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Abstract Image translation, which maps the position of each picture element into a
new position, is a basic image transformation. Although it has been deeply researched
and widely used in classical image processing, its quantum version is a vacancy.
This paper studies the quantum image translation (QIT) for the first time to promote
the development of quantum image processing. Two types of QIT: entire translation
and cyclic translation are proposed by giving the quantum translation circuits. The
translation in X -direction and Y -direction is separable, and the circuits for translating
right or left are different.

Keywords Quantum image processing · Image translation ·Quantum computation ·
Quantum circuit

1 Introduction

With reference to the importance of digital image processing in classical computers,
quantum image processing (QIP) will meet and has met its substantial development
along with the bright prospect of quantum computers.
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We think that the research about QIP has three main directions: (1) representing
quantum images; (2) transplanting basic classical image transformation into quantum
computers; and (3) senior QIP algorithms. We describe them briefly in the following.

(1) Representation of quantum images.

Research in the field of QIP started with proposals on quantum image representations
such as qubit lattice [1], real ket [2], FRQI [3], novel enhanced quantum representation
(NEQR) [4] and etc. The quantum images are two-dimensional arrays of qubits in [1]
and a quantum state in [2].

In 2011,Le et al. [3] proposed theflexible representationof quantum images (FRQI),
which captures information about colors and their corresponding positions in an image
into quantum states. FRQI fully uses the physical characteristics of quanta and provides
a flexible method to link color and location information, which makes users to process
any part of the image.

In 2013, Zhang et al. [4] improved the storage mode of color information in FRQI
and named the new representation as NEQR, which puts not only positions but also
colors in binary qubits. The improvement makes NEQR more similar to the represen-
tation of digital images in classical computers and easy to transplant classical image
processing algorithms to quantum computers. (We will introduce NEQR in Sect. 2.1)

(2) Basic QIP algorithms

Basic QIP algorithms are a set of processing modules, which are the foundations of
QIP. At present, there are four types of basic QIP algorithms: geometric transforma-
tion, color processing, image scrambling and frequency domain transformation.

• Geometric transformation: In 2010, the geometric transformations on quantum
images (GTQI) [5] was proposed which can realize flip, transposition and orthog-
onal rotation (90◦, 180◦ and 270◦). Jiang and Wang [6] realized a quantum image
scaling algorithm using nearest neighbor interpolation. It is the first time to give a
QIP method that changes the size of an image.

• Color processing: While it proposed the NEQR, Ref. [4] gave methods for color
inverse and image binaryzation to prove one of the advantages of NEQR: more
quantum image operations related to gray-scale information in the image can be
performed conveniently.

• Image scrambling: Arnold, Fibonacci and Hilbert image scrambling methods and
their improvements are given in Refs. [7–9]. Arnold and Fibonacci methods are
based on quantum adder. Hilbert method is decomposed into a alternate processing
about odd and even.

• Frequency domain transformation: Quantum Fourier transform [10], quantum
wavelet transform [11] and quantum discrete cosine transform [12,13] are pro-
posed to satisfy the requirement about frequency domain transformation.

Comparedwith huge amounts of classical image processing algorithms, the number
of the existing basic QIP algorithms is very small. Many algorithms such as rotation,
spatial warping, morphologic processing have never been studied.

123



Quantum image translation 1591

(3) Senior QIP algorithms

Under the restrictions on the lack of basic QIP algorithms, senior QIP algo-
rithms, such as edge detection, image segmentation, image enhancement are still
vacancies.

In this paper, we focus on image translation that belongs to basic QIP algorithms.
We discuss two kinds of image translations:

(1) Entire translation (ET): Translate the whole image. Fill the vacated position with
black (or other specified colors) and abandon the pixels over the image boundary.

(2) Cyclic translation (CT): Translate the whole image cyclically. Wrap the pixels
over the image boundary to fill the vacated position.

ET is widely used. Almost all of the image processing softwares have the function
of ET. Users can select all of an image and then move it. Figure 1 provides two
examples.

Figure 1a gives a dolphin jumping animation by implementing ET twice. Although
the animation is simple and not exquisite, it is an interesting application of ET and

Fig. 1 Entire translation. a An animation. b A montage
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Fig. 2 Cyclic translation. a The original amplitude image, b the amplitude image after fftshift, c the
schematic drawing of fftshift

maybe it will be the beginning of quantum animation or quantum video (because we
will offer its quantum circuit in Sect. 4).

Figure 1b shows a common scene of image processing software: moving the
shapes in two or more pictures to appropriate positions and combining them into
one picture.

CT is often used as an intermediate step of image processing algorithms.
For example, in general, after the Fourier transform of an image, the zero-
frequency component should be shifted to the center of the spectrum image.
The shifting process (we call it “fftshift”) is a kind of CT. Figure 2a, b gives
the amplitude of the Fourier spectrum of an image before and after fftshift. In
these two figures, the brighter a pixel, the greater the amplitude value of the
pixel. Figure 2c is the schematic drawing that illustrates the processing steps of
fftshift.

This paper proposes quantum image translation (QIT) algorithms by giving quan-
tum circuits to realize ET and CT respectively. As we know, this work has not been
studied yet.

The rest of the paper is organized as follows. A brief background on the NEQR
representation, image translation, quantumadder networks andquantumcomparator is
presented in Sect. 2. The quantum circuit architecture of image translation is discussed
in Sect. 3. This is followed in Sect. 4 by some examples to explain the circuit further.
Finally, a conclusion is given in Sect. 5.
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2 Preliminaries

2.1 Quantum image representation

In this paper, the NEQR is used to store quantum images as the form shown below.

|I 〉 = 1

2n

22n−1∑

i=0

|ci 〉 ⊗ |i〉

|ci 〉 = |cq−1
i . . . c1i c

0
i 〉, cki ∈ {0, 1}, k = q − 1, . . . , 1, 0, i = 0, 1, . . . , 22n − 1

|i〉 = |y〉|x〉 = |yn−1yn−2 . . . y0〉|xn−1xn−2 . . . x0〉, |y j 〉|x j 〉 ∈ {0, 1} (1)

where the binary sequence cq−1
i . . . c1i c

0
i encodes the color value (or gray value), and

the color range is 2q ; |i〉, for i = 0, 1, . . . , 22n − 1, encodes pixels’ positions in the
image; yn−1, yn−2, . . . , y0 along the vertical location and xn−1, xn−2, . . . , x0 along
the horizontal axis; and ⊗ denote the Kronecker product. The size of the quantum
image is 2n × 2n .

2.2 Image translation

Image translation is a geometric transformation that maps the position of each picture
element in an input (or original) image into a new position in an output (or translated)
image.

Assume I (x, y) is the original image, where (x, y) is the pixel coordinates, x, y =
0, 1, . . . , 2n − 1. The image translation is defined as follows.

xt = x ± tx
yt = y ± ty (2)

where (xt , yt ) is the pixel coordinates in the translated image, (tx , ty) is the translation
parameter which specify the desired horizontal and vertical pixel displacements, 0 ≤
tx , ty ≤ 2n − 1. If + is used, the image is translated right and/or down; if − is used,
the image is translated left and/or up.
Note 1 Equation (2) gives only the main features of image translation and does not
reflect the nuances between ET and CT. This problem will be solved in Sect. 3.

2.3 Quantum adder

Assume that |a〉 = |an−1an−2 . . . a0〉 and |b〉 = |bn−1bn−2 . . . b0〉 are two n-qubit
binary numbers, ai , bi ∈ {0, 1}, i = n − 1, n − 2, . . . , 0. Reference [14] gives the
quantum network ADDER that can add |a〉 and |b〉.

|d〉 = |a〉 + |b〉
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Fig. 3 ADDER and ADDER-MOD2n

where the output |d〉 = |dndn−1dn−2 . . . d0〉 is a (n + 1)-qubit number and dn is the
carry. If a + b < 2n , dn = 0; otherwise, dn = 1.

Reference [9] defines a quantum circuit module ADDER-MOD2n which can real-
ize (a + b)mod2n simply by ignoring the carry bit from ADDER module.

Figure 3 shows the two quantum modules.
Note 2 There is a thick black bar on the right-hand side of ADDER. In the following,
readers will see another case that the black bar is on the left-hand side. A network with
a bar on the left side represents the reversed sequence of elementary gates embedded
in the same network with the bar on the right side, i.e. they achieve opposite functions
according to the unitarity of quantum circuits. If we reverse the action of ADDER
with the input (a, b), the output will produce (a, a − b) when a ≥ b. When a < b,
the output is (a, 2n + (a − b)).

2.4 Quantum comparator

Wang et al. [15] give a quantum comparator circuit shown in Fig. 4 which compares
a and b. Its useful outputs are two qubits |e0〉 and |e1〉. In this paper, we only use |e0〉:
e0 = 0 indicates that a ≥ b; e0 = 1 indicates that a < b.

3 Quantum image translation

In Eq. (2), x/xt and y/yt appear in two formulas. There is no crossover between them
which indicates that the image translation processing can be decomposed into two sep-
arable parts (or steps): X -direction translation and Y -direction translation. In this sec-
tion, we take X -direction for instance to give the quantum image translation circuits.

We define the quantum circuits that realize entire translation and cyclic trans-
lation as ET(±tx ) and CT(±tx ) respectively, where tx is the translation parameter,
0 ≤ tx ≤ 2n − 1.

3.1 Entire translation

Figure 5 gives a schematic drawing about entire translation.
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Fig. 4 Quantum comparator

Fig. 5 The schematic drawing about ET. a Translating right. b Translating left

(1) Translating right: xt = x + tx

According to Fig. 5a, ET can be described as below.

cxt y =
{

0 if 0 ≤ xt ≤ tx − 1
cxy if tx ≤ xt ≤ 2n − 1

(3)

In order to realize the entire translation in quantum computers, Eq. (3) is changed
into another form. Because 0 ≤ x ≤ 2n − 1, tx ≤ xt = x + tx ≤ 2n − 1 + tx .
We separate the interval [tx , 2n − 1 + tx ] into two subintervals: [tx , 2n − 1] and
[2n, 2n − 1 + tx ].
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Fig. 6 Entire translation circuits. a x + tx , b x − tx

The subinterval [tx , 2n − 1] is the range of xt in the second line of Eq. (3). In this
case, the carry bit xtn of x + tx is 0 and we set cxt yt = cxy directly.

To the subinterval [2n, 2n − 1 + tx ], the carry bit xtn of x + tx is 1. [2n, 2n − 1 +
tx ] − 2n = [0, tx − 1] is the range of xt in the first line of Eq. (3).
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Fig. 7 Cyclic translation circuits. a x + tx , b x − tx

Hence, the quantum ADDER is used firstly to get xt . Then, the carry bit xtn can
be used as the control bit: if xtn = 0, set cxt yt = cxy ; otherwise, set cxt yt = 0. The
quantum circuit is shown in Fig. 6a.

(2) Translating left: xt = x − tx

According to Fig. 5b, ET can be described as below.

cxt y =
{

0 if 2n − tx ≤ xt ≤ 2n − 1
cxy if 0 ≤ xt ≤ 2n − 1 − tx

(4)
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Fig. 8 The quantum comparator

Plug xt = x − tx into Eq. (4),

cxt y =
{

0 if 2n ≤ x ≤ 2n − 1 + tx
cxy if tx ≤ x ≤ 2n − 1

However, 2n ≤ x ≤ 2n − 1 + tx conflicts with 0 ≤ x ≤ 2n − 1. The reason for this
phenomenon is that the abandoned pixels are on the left side of the reserved pixels, but
the vacated pixels are on the right side of the reserved pixels. The distance between
them is just 2n . Hence, 2n ≤ x ≤ 2n − 1 + tx should be rewrote as 0 ≤ x ≤ tx − 1.

Therefore, the quantum comparator is used firstly to compare x and tx . Then, the
reversed ADDER is used to get x − tx . Finally, the output qubit e0 of the comparator
is used as the control bit: if e0 = 0 (x ≥ tx ), set cxt yt = cxy ; otherwise, set cxt yt = 0.
The quantum circuit is shown in Fig. 6b.

3.2 Cyclic translation

(1) Translating right: xt = x + tx
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Fig. 9 Equivalence relation between logic gates [10]

Cyclic translation can be described as below.

cxt yt = cxy, where xt = (x + tx )mod2n (5)

It can be realized by the ADDER-MOD2n module easily.

(2) Translating left: xt = x − tx

Cyclic translation can be described as below.

cxt yt = cxy, where xt = (x − tx )mod2n (6)

In order to give the quantum cyclic translation circuit, we propose Theorem 1.

Theorem 1 If the inputs of the reversed ADDER are two n-qubit numbers a and b,
the output of it is equivalent to (a − b)mod2n.
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Fig. 10 The translation circuit for the 128 × 128 Lena image (Example 1)

Fig. 11 The effect of the circuit
shown in Fig. 7. a The input
image, b the output image

Proof As stated in Note 2, when a ≥ b, the output of the reversed ADDER is a − b;
when a < b, the output is 2n + (a − b). Therefore, to prove Theorem 1 is correct,
we only need to prove that when a ≥ b, (a − b)mod2n = a − b; when a < b,
(a − b)mod2n = 2n + (a − b).
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Fig. 12 The translation circuit for Example 2–4. a The dolphin jumping animation (Example 2), b the
montage (Example 3), c fftshift (Example 4)

Fig. 13 The partial translation

A. When a ≥ b

Becausea, b are twon-qubit numbers, 0 ≤ a, b ≤ 2n−1.Hence, 0 ≤ a−b ≤ 2n−1
under the hypothesis that a ≥ b. Then

(a − b)mod2n = a − b.
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B. When a < b

Because a, b are two n-qubit numbers,

a < b ⇒ 1 − 2n ≤ a − b ≤ −1 ⇒ 1 ≤ 2n + (a − b) ≤ 2n − 1

Hence,

(a − b)mod2n = 2n + (a − b).

Theorem 1 is proved according to A and B.

Based on Theorem 1, the quantum image cyclic translation circuits are shown in
Fig. 7.

3.3 Network complexity

The network complexity depends very much on what is considered to be an elemen-
tary gate. In this section, we choose the Control-NOT to be our basic unit. Refer-
ences [7] and [9] have pointed out that the network complexities of ADDER and
ADDER-MOD2n are all 28n, where n indicates that the size of the quantum image is
2n × 2n .

Now,we analyze the complexity of quantumcomparator. It hasn groups of quantum
gates α0, α1, . . . , αn−1 as shown in Fig. 8. The two layers belonging to one group
have the same complexity because they have the same number of ◦ and • control
qubits. For αi , the number of ◦ and • of one layer are 2i + 1 and 1 respectively,
i = 0, 1, . . . , n − 1.

Because the results shown in Fig. 9 and one Toffoli gate can be simulated by six
Control-NOT gates [10], for αi , the complexity of one layer is 24i + 15. Hence, the
complexity of quantum comparator is

2
n−1∑

i=0

(24i + 15) = 24n2 + 6n.

Consequently, the network complexity is shown below:

• ET right (Fig. 6a): (28n − 12) + 12n = 40n − 12.
• ET left (Fig. 6b): (24n2 + 6n) + (28n − 12) + 12n = 24n2 + 46n − 12.
• CT right (Fig. 7a): 28n − 12.
• CT left (Fig. 7b): 28n − 12.

4 Examples

(1) Example 1
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Let us take the 128 × 128 256-grayscale image Lena as an example, where n = 7
and q = 8, and entire translate it left with tx = 20 and cyclic translate it down with
ty = 40. The translation circuit is shown in Fig. 10. Figure 11 is the input image and
the output image of this circuit.

Although the practical value of Example 1 is not large, it combines X -direction
and Y -direction translation together and helps readers to understand the translation
circuits more clearly.

(2) Examples 2–4

We take the three examples proposed in Figs. 1 and 2 as Examples 2–4 and give
their quantum realization in this section.

Example 2 is the dolphin jumping animation. Assume that the translation parame-
ters of the two entire translations are (tx1,−ty1) and (tx2, ty2), the quantum circuit is
shown in Fig. 12a where the “Display to screen” module is responsible for displaying
the picture to the screen.

Example 3 assumes the translation parameter is (tx ,−ty). The role of the module
“Combine the two image” (see Fig. 12b) is to merge the two images into one. We
do not intend to describe this module in detail because it is not the key issue to be
addressed in this article.

Figure 12cgives the quantumcircuit of fftshiftwhich uses twoCT(2n−1) to translate
the amplitude of the Fourier spectrum on two directions. The translation parameter is
2n−1 because the image size is 2n × 2n and the zero-frequency component should be
shifted to the center of the spectrum image.

5 Conclusion

Image translation,whichmaps the position of each picture element into a newposition,
is a basic image transformation. This paper studies theQIT for the first time to promote
the development of QIP. Two types of QIT: entire translation and cyclic translation are
proposed by giving the quantum translation circuits. The translation in X -direction
and Y -direction is separable and the circuits for translating right or left are different.
Examples help to explain the circuits more clearly and put image translation into a
number of applications.

The future works may include:

(1) Sometimes users may want to translate part of an image. For example, as shown
in Fig. 13, after a user combined the two images, he wants to move the flower to
the lower left corner because he feels the flower and the text are too close. We call
this kind of operation as partial translation (PT). Maybe PT is more common than
ET and CT. However, because the position relation between the original image
and the subimage that to be translated is complex, we will study it later.

(2) The network complexity of ET left is high. How to reduce network complexity is
another issue to be studied.
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