-
plane 7 (or MSB) for each color component of classical noisy image. Here, we use an
algorithm based on a selection mask with a horizontal rafter (see Fig. 6) on that noisy
QuBo |IMSB〉 to which we must obtain a denoised QuBo |IMSB〉 [31–33]. The main
idea is to make an interaction between the selection mask and a portion of the QuBo
|IMSB〉 to be processed (with the same dimension as the mask) and that the result of
said interaction to replace central pixel value of the QuBo |IMSB〉 portion affected by
the selection mask [14–17].

2.3.1 Quantum Boolean mean filter

Based on Fig. 7, we take a selection mask of |w × w〉 (often called kernel, which
should be of any size, in this case, 3 × 3, provided it has the same number of rows
and columns and the dimension is an odd number) elements, which is applied in a
horizontal rafter way.

This algorithm involves four steps based on Fig. 7, namely:

1. Let us calculate the threshold of the algorithm based on the number of elements
of the used kernel, i.e., |t〉 = |(w × w − 1) /2〉

2. Let us built the selection mask |W (rw, cw)〉 = |IMSB (r − (1 + �w/2�) + rw ,
c − (1 + �w/2�) + cw)〉
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with r ∈ [1 + �w/2� , ROW − �w/2�] , c ∈ [1 + �w/2� ,COL − �w/2�] ,
rw ∈ [1, w] , and cw ∈ [1, w]

being: rw (row index) and cw (column index) inside of the selection mask, respec-
tively; �•� means integer part of a real number; ROW (number of row) and COL
(number of column) of the |IMSB〉, respectively; r (row index) and c (column index)
of the |IMSB〉, respectively.

3. Let us calculate the number of |1〉 inside the selection mask |W 〉 for each pair (r,c),
i.e.,

|n〉 =
w∑

rw=1

w∑
cw=1

|W (rw, cw)〉.

4. Let us compare |n〉 and |t〉. If |n〉 > |t〉, then |IMSB (r,c)〉 = |1〉, else |IMSB (r,c)〉 =
|0〉.

Then, we present the complete quantum algorithm.

function
MSB 2

I = qubomf(
MSBI )

“
MSBI = incoming quantum Boolean 

MSBI for each color”

“
MSB 2

I = outgoing quantum Boolean 
MSBI for each color”

MSB 2
I = 

MSBI
[ROW,COL] = sizeof(

MSBI )

( )1 2t w w /= × −
for r from 1+floor(w/2) to ROW-floor(w/2)
for c from 1+floor(w/2) to COL-floor(w/2)
for rw from 1 to w 
for cw from 1 to w 

( ) ( ) ( )( )1 2 1 2MSBW rw,cw I r w / rw,c w / cw= − + + − + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
end for

end for

( )
1 1

w w

rw cw
n W rw,cw

= =

= ∑ ∑
If n > t then

MSB 2
I 1=

else
MSB 2

I 0=
end if

end for
end for

return function
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Fig. 7 An example of 3 × 3 filter window for selection mask algorithm on a |IMSB〉

Figure 7 shows us a numerical example (top-right) of 3 × 3 filter window for
selection mask, where in that portion of the noisy |IMSB〉, the number of |1〉 is greater
than the number of |0〉, and then, the denoised |IMSB〉 will be |1〉.

The computational complexity of this quantum algorithm is O(ROW × COL×
w × w); however, although it is not a two-dimensional convolution, they have the
same computational cost [14–17]. Quantum Boolean mean filter and Boolean mean
filter have the same filtering performance, and both have a better performance than
original and traditional mean filter (discrete and classical), see Sect. 3.2.

Working with CBS frees us from the influence that superposition and entanglement
have normally when we work with generic cubits. That is, we are in a very special
borderline case, i.e., it is similar to classical Boolean [28]. In fact, there is no differ-
ence between quantum Boolean and pure Boolean (classical) regarding their results
in a filtering context. The quantum Boolean version has the same computational cost
of classical Boolean version. Besides, for this algorithm, we will seek that |ψ〉 be
CBS (all the time), because it is easier its state treatment in the presence of quantum
decoherence. On the other hand, the quantum decoherence time depends on the imple-
mentation technology of the quantum computer and not the quantum algorithm itself
[1]. However, it is easier a collapse of the wave function with generic qubits that with
CBS, the state is more stable in a quantum Boolean context than in a generic quantum
context, in special after measurement of the state.
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Finally, we present the classical Boolean version of mean filter, e.g., inMATLAB�
[27] code outside quantum computer.

function Imsb2 = qbmf(Imsb)

% Casting of algorithm:
% W = square selection mask for rafter (kernel or window)
% w = size of W (it’s an odd number)
% t = threshold
% rw = row index of W
% cw = column index of W
% n = number of 1s inside each W
% Imsb = incoming classical Boolean MSB for each color
% Imsb2 = outgoing classical Boolean MSB for each color

Imsb2 = Imsb;
[ROW,COL] = size(Imsb);
w = input('w = ');
t = (w*w-1)/2;
for r = 1+floor(w/2):ROW-floor(w/2)

for c = 1+floor(w/2):COL-floor(w/2)
for rw = 1:w 

for cw = 1:w 
W(rw,cw) = Imsb(r-(1+floor(w/2))+rw,c-(1+floor(w/2))+cw);

end
end
n = sum(sum(W));
if(n > t)

Imsb2(r,c) = 1;
else

Imsb2(r,c) = 0;
end

end
end

return;

2.4 Quantum-to-classical interface (Q2CI)

Here, we recover each denoised |ψ〉 from quantum algorithm, and we introduce it to
the Q2CI. The output of such interface will be the IMSB of each color, which will be
used alongside the other bitplanes to reconstruct each color component of the denoised
image, and then, we turn to reconstruct the entire final denoised image. See Fig. 8.

As we can see in previous sections, there is a direct and automatic correspondence
between [0, 1] and [|0〉, |1〉]. Such correspondence (and in that order) will be the
classical-to-quantum interface. In the same way, but in reverse order, there is a direct
and automatic correspondence between [|0〉, |1〉] and [0, 1]. In this correspondence,
but in that order, we know it as a quantum-to-classical interface. Unlike [34], the
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Fig. 8 Quantum-to-classical interface

measurement is not a problem, since it does not alter the outcome measure. Therefore,
it is not necessary and estimator after measurement as in [34].

In Table 1, we can see these statements, where left column represents the state
before measurement, while right column represents the state after that, for CBS and
generic state (see Sect. 2), where M̂m means measurement operator, and |ψ〉pm is the
post-measurement quantum state in its generic form [1–22].

In Fig. 8, we can see first the quantum algorithm, whose output is directed to the
interface, which begins with themeasurement operator, whichmeasures the projection
on the z axis (for this reason, it is called Measurementz), i.e., α. That is to say, it is
only necessary to measure the z axis as in the case of the previous interface.

The Q2CI continues with a classical inverter, i.e., IMSB = 1− α. This latter task is
performed by a classical invertor, see Fig. 8.

As we can see in Figs. 3 and 4, α is inverted with respect to IMSB, i.e., if IMSB = 0,
then α = 1, when |ψ〉 = |0〉; however, if IMSB = 1, then α = 0, when |ψ〉 = |1〉. That
is to say, here too, it is only necessary to consider the z axis of Bloch’s sphere when
we work with CBS (see Figs. 3, 4), i.e., when we work with one qubit only, which is
all that is used in this technology.
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Table 1 Measurement outcome
with CBS and generic state

Before quantum measurement After quantum measurement

|0〉 |0〉
|1〉 |1〉
|ψ〉 |ψ〉pm = M̂m |ψ〉√

〈ψ |M̂†
m M̂m |ψ〉

Table 1 is the cornerstone of this methodology called quantum Boolean image
processing in general, and quantum Boolean image denoising in particular. It will
allow us (among others):

(a) to build more robust interfaces with respect to measurement noise (decoherence
[35–42]),

(b) to ignore the problem of quantum measurement [1,22,43], which was above
mentioned,

(c) a lower computational and memory cost [28], working only with MSB, and
(d) to export this criterion beyond the quantum image processing [29,30].

2.5 Bit reassembling and color recomposition

We take each denoised IMSB and its corresponding remaining untouched bitplanes,
and we reassemble each color component with them, thus, and with the latter, we
recompose the image. This latter task is performed by a own MATLAB� function
[27] called reassembler(), see the following code:

function I = reassembler(Ibpp)

% Casting of algorithm:
% bpp = bit-per-pixel
% I = Each color component of the image
% Ibpp = I in bpp bitplanes (strictly binary)
% bvpp = binary vector per pixel

[ROW,COL,bpp] = size(Ibpp);
for r = 1:ROW

for c = 1:COL
for b = 1:bpp

bvpp(b) = Ibpp(r,c,b);
end
I(r,c) = b2d(bvpp)+1;

end
end

return;

function p = b2d(bvpp)

% Casting of algorithm:
% bpp = bit-per-pixel
% p = pixel value
% bvpp = binary vector per pixel

bpp = length(bvpp);
p = 0;
for b = 1:bpp

p = p + bvpp (b) * 2^(bpp-b);
end

return;
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3 Metrics and simulations

In this section, we present a set of metrics for these experiments which are well
knowledge in digital image processing [14–17], and which consists in the comparison
between: original versus classical mean filtered, and original versus quantum Boolean
mean filtering algorithms (outside and inside quantum computer) respectively.

3.1 Metrics

Below, we present the most conspicuous metrics used in digital image processing
[14–17].

3.1.1 Mean absolute error (MAE)

This is a conspicuous metric for these cases, which is a quantity used to measure
how close forecasts or predictions are to eventual outcomes. The mean absolute error
(MAE) for gray scale images is given by

MAE =
∑
r,c

∣∣Ioriginal(r, c) − Idenoised(r, c)
∣∣

R × C
(3)

which for two R ×C (rows-by-columns) images Ioriginal and Idenoised, where Idenoised
means classical processed image, or quantum processed image, interchangeably.

3.1.2 Mean square error (MSE)

MSE indicates average square error of the pixels throughout the image between the
original image Ioriginal and the classical or quantum processed image Idenoised, see
Figs. 9 and 10. A lower MSE indicates a smaller difference between both images.
This means that there is a significant filter concordance. Nevertheless, it is necessary
to be very careful with the edges. The formula for the MSE calculation for grayscale
images is

MSE =
∑
r,c

(
Ioriginal(r, c) − Idenoised(r, c)

)2
R × C

(4)

Here, R × C pixels is the size of the images too, including original image I .

3.1.3 Peak signal-to-noise ratio (PSNR)

PSNR is a term for the ratio between the maximum possible power of an Ioriginal
and the power of corrupting difference that affects the fidelity of the classical or
quantum processed image representation regarding original representation. Because
many Ioriginal have a very wide dynamic range, PSNR will be expressed in terms of
the logarithmic decibel scale.
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Fig. 9 Complete classical
image denoising, where MF
means mean filtering

Fig. 10 3 × 3 averaging kernel
often used in mean filtering

We will use it as a measure of quality of coincidence between original and classical
or quantum denoised versions. It is most easily defined via the mean squared error
(MSE)which for two R×C (rows-by-columns) gray scale images Ioriginal and Idenoised,
that is to say:

PSNR = 10 log10

(
max

(
Ioriginal

)2
MSE

)
= 20 log10

(
max

(
Ioriginal

)
√
MSE

)
(5)

Here, max
(
Ioriginal

)
is the maximum pixel value of the image. When the pixels

are represented using 8 bits per sample, this is 255. More generally, when samples
are represented using linear pulse code modulation (PCM) with B bits per sample,
maximum possible value of max

(
Ioriginal

)
is 2B − 1. For color images with three

red–green–blue (RGB) values per pixel, the definition of PSNR is the same except the
MSE is the sum over all squared value differences divided by image size and by three.

Typical values for the PSNR are between 30 and 50dB, where higher is better.

3.2 Simulations

In Fig. 9, we can see the complete classical image denoising procedure, which will
serve to any type of convolution mask filter.

However, in this case, we use the classical mean filter. The idea of mean filtering
is simply to replace each pixel value in an image with the mean (“average”) value of
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its neighbors, including itself. This has the effect of eliminating pixel values which
are unrepresentative of their surroundings. Mean filtering is usually thought of as a
convolution filter. Like other convolutions, it is based around a kernel, which represents
the shape and size of the neighborhood to be sampled when calculating the mean.
Often, a 3×3 square kernel is used, as shown in Fig. 10, although larger kernels (e.g.,
5 × 5 squares) can be used for more severe smoothing. (Note that a small kernel can
be applied more than once in order to produce a similar but not identical effect as a
single pass with a large kernel.)

For these experiments, all images are subjected to MATLAB� functions explained
before, plus others built-in functions which (among other) separate the original image
into its color components [27], e.g., the noise was generated using a MATLAB�
R2014a (Mathworks, Natick, MA) [27] built-in function called imnoise. The noise
type was salt & pepper, with a noise density of 0.05.

In Fig. 11, we can see the complete quantum Boolean image denoising (for color
images). Besides, we can appreciate the seven-level decomposition, processing and
recomposition of the noisy image. In detail, we can observe level of color decom-
position, bit slicing, classical-to-quantum interface, quantum Boolean mean filtering,
quantum-to-classical interface, bit reassembling and, finally, color recomposition.

On the other hand, first image is Agus in Miami (Fig. 12), which is a color bitmap
file format (lossless) [44] of 1,326-by-1,326 pixels with 24 bits per pixel (bpp).

Figure 12 (top-left) showsus the original image used in this experiment; noisy image
(top-right); the filtered images, processed by using classical mean filter (middle-left),
and quantum Boolean mean filter techniques (middle-right), respectively. Besides,
Fig. 12 (down-center) shows the difference pixel-to-pixel between classical denoised
versus original (noiseless) and quantum Boolean denoised versus original (noiseless),
too.Aswe can see, there are values of pixelswhere the difference between two versions
is remarkably sensitive.

Figure 13 (top-left) shows us the original noiseless IMSB (from red color component)
used in this experiment; noisy IMSB (top-right); the denoised α, processed by using
QBMF (down-left), and the denoised IMSB (down-right), respectively.

In Table 2, we can see MAE, MSE and PSNR results for classical and quantum
Boolean among original and denoised images. The results are slightly better quantum
version than the classical version.

This difference in favor of the quantum version is telling us a mismatch between
the classical representation of the mean filtering and its quantum Boolean counterpart.
This can only be because the noise is concentrated almost exclusively (but fully) in
the MSB which is where operates the quantum Boolean version.

Second image is Angelina (Fig. 14), which is a color bitmap file format (lossless)
of 1,348-by-1,078 pixels with 24 bits per pixel (bpp).

We have the same noise as in the previous case.
Figure 14 (top-left) showsus the original image used in this experiment; noisy image

(top-right); the filtered images, processed by using classical mean filter (middle-left),
and quantum Boolean mean filter techniques (middle-right), respectively. Besides,
Fig. 14 (down-center) shows the difference pixel-to-pixel between classical denoised
versus original (noiseless) and quantum Boolean denoised versus original (noiseless),
too.Aswe can see, there are values of pixelswhere the difference between two versions

123



1664 M. Mastriani

Fig. 11 Complete quantum Boolean image denoising (for color images), where, QuBo, QuBoMF, cl2qu
and qu2cl means quantum Boolean, quantum Boolean mean filtering, classical to quantum and quantum to
classical, respectively. We must note that: (1) we work with bitplane 7 (MSB) only, while the remaining 7
directly passed to the reconstruction process, i.e., not even they are affected by interfaces, and (2) converters
have built-in interfaces; however, we do not show them to avoid complicating the figure

is remarkably sensitive here too. However, such is less than in the previous case. It
has to do with a lower edges richness and texture level of Angelina versus Agus in
Miami. Others important responsible factors for this difference are constituted by: (a)
Agus in Miami has higher values in its LUMA [14–17]; (b) Agus in Miami has more
brightness and contrast; and (c) Agus in Miami is larger than Angelina.

This later attribute seems irrelevant to naked eye; however, it is not, since, to process
more qubits, it automatically increases the detrimental intervention of bad (or poorly)
modeled noise. Besides, a larger image means more openness in the time window of
the process which may be more exposed to quantum decoherence [22,35–42]. This is
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Fig. 12 Denoising for Agus in Miami
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Fig. 13 Bitplane 7 (MSB) of the red component for Agus in Miami (Color figure online)

Table 2 Metric of denoising for
Agus in Miami: classical versus
quantum Boolean

Metric Classical Quantum Boolean

MAE 2.4908 2.0228

MSE 20.3573 15.1819

PSNR 35.0436 36.3175

a topic that should be further investigated if we want to process images of very high
resolution in a quantum computer.

Figure 15 (top-left) shows us the original noiseless IMSB (from red color component)
used in this experiment; noisy IMSB (top-right); the denoised α, processed by using
QBMF (down-left), and the denoised IMSB (down-right), respectively.

In Table 3, we can see MAE, MSE and PSNR results for classical and quantum
Boolean among original and denoised images. Here too, the results are slightly better
quantum version than the classical version.
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Fig. 14 Denoising for Angelina

Finally, last image is Lena (Fig. 16), which is a color bitmap file format (lossless)
of 512-by-512 pixels with 24 bits per pixel (bpp).

In this case, identical considerations to previous cases are used regarding present
noise in the image. Tests with other types of noise gave identical comparative results

Figure 16 (top-left) showsus the original image used in this experiment; noisy image
(top-right); the filtered images, processed by using classical mean filter (middle-left),
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Fig. 15 Bitplane 7 (MSB) of the red component for Angelina (Color figure online)

Table 3 Metric of denoising for
Angelina: classical versus
quantum Boolean

Metric Classical Quantum Boolean

MAE 2.2284 1.6471

MSE 17.5597 10.7488

PSNR 35.6856 37.8172

and quantum Boolean mean filter techniques (middle-right), respectively. Besides,
Fig. 16 (down-center) shows the difference pixel-to-pixel between classical denoised
versus original (noiseless) and quantum Boolean denoised versus original (noiseless),
too.

Figure 17 (top-left) shows us the original noiseless IMSB (from red color component)
used in this experiment; noisy IMSB (top-right); the denoised α, processed by using
QBMF (down-left), and the denoised IMSB (down-right), respectively.

In Table 4, we can see MAE, MSE and PSNR results for classical and quantum
Boolean among original and denoised images. Here too, the results are slightly better
quantum version than the classical version.

Based on the analysis of the comparison between Agus, Angelina and Lena, we can
understand why Lena is showing the best fit between classical and quantum Boolean
version of filters. This can be seen clearly in the metrics of Tables 2, 3 and 4, where
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Fig. 16 Denoising for Lena
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Fig. 17 Bitplane 7 (MSB) of the red component for Lena (Color figure online)

Table 4 Metric of denoising for
Lena: classical versus quantum
Boolean

Metric Classical Quantum Boolean

MAE 2.8560 2.4055

MSE 25.0223 19.6892

PSNR 34.1475 35.1885

we obtain the lower difference between MAE and MSE among noiseless original and
the respective denoised versions from three images so far treated. In return, this image
has the highest difference value of PSNR among noiseless original and the respective
denoised versions from three images so far treated. The reasons are clear: (a) Lena
has lower values in its LUMA [14–17]; (b) Lena has less brightness and contrast; and
(c) Lena is the smallest.

123



Quantum Boolean image denoising 1671

4 Conclusions and future works

A quantum Boolean image denoising methodology was presented in this work. A
classical Boolean version of such methodology was presented too. As we have seen,
the quantum Boolean version of the filter works with CBS, exclusively. To achieve
this, we first decompose the image into its three color components, i.e., red, green and
blue. Then, we get the bitplanes for each color, e.g., 8 bits per pixel, i.e., 8 bitplanes
per color. From then on, we work with the bitplane corresponding to the MSB of
each color, exclusive manner. After a classical-to-quantum interface (which includes
a classical inverter), we have a quantum Boolean version of the image within the
quantummachine. This methodology (which works with CBS, no other) allowed us to
avoid the problem of quantum measurement, which alters the results of the measured
except in the case of CBS. Summing up, this methodology will enable: (1) a simpler
development of logic quantum operations, where they will closer to those used in the
classical logic operations, and (2) building simple and robust classical-to-quantum and
quantum-to-classical interfaces. Said so far is extended to quantum algorithms outside
image processing too. After filtering of the inverted version of MSB (inside quantum
machine), the result passes through a quantum-classical interface (which involves
another classical inverter) and then proceeds to reassemble each color component and
finally the ending filtered image. Finally, this methodology minimizes the impact of
decoherence [45–50], not only for quantum image denoising but also for quantum
image segmentation [51].

In a special section onmetrics and simulations, we useMAE,MSE, and peak signal-
to-noise ratio (PSNR) as metrics to compare the original noiseless image versus its
denoised versions, i.e., classical and quantumBoolean. The chosen denoisingmethods
for simulations were the classic mean filter and its quantum Boolean version. The
results of both simulations (outside and inside of quantum computer, respectively)
show the existence of notable differences between them,which are obvious considering
that each version of the algorithm is implemented in completely different spaces.
However, although they were different, the quantum Boolean results were superior
to those obtained by the classical technique, that is to say, all images gave more
appropriate metric values. The latter is clearly seen in the computer simulations.

Clearly, the next step is the application of this technique to signal and video process-
ing on a quantum computer [29,30], and thus, we may exploit all its computational
power and huge storage capacity. It is right to think that quantum computers will
have more and more ability to absorb the computational cost of an almost unlimited
number of operations in unit time in the near future. This way, quantum technol-
ogy will become the main platform for multimedia real-time implementations (such
as processing, storage and transmission of music and video) which combined with
quantum cryptography will allow it to become the epitome of multimedia on mobile.
Thus, the new quantum technology will get move completely to the current digital
technology in every today imaginable and unimaginable application.

Finally, the classical technique (i.e.,meanfiltering)was implemented inMATLAB�
R2014a (Mathworks, Natick, MA) [27] on a notebook with Intel� CoreTM i5 CPUM
430@2.27GHz and 6GBRAMonMicrosoft� Windows 7©Home Premium 32 bits.
Besides, a simulated version of quantum implementations was done on a GPU cluster,
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NVIDIA� Tesla© 2050 GPU [52] with a peak performance of approximately 500
GFLOPS, with an achieved performance of approximately 250 GFLOPS in OpenCL.
The GPU needed approximately 2.5 GB of bandwidth with InfiniBand connectivity
at quad data rate (QDR) QLogic� [53] or 40GB speeds.
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