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Abstract In this paper, a novel quantum private comparison protocol with l-party
and d-dimensional entangled states is proposed. In the protocol, l participants can
sort their secret inputs in size, with the help of a semi-honest third party. However, if
every participant wants to know the relation of size among the l secret inputs, these
two-participant protocols have to be executed repeatedly l(l−1)

2 times. Consequently,
the proposed protocol needs to be executed one time. Without performing unitary
operation on particles, it only need to prepare the initial entanglement states and only
need to measure single particles. It is shown that the participants will not leak their
private information by security analysis.
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1 Introduction

Since Bennett and Brassard [1] presented the first quantum key distribution protocol
(BB84 protocol), quantum cryptography has been rapidly developed. Compared to
classical cryptography, the main advantages is that an eavesdropper can easily be
detected by using the characteristics of quantum mechanics. Therefore, a lot of results
have been gained, such as quantum key distribution [1–4], quantum commitment
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2344 Q. Luo et al.

[5–8], quantum secret sharing [9–12], quantum secure direct communication [13–16],
quantum conversation [17] and so on.

In recent years, quantum privacy comparison (QPC) protocols attract many
researchers’ attention. Privacy comparison protocol can be traced to the millionaire
problem proposed by Professor Yao [18]. He pointed out that ‘Two millionaires wish to
know who is richer; however, they do not want to find out inadvertently any additional
information about each other’s wealth. How can they carry out such a conversation?’.
By this question, Professor Yao introduced Secure computation. Then, Goldreich et al.
[19] developed it as a secure multiparty computation. Unfortunately, Lo [20] pointed
out that a quantum two-party secure computation is impossible. However, Yang and
Wen [21] presented a QPC protocol with the assistance of a semi-trusted third party.
In the ensuing years, there are numerous results on QPC protocol.

We put these studies into four stages. In the first stage, two distrustful participants
compared the equivalence of their private information. According to what Liu et al
summarized in Ref. [22], the research results of this stage have been divided into three
categories: (1) the quantum cryptography QPC [23,24], (2) the superdense coding
QPC [21,25–27], (3) the entanglement swapping QPC [28–30]. In the second stage,
two participants compared the size of their secret inputs. Lin et al. [31] proposed
a QPC protocol which can compare the size of two participants’ inputs based on
d-dimensional Bell states, Zhang et al. [32] solved the millionaires problem based on
it. In the third stage, multiple participants compared the equivalence of information,
Chang et al. [33] proposed a QPC protocol which can compare the equivalence of
multi-participants’ information using GHZ states. Liu et al. [34] presented a multi-
party quantum private protocol based on d-dimensional basis states. In the fourth
stage, multi-participants compare the size of their secret inputs. It is a pity that there
are no research results appear so far. This paper focuses on this issue.

In this paper, we present a novel quantum private comparison protocol with
l-party and d-dimensional entangled states, with the help of a semi-honest third party.
l participants’ secret inputs can be sorted in size. Here, semi-honest third party (TP)
refers, he will be strictly in accordance with the implementation of the protocol. That
is to say TP will not conspire with external attackers or participants, even though he
may be very curious about participants’ secret information, and want to deduce it. The
rest of this paper is organized as follows. In Sect. 2, the preliminaries are introduced.
In Sect. 3, the protocol is described in details. In Sect. 4, the security and efficiency
are analyzsed. Finally, a short conclusion is given in Sect. 5.

2 Preliminaries

In this section, we will discuss the pre-knowledge of the protocol, which includes mod-
ulo d subtraction ‘�’, maximally entangled states which are l-party and d-dimension,
and their properties.

2.1 The property of subtraction modulo d

Subtraction operation ‘�’ can be seen as the inverse operation of ‘⊕’ in the remainder
plus group of modulo d (Zd ,⊕), i.e., for ∀a, b ∈ Zd , a � b = a ⊕ b−1(where b−1
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is the inverse element of b in group Zd ). So, ‘�’ operation can be seen the binary
operation in residue class Zd . We assume that the strict total order of the elements
in Zd is 0̄ < 1̄ < · · · < ¯d − 1(without confusion, we still denote the elements as
0, 1 · · · d −1). The ‘�’ operation has the property which will be used in the following
pages as follows:

For two natural numbers n1, n2 ∈ {0, 1, . . . , n}, set d = 2n + 1, the relationship
in size between n1 and n2 can be ascertained by the mapping σ , where

σ(n1 � n2) =
⎧
⎨

⎩

n1 = n2 : if(n1 � n2 = 0)
n1 > n2 : if0 < (n1 � n2) ≤ n
n1 < n2 : ifn < (n1 � n2) ≤ 2n

(1)

In fact, for n1, n2 ∈ {0, 1, . . . , n}, in the remainder plus group Zd (where d =
2n + 1), if n1 = n2, then n1 � n2 = n1 ⊕ n−1

2 = n1 ⊕ n−1
1 = 0. Because the

inverse of the element in the group is unique, it is true, vice versa. If n1 > n2, set
n1 = n0 ⊕ n2 (where n0 ∈ {1, 2, . . . , n}), then n1 � n2 = n1 ⊕ n−1

2 = n0 ⊕ n2 ⊕
n−1

2 = n0, so 0 < (n1 � n2) ≤ n, and conversely. If n1 < n2, set n2 = n0 ⊕ n1,
then n−1

2 = n−1
1 ⊕ n−1

0 , now n1 � n2 = n1 ⊕ n−1
2 = n1 ⊕ n−1

1 ⊕ n−1
0 = n−1

0 ,
since n0 ∈ {1, 2, . . . , n},n−1

0 = d � n0 ∈ {n + 1, n + 2, . . . , 2n}, we conclude that
n < (n1 � n2) ≤ 2n, and conversely.

2.2 L-party and d-dimensional entangled state

In this subsection, we introduce a maximally entangled state which is l-party and
d-dimension, and its properties. Its application of superdense coding was discussed in
Ref. [35].

|ψ s
v2,v3,...,vl

〉 = 1√
d

d−1∑

j=1

e
2π i js

d | j ⊕ 0〉 ⊗ | j ⊕ v2〉 ⊗ · · · ⊗ | j ⊕ vl〉 (2)

Here, ‘⊕’ is addition modulo d, where s, v2, v3, . . . , vl ∈ {0, 1, . . . , d − 1}, we set
the increment of the first particle: v1 = 0.

As same as Ref. [32], two mutually unbiased orthogonal bases are utilized. One is
M B = {|0〉, |1〉, . . . , |d − 1〉}, the other is M F = {F |0〉, F |1〉, . . . , F |d − 1〉}, where
‘F’is discrete Fourier transform defined as follows

F | j〉 = 1√
d

d−1∑

k=1

e
2π i jk

d |k〉, j = 0, 1, . . . , d − 1. (3)

Suppose the measurement value of the single-particle states |0〉 is 0, |1〉 is 1, . . .,
|d − 1〉 is d − 1 in the basis M B = {|0〉, |1〉, . . . , |d − 1〉}. If the initial maximally
entangled state in (1) has been known, the measurement value of i th and j th particle
do ‘�’ operation, the value is vi � v j .
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In order to clearly explain the property, let us take the four-particle entangled state
in (1) as an example. The four-particle entangled state is shown as follows:

|ψ0
130〉 = 1

2
(|0130〉 + |1201〉 + |2312〉 + |3023〉) (4)

set the measurement value of i th is ki (i = 1, 2, 3, 4), we know these value, k1�k2 = 3,
k1 � k3 = 1, k1 � k4 = 0, k2 � k3 = 2, k2 � k4 = 1, k3 � k4 = 3; k4 � k1 = 0,
k4 � k2 = 3, k4 � k3 = 1, k3 � k1 = 3, k3 � k2 = 2, k2 � k1 = 1.

3 Protocol

In this section, a multi-participant QPC protocol is proposed in detail. Suppose l
participants want to compare their private information in size. Then, they can proceed
as follows:

Step 1. The l participants turn their private information into n-ary numbers (n > l),
suppose after transformation, the private information of i th participant is
Mi = (M1

i M2
i . . .Mm

i ), where i ∈ {1, 2, . . . , l} (If the number of some
digits is less than m, then plus adequate 0 on their high-digit). then, the l
participants share a group of appropriate long private key with a multiparty
quantum key agreement (QKA) protocol [36–38], and turn them into n-ary
keys, note the key as K = (K 1 K 2 . . . K m).

Step 2. TP randomly prepares m |ψ s
v2,v3,...,vl

〉(s, v2, v3, . . . , vl ∈ {0, 1, . . . , d − 1},
d = 2n+1) maximally entangled states. The first particles of these states form
the sequence S1, the second particles form the sequence S2,. . ., the lth particles
form the sequence Sl . To check the presence of eavesdroppers, TP generates
k′ml decoy particles from {|0〉, |1〉, . . . , |d − 1〉, F |0〉, F |1〉, . . . , F |d − 1〉},
and uniformly insert them into the sequences S1, S2, . . . , Sl to get the new
quantum sequences S′

1, S′
2, . . . , S′

l , where k′ is the detection rate. Finally, TP
sends them to participant 1, participant 2, . . ., participant l, respectively.

Step 3. After the l participants receive the sequences, they send the acknowledge-
ments to TP. Then, TP announces the positions and bases of the decoy par-
ticles, the l participants measure these particles and return the measurement
results to TP. TP verifies these results and checks whether eavesdroppers
exist in the quantum channels. If the error rate is less than the predetermined
threshold (τ = 2 ∼ 8.9 % [33]), move to next step, Otherwise, the protocol
is aborted.

Step 4. Each of the l participants measure the remaining m particles. Here, dis-
tributing quantum measurement which is described in Ref. [39] is used,
this measurement is indirect and non-destructive. Suppose the i th partic-
ipant gets m measurement results (k1

i , k2
i , . . . , km

i ) and combine them to
ki (i = 1, 2, . . . , l).

Step 5. Each of the l participants encoding their private information, i.e., compute
C1 = M1 ⊕ K ⊕ k1,C2 = M2 ⊕ K ⊕ k2, . . . ,Cl = Ml ⊕ K ⊕ kl . Then, they
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send the encoding information to TP via the authenticated classical channels,
respectively.

Step 6. TP will finish sorting the private information in size according to the encoding
information that he/she received. So, TP have to take out each digit from
C1,C2, . . . ,Cl to compare them. In order to improve the efficiency of sorting,
quick sort is used when each digit of these is sorted, while radix sort is
used when the whole is sorted. If the numbers of the t th digit between Mi

and M j will be compared, TP has known Ci ,C j and the initial quantum
state |ψ st

vt
2,v

t
3,...,v

t
l
〉, so he/she can compute r t

i, j = Ct
i � Ct

j ⊕ (vt
j � vt

i ), the

relationship between Mt
i and Mt

j in size can be gained as follows:

σ(r t
i, j ) =

⎧
⎨

⎩

Mt
i = Mt

j : if (r t
i, j = 0)

Mt
i > Mt

j : if 0 < r t
i, j ≤ n

Mt
i < Mt

j : if n < r t
i, j ≤ 2n

(5)

In fact,

r t
i, j = Ct

i � Ct
j ⊕ (vt

j � vt
i ) (6)

= (Mt
i ⊕ K t ⊕ kt

i )� (Mt
j ⊕ K t ⊕ kt

j )⊕ (vt
j � vt

i ) (7)

= (Mt
i � Mt

j )⊕ (K t � K t )⊕ (kt
i � kt

j )⊕ (vt
j � vt

i ) (8)

= Mt
i � Mt

j (9)

So, TP can sort these private information according to the compared results.
After sorting the end, TP announces results.

An example is given for better understanding the presented protocol. Suppose there
are 3 participants (Alice, Bob and Charlie), their private information are 3, 11 and 9,
if they want to sort their secret inputs without leaking private information. According
to protocol, set n = 4, d = 9. The protocol is executed as follows:

Step 1. Participants turn their private information into quaternary number M1 = 3 =
(03)4,M2 = 11 = (23)4,M3 = 9 = (21)4, then private key K = (31)4 is
shared, and m = 2.

Step 2. TP prepares two 3-party and 9-dimensional maximally entangled states, sup-
pose they are |ψ0

4,1〉, |ψ3
2,7〉. Next, the entangled states are divided into 3

particles sequences S1, S2, S3. After enough decoy particles are inserted into
quondam sequences to form new sequences S′

1, S′
2, S′

3, TP send them to Alice,
Bob and Charlie, respectively.

Step 3. Suppose no eavesdropper is detected, then move to step 4.
Step 4. Alice, Bob and Charlie measure the remaining particles to gain keys. When

one participant measure his/her particles to get results, the other participants’
results will be certain, so 81 kinds of possible results will be generated with
equal probability in this example. If the measurement results of Alice are
k1

1 = 5, k2
1 = 1, then, the results of Bob and Charlie will be settled, they are

k1
2 = 0, k2

2 = 3; k1
3 = 6, k2

3 = 8.
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Step 5. In this step, Alice, Bob and Charlie can gain their ciphertext C1 = 85,C2 =
57,C3 = 21, and send them to TP.

Step 6. TP will sort the private information by computing r t
i, j (i, j ∈ {1, 2, 3}, t =

1, 2). according to radix sort, the low digit (here is the second digit) will
be compared firstly. suppose M2

1 has been selected as pivot element, next
compare M2

1 and M2
2 ,so compute r2

1,2 = (C2
1 � C2

2 ) ⊕ (v2
2 � v2

1) = (5 �
7)⊕ (2 � 0) = 0,M2

1 = M2
2 can be get. in the same way, compute r2

1,3 = 2,

then, M2
1 > M2

3 , so, M2
1 = M2

2 > M2
3 can be gained when comparing the

number on the second digit. TP can also get M1
2 > M1

3 = M1
1 by comparing

the number on the first digit. The final order can be gained by radix sort, it is
M2 > M3 > M1. TP announces the result.

4 Security and efficiency analysis

In this section, the security of the proposed protocol will be analyzed. There are
3 attacks for our protocol; they are outsider attack, participant attack and TP attack.
Now, we will prove that our protocol is secure against these attacks (Sect. 4.1, 4.2, 4.3)
respectively. The efficiency of protocol is discussed in Sect. 4.4.

4.1 Outsider attack

If a malicious attacker Eve wonders the secret inputs of participants, the most general
strategy for him is as follows: he first intercepts the transmitted sequences from TP,
then he performs a joint operation U on the intercepted particles and the auxiliary
particles |φ〉, at last, he sends the operated particles to the participants. According to
Schmidt decomposition, the states after operation can be written as:

U (| j〉|φ〉)SE =
d−1∑

k=0

λ
j
k |s j

k 〉|E j
k 〉, j = 0, 1, . . . , d − 1. (10)

where
∑d−1

k=0(λ
j
k )

2 = 1, |s j
k 〉 and |E j

k 〉( j = 0, 1, . . . , d − 1) are standard orthog-
onal basis of the systems which the states | j〉 and |φ〉 belong to. If Eve wants
to extract the information precisely, the reduced density matrixes of his system
∑d−1

k=0(λ
j
k )

2|E j
k 〉〈E j

k |( j = 0, 1, . . . , d−1)must be discriminated precisely. It requires

that 〈E j
k |E j ′

k′ 〉 = 0, when j = j ′ or k = k′ (where j, j ′, k, k′ = 0, 1, . . . , d − 1). with
this condition, the unitary operation U performs on the decoy particles and additional
particles has the universal form as follows:

U (F |p〉|φ〉) = U

(
1√
d

d−1∑

J=1

e
2π i pj

d | j〉|φ〉
)

(11)

123
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= 1√
d

d−1∑

J=1

e
2π i pj

d U (| j〉|φ〉) (12)

= 1√
d

d−1∑

J=1

d−1∑

k=0

λ
j
k e

2π i pj
d |s j

k 〉|E j
k 〉 (13)

where p = 0, 1, . . . , d − 1. The reduced density matrixes of participants’ system are
as follows:

1

d

d−1∑

j=1

d−1∑

k=0

(λ
j
k )

2|s j
k 〉〈s j

k |. (14)

It is obviously that the density matrix has nothing to do with the variable p. That is
to say, all the subsystems on the decoy particles’ position in participants’ hand are
identical. So the error rate in the detection stage is maximized. Hence, we have proved
that an eavesdropper cannot eavesdrop the participants’ information without bringing
in any disturbance.

4.2 Participant attack

In this subsection, we will analyze the participant attack. Participant attack is an
usual attack mode in the protocols that the participants do not trust each other. In our
protocol, all the participants have negotiated a same private key K which is unknown
to TP. Another key is generated through l-party and d-dimensional entangled states,
and the key is different and unknown to each participant. For a dishonest participant
(without loss of generality, suppose that participant 1 is a dishonest one), when he/she
intercepted the other’s particle sequences, it is same as outsider attack. This case will
be detected in step 3. Thus, the only possible way for participant 1 to do is to perform
unitary transformation on his/her particles to extract other participants’ information,
the operation can be shown as:

(U1 ⊗ I2 ⊗ · · · ⊗ Il)

⎛

⎝
1√
d

d−1∑

j=1

e
2π i js

d | j ⊕ 0〉 ⊗ | j ⊕ v2〉 ⊗ · · · ⊗ | j ⊕ vl〉
⎞

⎠. (15)

The reduced density matrix of participant 1’s subsystem is 1
d

∑d−1
j=1 U1| j〉〈 j |U †

1 . When

he/she does nothing on the particles, the reduced density matrix is 1
d

∑d−1
j=1 | j〉〈 j |.

Hence, he/she cannot extract any other participants’ information by this way. By now,
we have proved that our protocol is safe against participant attack.

4.3 TP attack

In this subsection, we will discuss TP attack from two aspects. On the one hand, it
will be analyzed whether TP can gain the participants’ key by some measures. On
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Table 1 The quantum resources
used in our protocol

Quantum resource The number of quantum resources

Single particle �m(m − 1)logn�(k + 1)

Entangled state m

Decoy particle k′ml

the other hand, if TP cannot acquire the participants’ key, can he/she deduce the
participants’ secret through ciphertext? For the first aspect, TP can prepare m (l + 1)-
party entangled states rather than l-party entangled ones in step 2, and leave a particle
sequence for himself. So he/she can deduce the participants’ key in step 4 through the
initial sates and the measurement result of his/her particle sequence. But according
to the security analysis of QKA protocol [36–38], TP cannot gain the key in step 1;
hence, TP cannot obtain the whole key of participants. For the second one, suppose
TP sorts the numbers of t-digit of private information through their cipher text, when
Mt

i and Mt
j (i, j = 1, 2, . . . , l) are sorted, TP will not gain the specific value except

the size. After Mt
1,Mt

2, . . . ,Mt
l have been sorted, if all values are different and every

number is l-ary, TP can infer that the smallest number is 0, the second smallest one
is 1, . . ., the biggest one is l − 1. But in our protocol, n > l is required, TP will
not infer the value of Mt

1,Mt
2, . . . ,Mt

l . So, he/she will also not infer the information
M1,M2, . . . ,Ml .

In addition, the analysis is similar to Ref. [33] on lossy and noisy channel, not
repeat them here.

4.4 Efficiency analysis

Because there is no an appropriate model to describe the efficiency of our protocol,
we illustrate this subject through the analysis of the number of quantum resources
required in our protocol. Suppose there are l participants who want to rank the private
information of m digit n-ary numbers in size. In step 1 of the protocol, a QKA protocol
is used. If the QKA Protocol in Ref. [36] is employed, x(x −1)(k +1) single particles
are used (where k is the detection rate in Ref. [36]), when x bits key are negotiated.
However, every digit is n-ary in our proposed protocol, so �m(m − 1)logn�(k + 1)
single particles are used in step 1. In step 2, m entangled states which are l-party and
d-dimension are prepared randomly by TP, and k′ml decoy particles are used. No other
quantum resource is generated in the remaining steps. This has been summarized in
Table 1.

5 Conclusion

This paper proposes an l-participant QPC protocol using entangled states which is
l-party and d-dimension. In this protocol, l participants can sort their private informa-
tion in size within one execution, with the help of a semi-honest third party. Because it
is feasible that the single particles are generated and measured without unitary trans-
formation in QKA protocol such as Ref. [36], we only need to prepare the initial
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entanglement states and measure single particle in proposed protocol. It is known that
the participants’ private information does not leak through the analysis of outsider
attack, participant attack and TP attack.
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