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Abstract We propose two novel schemes for probabilistic remote preparation of an
arbitrary quantum state with the aid of the introduction of auxiliary particles and
appropriate local unitary operations. The first new proposal could be used to improve
the total successful probability of the remote preparation of a general quantum state,
and the successful probability is twice as much as the one of the preceding schemes.
Meanwhile, one can make use of the second proposal to realize the remote state
preparation when the information of the partially entangled state is only available
for the sender. This is in contrast to the fact that the receiver must know the non-
maximally entangled state in previous typical schemes. Hence, our second proposal
could enlarge the applied range of probabilistic remote state preparation. Additionally,
we will illustrate how to combine these novel proposals in detail, and our results
show that the union has the advantages of both schemes. Of course, our protocols are
implemented at the cost of the increased complexity of the practical realizations.
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1 Introduction

Quantum teleportation, originally proposed by Bennett et al. [1], is the process that
transmits unknown quantum states from a sender to a remote receiver via a quantum
channel with the help of some classical information. Due to its potential applications in
the realm of quantum communication, the teleportation has acquired lots of attention
over the past decades [2–12]. Recently, Lo [13] has presented an interesting method
to transmit a pure known quantum state using a prior shared entanglement and some
classical communication when the sender knows fully the transmitted state. This com-
munication protocol is called remote state preparation (RSP). Its main difference from
the usual teleportation [1] is that the sender is assumed to know completely the trans-
mitted state to be prepared by receiver, while in the teleportation neither the sender
nor receiver has a knowledge of the transmitted state.

For the sake of that the RSP could be applied to quantum computation and quantum
information, a growing number of works [13–28] have appeared in the RSP recently.
Pati [14] has found that the RSP is more economical than quantum teleportation
and requires only one classical bit from the sender to the receiver for some special
ensembles, but for general states, the RSP requires as much classical communication
cost as quantum teleportation does. Bennett et al. [15] have studied the trade-off
between the required entanglement and classical communication in the RSP. Dai et
al. [16] have presented a protocol for probabilistic remote preparation of the four-
particle GHZ class state from a sender to either one of the two receivers via two
non-maximally entangled GHZ states. Meantime, the schemes of the RSP have been
implemented experimentally using linear optical elements [29,30]. Nevertheless, there
are also many important and open subjects to be taken into account for the RSP.

The purpose of this paper was to give two novel schemes to probabilistically prepare
an arbitrary quantum state with the help of introducing auxiliary particles and appro-
priate local unitary operations. In most schemes for probabilistic RSP using a partially
entangled state as a quantum channel, the total successful probability of the RSP is
considered as one of the most important parameters. In Ref. [26], the authors calcu-
lated the successful total probabilities in general and particular cases, respectively.
It should be underlined that the successful probability of the RSP for a maximally
entangled channel would come to be one for the particular case, in which the sender
chooses to prepare a qubit from the equatorial line on the Bloch sphere or from the
polar line. However, the successful probability in general case is only equal to the
square of the norm of the minimum amplitude coefficient of the partially entangled
channel. So that, it is very natural to ask the following question: How to improve
the successful probability in the general case? In view of that, we presented the first
novel scheme to implement the RSP of a general quantum state with the definite suc-
cessful probability, twice as much as the probability of the preceding schemes for the
RSP. On the other hand, we would like to point out that the receiver not only must
introduce an auxiliary particle and make a corresponding unitary transformation to
construct the original quantum state, but also needs to know fully the information of
the non-maximally entangled state in most schemes for probabilistic RSP. Evidently,
the previous schemes [13–16,26] are not valid on condition that only the sender has
total knowledge of the partially entangled state. In order to overcome this drawback,
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we proposed the second novel protocol to probabilistically prepare quantum states to
the receiver when the information of the partially entangled state is only available for
the sender, i.e., the receiver does not know the information of non-maximally entan-
gled state completely. Thus, the second novel proposal could enlarge the applied range
of probabilistic RSP. Furthermore, we will illustrate how to combine the first novel
proposal with the second one in detail. It should be presented that the combination has
the benefits of both two new schemes. Actually, our proposals are obtained at the cost
of the increased complexity of the practical realizations.

The rest of this paper is organized as follows: In Sect. 2, a previous typical scheme
of probabilistic RSP is stated. In Sect. 3, we propose the first novel scheme to prepare a
general quantum state with the fixed successful probability, twice as much as the prob-
ability of the preceding schemes. Moreover, the concrete implementation processes of
this scheme are elaborated. The second novel scheme for probabilistically preparing
a quantum state would be presented in Sect. 4, and this proposal could be valid when
the information of the partially entangled state is only available for the sender. In
Sect. 5, we will illustrate how to combine these two new schemes in detail. The paper
concludes with Sect. 6.

2 A typical scheme of probabilistic RSP in the general case

Let us begin with a brief statement of probabilistic RSP using a partially entangled
state. Suppose that the sender Alice wants to help the receiver Bob remotely prepare
the following quantum state

|ψ〉 = α|0〉 + β|1〉 = α|0〉 + |β|eiφ |1〉 (1)

where 0 ≤ φ < 2π , α is real and β is a complex number, and |α|2 +|β|2 = 1. Without
loss of generality, the entanglement channel is composed of a partially entangled two-
particle state below

|Ψ 〉12 = (a|00〉 + b|11〉)12 (2)

where the real coefficient a and the complex one b satisfy |a|2 + |b|2 = 1, and
|a| ≥ |b| > 0. Particle 1 belongs to the sender Alice, while particle 2 belongs to the
receiver Bob. In order to realize the RSP, particle 1 needs to be performed a projective
measurement with respect to the orthogonal basis {|ψ〉, |ψ⊥〉}, and |ψ〉 is given by
Eq. (1), while |ψ⊥〉 could be shown as

|ψ⊥〉 = β∗|0〉 − α|1〉 (3)

Thus, the partially entangled state described in Eq. (2) can be rewritten as

|Ψ 〉12 = |ψ〉1 ⊗ (αa|0〉 + β∗b|1〉)2 + |ψ⊥〉1 ⊗ (βa|0〉 − αb|1〉)2 (4)

Then, Alice measures particle 1 and informs Bob of her measurement results via
a classical channel. When Alice’s measurement outcome on particle 1 is |ψ〉1, the
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state of particle 2, as shown by Eq. (4), will become (αa|0〉 + β∗b|1〉)2 = (αa|0〉 +
|β|e−iφb|1〉)2. Since Bob has no knowledge of this state, he cannot unitarily convert
the state of particle 2 into the original state |ψ〉; thus, the RSP fails. Similarly, if Alice’s
measurement result is |ψ⊥〉1, the state of particle 2 will collapse into

(βa|0〉 − αb|1〉)2 (5)

Actually, the original state shown in Eq. (1) can be reconstructed with the success-
ful probability of |b|2 from the state, as given by Eq. (5), via introducing an auxil-
iary particle and an unitary operation, which is relative to the parameters a and b of
Eq. (2). Therefore, the total successful probability of the RSP for a general quantum
state is equal to |b|2 in this typical proposal [13]. Meanwhile, If |a| = |b| = 1√

2
, i.e.,

the quantum channel is composed of a maximally entangled state, the total probability
equals 50 %.

3 Adding the successful probability of the RSP

As a matter of fact, we would like to point out that a general quantum state is only
prepared with the total successful probability of |b|2 in the typical proposals. In this
section, a novel scheme would be presented to perform the remote preparation of a
general quantum state, and it should be underlined that this proposal could improve
the total successful probability of the RSP to 2|b|2 via the aid of auxiliary particles,
introduced by the sender. When the quantum channel is composed of a maximally
entangled state, the total successful probability equals one. Moreover, the detailed
processes of our proposal are elaborated as follows

Step 1: Alice introduces an auxiliary particle m with an initial state |0〉m , and then, the
partially entangled state could be written as

|Ψ 0〉1m2 = (a|000〉 + b|101〉)1m2 (6)

Step 2: On particles 1 and m, Alice performs the C-NOT operation UC N OT , where
particle 1 works as controlling qubit and auxiliary particle m as target qubit. After that,
the above state |Ψ 0〉1m2 will become

|Ψ 〉1m2 = [UC N OT |Ψ 0〉1m] ⊗ |Ψ 0〉2 = (a|000〉 + b|111〉)1m2

= |ψ〉1 ⊗ (αa|00〉 + β∗b|11〉)m2 + |ψ⊥〉1 ⊗ (βa|00〉 − αb|11〉)m2 (7)

Step 3: Alice measures the state of this particle 1. If her measurement result is |ψ⊥〉1,
the state of particles m and 2, as shown by Eq. (7), will collapse into

(βa|00〉 − αb|11〉)m2 (8)

On this situation, Alice needs to perform the Hadamard operation H on this auxiliary
particle m
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βa(H |0〉m)⊗ |0〉2 − αb(H |1〉m)⊗ |1〉2

= 1√
2
|0〉m ⊗ (βa|0〉 − αb|1〉)2 + 1√

2
|1〉m ⊗ (βa|0〉 + αb|1〉)2 (9)

Thus, Alice measures the state of this auxiliary particle m. If Alice obtains the result
of |0〉m , and then, the state of particle 2 will become

1√
2
(βa|0〉 − αb|1〉)2 (10)

Otherwise, if the measurement result is |1〉m , the state of particle 2 will be projected
to

1√
2
(βa|0〉 + αb|1〉)2 (11)

Similarly, from Eq. (7), if Alice’s measurement result on particle 1 is |ψ〉1, the state
of particles m and 2 will become

(αa|00〉 + β∗b|11〉)m2 = (αa|00〉 + βbe−2iφ |11〉)m2 (12)

For particle m, Alice performs an unitary transformation U1, which takes the form of
the following 2 × 2 matrix

U1 =
(

e−iφ 0

0 eiφ

)
(13)

After that, the state described in Eq. (12) will become

e−iφ(αa|00〉 + βb|11〉)m2

Since the global phase e−iφ cannot be distinguished by any physical meaning, the
above state could be shown as

(αa|00〉 + βb|11〉)m2 (14)

Then, Alice performs the Hadamard operation H on the auxiliary particle m, and
measures it. If Alice obtains the result of |0〉m , the state of particle 2 should be written
as follows

1√
2
(αa|0〉 + βb|1〉)2 (15)

Otherwise, the state of particle 2 will be projected to

1√
2
(αa|0〉 − βb|1〉)2 (16)
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Table 1 The measurement results and the unitary transformation

Measurement results UF Results after the transformation UF

Particle 1 Particle m Particle n Particle 2 Probabilities

|ψ⊥〉1 |0〉m U0
F |0〉n (α|0〉 + β|1〉)2 |b|2

2

|1〉n |0〉2
|α|2

2 (1 − 2|b|2)
|1〉m U1

F |0〉n (α|0〉 + β|1〉)2 |b|2
2

|1〉n |0〉2
|α|2

2 (1 − 2|b|2)
|ψ〉1 |0〉m U2

F |0〉n (α|0〉 + β|1〉)2 |b|2
2

|1〉n |1〉2
|β|2

2 (1 − 2|b|2)
|1〉m U3

F |0〉n (α|0〉 + β|1〉)2 |b|2
2

|1〉n |1〉2
|β|2

2 (1 − 2|b|2)

After the measurements of particles 1 and m, Alice informs Bob of her measure-
ment results via a classical channel. In order to construct the original state shown in
Eq. (1), Bob needs to introduce another auxiliary particle n with an initial state |0〉n

and performs a conditional unitary transformation UF on particles 2 and n, which
depends on the measurement results of particles 1 and m. Table 1 shows the measure-
ment results of Alice on particles 1 and m, and the unitary transformation on particles
2 and n. The unitary transformations Ui

F (i = 0, 1, 2, 3) in Table 1 are described as

U 0
F =

(
0 σz

−A(a, b) 0

)
U 1

F =
(

0 σz

A(a, b) 0

)

U 2
F =

(
A(a, b) 0

0 σz

)
U 3

F =
(

A(a, b) 0

0 −σz

) (17)

where 0 is the 2 × 2 zero matrix, σz is known as one of pauli matrixes, and A(a, b) is
the 2 × 2 matrix relative to the parameters a and b of Eq. (2). σz and A(a, b) could be
expressed as

σz =
(

1 0

0 −1

)
A(a, b) =

⎛
⎜⎝

b
a

√
1 − |b|2

|a|2√
1 − |b|2

|a|2 − b
a

⎞
⎟⎠

In reality, projective measurements together with unitary operations are sufficient to
obtain the original state from the state shown in Eq. (10) with the aid of the introduction

of auxiliary particles, and the successful probability is equal to |b|2
2 . Moreover, it has

been demonstrated that the original state would be successfully prepared with the
equal probability from these four kinds of the states shown in Eqs. (10), (11), (15)
and (16); hence, the whole successful probability is 2|b|2 in our proposal for the RSP.
This is in contrast to the fact that the whole successful probability of the RSP for a

123



Probabilistic remote state preparation 2121

general quantum state is equal to |b|2 in previous typical schemes [16–26]. It should
be presented that our proposal can be directly generalized to improve the successful
probability for the three-parties controlled remote state preparation from a sender to
either of two receivers.

4 The RSP when only the sender knows the entangled state

Based on the analyses in Sect. 2, it should be underlined that the receiver Bob must
know the parameters a and b of the partially entangled state shown in Eq. (2) to
construct the original state in the typical scheme. It is revealed that one cannot take
advantages of this scheme to realize the RSP in the situation that only the sender Alice
has full knowledge of the non-maximally entangled state in the RSP processes. In
order to overcome this drawback, we propose a novel scheme to prepare a quantum
state, whether the receiver knows the partially entangled state or not. The concrete
implementation procedures of this new scheme are presented as follows

Step 1: Alice introduces an auxiliary particle l with an initial state |0〉l , and then, the
partially entangled state described by Eq. (2) would become

|Ψ 0〉1l2 = (a|000〉 + b|101〉)1l2 (18)

Step 2: On particles 1 and l, Alice performs an unitary transformation U 3
F , which is

given by Eq. (17). Then, the state |Ψ 0〉1l2 could be transported into

|Ψ 〉1l2 = [U 3
F |Ψ 0〉1l ] ⊗ |Ψ 0〉2 = (b|000〉 + b|101〉 + a

√
1 − |b|2

|a|2 |010〉)1l2

= b|ψ〉1 ⊗ |0〉l ⊗ (α|0〉 + β∗|1〉)2 + b|ψ⊥〉1 ⊗ |0〉l ⊗ (β|0〉 + α|1〉)2

+ a

√
1 − |b|2

|a|2 |0〉1 ⊗ |1〉l ⊗ |0〉2 (19)

where the measurements |ψ〉 and |ψ⊥〉 are given by Eqs. (1) and (3), respectively.

Step 3: Alice measures the states of particles 1 and l. Subsequently, Alice informs Bob
of her measurement results using a classical channel. It should be emphasized that the
RSP could be realized successfully when the state of particle 1 is |ψ⊥〉1 and particle l
is |0〉l with the probability of |b|2; otherwise, it fails.

Step 4: If the state of particles 1 and l is |ψ⊥〉1 ⊗ |0〉l , Bob only needs to perform the
unitary transformation σx on particle 2 to obtain the original state.

It should be presented that one can use our scheme to carry out probabilistic RSP
when only the sender Alice fully knows the partially entangled state. This is different
from the former typical one that the receiver Bob must have complete information of the
entangled state. The cost of an entangled state is necessary for both the previous typical
scheme and our new scheme in this section. In addition, classical communication is
also essential to realize the novel RSP.
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5 The combination of our novel proposals

According to the aforementioned analyses in Sects. 3 and 4, we would like to point
out that each one of our two proposals owns itself advantages. Fortunately, these novel
proposals could be united to realize the RSP with the total successful probability of
2|b|2, whether the receiver Bob knows the partially entangled state or not. In this
section, we will show how to combine our two proposals in detail. Furthermore, the
implementation processes could be reduced to these steps

Step 1: From the steps 1 and 2 in Sect. 3, one can find that Alice can change the state
shown in Eq. (2) into the partially entangled state |Ψ 〉1m2 given by Eq. (7) with the
aid of the introduction of an auxiliary particle m.

Step 2: On the basis of the steps 1 and 2 in Sect. 4, Alice introduces an auxiliary
particle l with the initial state |0〉l and performs the unitary transformation U 3

F given
by Eq. (17) on particles 1 and l. Then, the state |Ψ 〉1m2 could be transported into

|Ψ 〉1lm2 = b|ψ〉1 ⊗ |0〉l ⊗ (α|00〉 + β∗|11〉)m2

+ b|ψ⊥〉1 ⊗ |0〉l ⊗ (β|00〉 − α|11〉)m2

+ a

√
1 − |b|2

|a|2 |0〉1 ⊗ |1〉l ⊗ |00〉m2 (20)

Step 3: Alice measures the state of particle l. When the state of particle l is |0〉l with
the probability of 2|b|2, the RSP could be realized successfully; otherwise, it fails.

Step 4: Alice measures the state of this particle 1. If her measurement result is |ψ⊥〉1,
the state of particles m and 2, as shown by Eq. (20), will collapse into

b(β|00〉 − α|11〉)m2 (21)

Then, Bob can perform the Hadamard operation H on particle m

bβ(H |0〉m)⊗ |0〉2 − bα(H |1〉m)⊗ |1〉2

= b√
2
|0〉m ⊗ (β|0〉 − α|1〉)2 + b√

2
|1〉m ⊗ (β|0〉 + α|1〉)2 (22)

Similarly, from Eq. (20), if Alice’s measurement result on particle 1 is |ψ〉1, the state
of particles m and 2 will become

b(α|00〉 + β∗|11〉)m2 = b(α|00〉 + βe−2iφ |11〉)m2 (23)

On particle m, Alice performs the unitary transformations U1 and H , respectively;
hence, the above state will become
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Table 2 The measurement results and the unitary transformation U2

Measurement results of Alice States of particle 2 Probabilities U2

Particle l Particle 1 Particle m

|0〉l |ψ⊥〉1 |0〉m (β|0〉 − α|1〉)2 |b|2
2 −iσy

|1〉m (β|0〉 + α|1〉)2 |b|2
2 σx

|ψ〉1 |0〉m (α|0〉 + β|1〉)2 |b|2
2 I

|1〉m (α|0〉 − β|1〉)2 |b|2
2 σz

|1〉l |0〉1 – – 1 − 2|b|2 –

e−iφ[ b√
2
|0〉m ⊗ b√

2
(α|0〉 + β|1〉)2 + b√

2
|1〉m ⊗ (

b√
2
(α|0〉 − β|1〉)2] (24)

where the global phase e−iφ could be ignored.
After the measurements of particles 1, l and m, Alice informs Bob of her measure-

ment results via a classical channel. In order to construct the original state shown in
Eq. (1), Bob only needs to perform a conditional unitary transformation U2 on particle
2, which depends on Alice’s measurement results. Table 2 shows the measurement
results on particles l, 1 and m, and the unitary transformation on particle 2.

From the above analyses, one can find that these two proposals in Sects. 3 and 4
could be united to perform the RSP, and the combination has the advantages of both
two schemes. Hence, one can make use of the combination of these two schemes to
realize the RSP with the total successful probability of 2|b|2, whether the receiver
knows the partially entangled state or not.

6 Discussions and conclusions

In the following, we will discuss the physical realizations of our proposals. Nowadays,
some linear optical protocols [27,28] for the RSP have been presented theoretically,
specially some ones have been experimentally realized with the use of linear optics
[29,30]. According to the aforementioned analyses, one can find that the unitary trans-
formation U1, Hadamard operation H and C-NOT gate UC N OT need to be completed
for our proposals. Fortunately, arbitrary single-qubit operations can be performed to
the optical qubit via phase shifters and beam splitters together [31], namely the single-
qubit operations U1 and H could be implemented using linear optical elements. Mean-
while, it has been demonstrated experimentally that the C-NOT gate UC N OT can be
achieved in linear optical [32]. Hence, all of these operations introduced for these new
proposals could be realizable in optical experiments. Moreover, it is worthwhile to
point out that the linear optical elements required for these special operations have
been widely used; for instance, the action of half-wave plate(HWP) is equal to the
Hadamard operation H . Consequently, our protocols may be implemented with the
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use of linear optics in near future. Additionally, no more than two auxiliary particles
are necessary to be introduced for the novel schemes with the exception of these three
unitary operations. Practically speaking, our protocols are finished at the cost of the
increased complexity of the practical realizations.

In summary, we put forward two novel schemes to probabilistically prepare an
arbitrary quantum state with the help of the introduction of auxiliary particles and
appropriate local unitary operations. In contrast to the previous schemes [16–26],
our present ones have the following advantages. First, one can use the former of our
proposals to improve the successful probability for the RSP. This scheme could be
realized with the total successful probability of 2|b|2, which is twice as much as the
one of the previous schemes [13–21] to prepare a general quantum state. Therefore,
our proposal is valid for adding the total successful probability of the RSP. Second,
the latter novel proposal could be utilized to perform the RSP when the information
of the partially entangled state is only available for the sender, whereas the previous
typical schemes [16–26] are not feasible unless the receiver completely knows the
partially entangled state. Thus, the second proposal could enlarge the applied range of
probabilistic RSP. Third, our protocols can been combined together. Meanwhile, the
combination has the advantages of both schemes in essential, i.e., this union would
be useful not only in improving the successful probability, but also in expanding the
applied range of the RSP. Thus, from the point of the potential applications of the
RSP, we believe that our schemes will play an important role in expanding the field of
quantum information processing.
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