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Abstract Two schemes via different entangled resources as the quantum channel are
proposed to realize remote preparation of an arbitrary four-particle χ -state with high
success probabilities. To design these protocols, some useful and general measurement
bases are constructed, which have no restrictions on the coefficients of the prepared
states. It is shown that through a four-particle projective measurement and two-step
three-particle projective measurement under the novel sets of mutually orthogonal
basis vectors, the original state can be prepared with the probability 50 and 100 %,
respectively. And for the first scheme, the special cases of the prepared state that the
success probability reaches up to 100 % are discussed by the permutation group. Fur-
thermore, the present schemes are extended to the non-maximally entangled quantum
channel, and the classical communication costs are calculated.
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1 Introduction

One of the main tasks in quantum communication is transmitting a quantum state
from one place to another as information is carried by a quantum state. Bennett et
al. [1] first brought out a remarkable scheme called quantum teleportation to transmit
an unknown qubit by utilizing a prior shared entanglement and some classical com-
munication. Subsequently, Lo [2] proposed another interesting scheme called remote
state preparation (RSP) to transmit a pure known quantum state. It has been shown
that for some special ensembles of states, RSP protocols are more economical than
quantum teleportation as the required quantum entanglement and classical commu-
nication cost (CCC) can be reduced in the case that the sender knows the state. For
example, the RSP protocol proposed by Pati [3] requires only one classical bit from
the sender to the receiver for a qubit chosen from equatorial or polar great circles
on a Bloch sphere, while in standard teleportation two classical bits are needed. The
trade-off between the classical communication cost and the required entanglement in
RSP protocol has been studied distinctly by Bennett et al. [4]. So far, remote state
preparation has received much attention both theoretically [5–21] and experimentally
[22–28] due to its important application in quantum communication.

Quantum entanglement has been widely studied recently as it is the foundational
resource of quantum information processing. One important work is that Yeo et al.
[29] studied a genuine maximally entangled four-qubit χ -state

x0|0000〉 + x1|0011〉 + x2|0101〉 + x3|0110〉
+x4|1001〉 + x5|1010〉 + x6|1100〉 + x7|1111〉, (1)

where x0, x1, . . . , x7 are complex and satisfy
∑7

i=0 |xi |2 = 1. χ -type entangled state
is a special four-particle entangled state, which is different from a four-particle GHZ
or W state under stochastic local operations and classical communication. It is known
that the χ -state has many interesting entanglement properties and is a very important
entangled resource. For example, the χ -state has been widely applied in teleportation,
superdense coding [29], quantum secure direct communication [30] and quantum
information splitting [31]. Recently, Qu et al. [32] investigated quantum steganography
with large payload based on the entanglement swapping of χ -states. Therefore, it is
meaningful to investigate the preparation of χ -state. Some schemes have been widely
explored to prepare χ -state in different systems [33–36], such as ion trap systems [33],
cavity QED systems [34,35] and linear optics elements [36]. However, few scheme
[37] has been designed to prepare χ -state at a remote site, which is very important for
quantum network communication.

In this paper, we investigate the remote preparation of a four-particle χ -state in Eq.
(1). This general state includes more free coefficients comparing with the previous
remote preparation of a four-particle GHZ state or cluster state with no more than four
coefficients [10,14–16]. Thus, the sender needs to construct a larger measurement
basis. In fact, two schemes via maximally entangled states as the quantum channels
are proposed to realize the remote preparation with high probabilities. In Sect. 2, we
propose the first scheme using two EPR pairs and a four-particle GHZ state as the
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shared quantum resources, and construct a new set of measurement basis, which plays
an important role in our scheme. It is shown that the χ -state can be prepared with
the success probability 50 % if the sender performs a four-particle projective measure-
ment under this basis and the receiver adopts some appropriate unitary transformations.
Also, some special cases that the success probability can reach up to 100 % are dis-
cussed by the permutation group. In Sect. 3, with the aid of two-step three-particle
orthogonal basis projective measurement, a deterministic scheme is proposed. These
schemes are extended to the non-maximally entangled quantum channel in Sect. 4.
The classical communication costs of the two schemes are calculated in Sect. 5, while
some discussions and conclusions are given in the last section.

2 Two EPR pairs and a four-qubit GHZ state as the quantum channel

The sender Alice wants to help the receiver Bob remotely prepare a four-qubit χ -state
in Eq. (1). Alice knows about x0, . . . , x7 completely, but Bob does not know them at
all.

Assume that the sender Alice and the receiver Bob share two EPR pairs and a
four-particle GHZ state

|�〉1B1 = 1√
2
(|00〉 + |11〉)1B1

|�〉2B2 = 1√
2
(|00〉 + |11〉)2B2 (2)

|�〉34B3 B4 = 1√
2
(|0000〉 + |1111〉)34B3 B4

as the quantum channel. The particles (1, 2, 3, 4) are held by Alice, while the particles
(B1, B2, B3, B4) belong to Bob. Hence, the initial state of the whole system can be
written as

|�〉1234B1 B2 B3 B4 = |�〉1B1 ⊗ |�〉2B2 ⊗ |�〉34B3 B4

= 1

2
√

2
(|00000000〉 + |00110011〉 + |01110111〉

+|01000100〉 + |10111011〉 + |10001000〉 + |11001100〉
+|11111111〉)1234B1 B2 B3 B4 . (3)

In order to realize the RSP with a high probability, we need to construct a set of
useful measurement basis that relies on the parameters x0, . . . , x7 of the prepared
χ -state. Firstly, construct an 8 × 16 matrix

M = (F F∗), (4)

123



1954 S.-Y. Ma et al.

where

F = 1√
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0 x1 x2 x3 x4 x5 x6 x7
x1 −x0 x3 −x2 x5 −x4 −x7 x6
x2 −x3 −x0 x1 x6 x7 −x4 −x5
x3 x2 −x1 −x0 x7 −x6 x5 −x4
x4 −x5 −x6 −x7 −x0 x1 x2 x3
x5 x4 −x7 x6 −x1 −x0 −x3 x2
x6 x7 x4 −x5 −x2 x3 −x0 −x1
x7 −x6 x5 x4 −x3 −x2 x1 −x0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (5)

It is noticed that all the row vectors in the matrix M form unit orthogonal vector
set. Thus, an 8 × 16 matrix N dependent on x0, . . . , x7 can always be found such

that

(
M
N

)

is a 16 × 16 unitary matrix. For example, such a matrix N can be found

by performing the Gram-Schmidt orthogonal procedure on the linearly independent
vector set which includes each row vector in the matrix M . In the following, we give
an explicit expression of the matrix N . Notice that

F F† + F∗FT = E8, F FT = λE8, (6)

where † denotes the conjugate transpose of a matrix, ∗ denotes the conjugate of a matrix,
T denotes the transpose of a matrix, E denotes the identity matrix, λ = 1

2

∑7
i=0 x2

i .
Then, we can take

N =
(

F∗,−λ∗

λ
F

)

, (7)

the constant −λ∗
λ

is defined by 1 in the case that λ = 0.
Alice performs a four-particle projective measurement on her particles (1, 2, 3, 4)

under the basis {|ζ1〉, . . . , |ζ16〉}, which has the following relationship to the compu-
tation basis {|0000〉, . . . , |1111〉}:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

|ζ1〉
|ζ2〉
|ζ3〉
|ζ4〉
|ζ5〉
|ζ6〉
|ζ7〉
|ζ8〉
|ζ9〉
|ζ10〉
|ζ11〉
|ζ12〉
|ζ13〉
|ζ14〉
|ζ15〉
|ζ16〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(

M
N

)†

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

|0000〉
|0011〉
|0111〉
|0100〉
|1011〉
|1000〉
|1100〉
|1111〉
|0001〉
|0010〉
|0101〉
|0110〉
|1001〉
|1010〉
|1101〉
|1110〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8)
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By the way, the 16 states |ζ1〉, . . . , |ζ16〉 form a complete orthogonal basis in 16-

dimensional Hilbert space C16 since

(
M
N

)

is a 16 × 16 unitary matrix. After the

measurement, Alice tells Bob the measurement result through a classical channel.
To see how our protocol works, let us express the quantum channel in terms of the

measurement basis. The state |�〉1234B1 B2 B3 B4 in Eq. (3) can be expanded as

|�〉1234B1 B2 B3 B4 = 1

4
[|ζ1〉1234(x0|0〉 + x1|3〉 + x2|7〉 + x3|4〉

+ x4|11〉 + x5|8〉 + x6|12〉 + x7|15〉)B1 B2 B3 B4

+ |ζ2〉1234(x1|0〉 − x0|3〉 − x3|7〉 + x2|4〉
− x5|11〉 + x4|8〉 + x7|12〉 − x6|15〉)B1 B2 B3 B4

+ |ζ3〉1234(x2|0〉 + x3|3〉 − x0|7〉 − x1|4〉
− x6|11〉 − x7|8〉 + x4|12〉 + x5|15〉)B1 B2 B3 B4

+ |ζ4〉1234(x3|0〉 − x2|3〉 + x1|7〉 − x0|4〉
− x7|11〉 + x6|8〉 − x5|12〉 + x4|15〉)B1 B2 B3 B4

+ |ζ5〉1234(x4|0〉 + x5|3〉 + x6|7〉 + x7|4〉
− x0|11〉 − x1|8〉 − x2|12〉 − x3|15〉)B1 B2 B3 B4

+ |ζ6〉1234(x5|0〉 − x4|3〉 + x7|7〉 − x6|4〉
+ x1|11〉 − x0|8〉 + x3|12〉 − x2|15〉)B1 B2 B3 B4

+ |ζ7〉1234(x6|0〉 − x7|3〉 − x4|7〉 + x5|4〉
+ x2|11〉 − x3|8〉 − x0|12〉 + x1|15〉)B1 B2 B3 B4

+ |ζ8〉1234(x7|0〉 + x6|3〉 − x5|7〉 − x4|4〉
+ x3|11〉 + x2|8〉 − x1|12〉 − x0|15〉)B1 B2 B3 B4

+ |ζ9〉1234(x∗
0 |0〉 + x∗

1 |3〉 + x∗
2 |7〉 + x∗

3 |4〉
+ x∗

4 |11〉 + x∗
5 |8〉 + x∗

6 |12〉 + x∗
7 |15〉)B1 B2 B3 B4

+ |ζ10〉1234(x∗
1 |0〉 − x∗

0 |3〉 − x∗
3 |7〉 + x∗

2 |4〉
− x∗

5 |11〉 + x∗
4 |8〉 + x∗

7 |12〉 − x∗
6 |15〉)B1 B2 B3 B4

+ |ζ11〉1234(x∗
2 |0〉 + x∗

3 |3〉 − x∗
0 |7〉 − x∗

1 |4〉
− x∗

6 |11〉 − x∗
7 |8〉 + x∗

4 |12〉 + x∗
5 |15〉)B1 B2 B3 B4

+ |ζ12〉1234(x∗
3 |0〉 − x∗

2 |3〉 + x∗
1 |7〉 − x∗

0 |4〉
− x∗

7 |11〉 + x∗
6 |8〉 − x∗

5 |12〉 + x∗
4 |15〉)B1 B2 B3 B4

+ |ζ13〉1234(x∗
4 |0〉 + x∗

5 |3〉 + x∗
6 |7〉 + x∗

7 |4〉
− x∗

0 |11〉 − x∗
1 |8〉 − x∗

2 |12〉 − x∗
3 |15〉)B1 B2 B3 B4

+ |ζ14〉1234(x∗
5 |0〉 − x∗

4 |3〉 + x∗
7 |7〉 − x∗

6 |4〉
+ x∗

1 |11〉 − x∗
0 |8〉 + x∗

3 |12〉 − x∗
2 |15〉)B1 B2 B3 B4

+ |ζ15〉1234(x∗
6 |0〉 − x∗

7 |3〉 − x∗
4 |7〉 + x∗

5 |4〉
+ x∗

2 |11〉 − x∗
3 |8〉 − x∗

0 |12〉 + x∗
1 |15〉)B1 B2 B3 B4
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Table 1 The relations among Alice’s measurement outcome (AMO), the transformed state (TS) after Bob
performs CNOT operation CB1 B3 CB2 B3 on the collapsed state and Bob’s appropriate unitary operation
(BAUO) under the assumption that the χ -state can be successfully prepared

AMO TS BAUO

|ζ1〉 x0|0〉 + x1|3〉 + x2|5〉 + x3|6〉 + x4|9〉 + x5|10〉 + x6|12〉 + x7|15〉 I

|ζ2〉 x1|0〉 − x0|3〉 − x3|5〉 + x2|6〉 − x5|9〉 + x4|10〉 + x7|12〉 − x6|15〉 X B3 YB4

|ζ3〉 x2|0〉 + x3|3〉 − x0|5〉 − x1|6〉 − x6|9〉 − x7|10〉 + x4|12〉 + x5|15〉 X B2 Z B3 YB4

|ζ4〉 x3|0〉 − x2|3〉 + x1|5〉 − x0|6〉 − x7|9〉 + x6|10〉 − x5|12〉 + x4|15〉 YB2 X B3 Z B4

|ζ5〉 x4|0〉 + x5|3〉 + x6|5〉 + x7|6〉 − x0|9〉 − x1|10〉 − x2|12〉 − x3|15〉 YB1 X B4

|ζ6〉 x5|0〉 − x4|3〉 + x7|5〉 − x6|6〉 + x1|9〉 − x0|10〉 + x3|12〉 − x2|15〉 X B1 YB3

|ζ7〉 x6|0〉 − x7|3〉 − x4|5〉 + x5|6〉 + x2|9〉 − x3|10〉 − x0|12〉 + x1|15〉 X B1 YB2 Z B3

|ζ8〉 x7|0〉 + x6|3〉 − x5|5〉 − x4|6〉 + x3|9〉 + x2|10〉 − x1|12〉 − x0|15〉 X B1 YB2 X B3 X B4

+ |ζ16〉1234(x∗
7 |0〉 + x∗

6 |3〉 − x∗
5 |7〉 − x∗

4 |4〉
+ x∗

3 |11〉 + x∗
2 |8〉 − x∗

1 |12〉 − x∗
0 |15〉)B1 B2 B3 B4 ], (9)

where |0〉 = |0000〉, |3〉 = |0011〉, |7〉 = |0111〉, |4〉 = |0100〉, |11〉 =
|1011〉, |8〉 = |1000〉, |12〉 = |1100〉, |15〉 = |1111〉. It is transparent that only if
Alice’s measurement outcome lies in {|ζ1〉, . . . , |ζ8〉}, Bob can successfully recover
the prepared state on his qubits (B1, B2, B3, B4) by performing appropriate unitary
operation. Bob first performs CNOT operations CB1 B3CB2 B3 on his qubits (B1, B2, B3)

with (B1, B2) being the controlled qubits, B3 the target one. After the CNOT oper-
ations, Bob’s recovery operations conditioned on Alice’s measurement results are
summarized in Table 1 (X, Y, Z are Pauli operations).

Surely, it is also possible for Alice to get the measurement outcome |ζ9〉, · · · , |ζ16〉.
In contrast to the case of the former eight outcomes |ζ1〉, · · · , |ζ8〉, for the latter
eight outcomes, Bob is not able to convert the collapsed state into the χ -state due to
lack of x0, . . . , x7. Alice’s measurement outcome may be one of the sixteen states
{|ζ j 〉, j = 1, . . . , 16} and each one occurs with the equal probability 1

16 . Therefore,
the total success probability is 8 × 1

16 = 1
2 in the general condition.

It naturally arises an intriguing question: if these coefficients of the prepared state
are some special values, can the χ -state be prepared with unit success probability?
After extensive investigation, we give the following classification criterion.

Criterion The χ -state in Eq. (1) can be prepared under the scheme with unit
success probability if and only if the coefficients x0, . . . , x7 satisfy

(x∗
0 , x∗

1 , x∗
2 , x∗

3 , x∗
4 , x∗

5 , x∗
6 , x∗

7 ) = eiτg g(±x0,±x1,±x2,±x3,±x4,±x5,±x6,±x7),

(10)
where τg is a real constant which depends on the permutation g ∈ S8. Here, S8 denotes
the permutation group on the eight letters {a, b, c, d, e, f, g, h} [38].

From Eq. (10) and the condition
∑7

i=0 |xi |2 = 1, one can calculate the ensembles
of coefficients that the χ -state can be prepared with unit probability. In the following,
an example is given to illustrate that for the special ensembles under the criterion,
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Bob can employ appropriate unitary operations to convert each collapsed state to the
prepared state when Alice’s measurement outcome lies in {|ζ9〉1234, . . . , |ζ16〉1234}.
Suppose Alice’s measurement outcome is |ζ9〉1234, she informs Bob of her outcome
via a classical channel. For convenience, we use the following short notation:

| f (y0, . . . , y7)〉 = y0|0〉+y1|3〉+y2|7〉 + y3|4〉+y4|11〉+y5|8〉+y6|12〉 + y7|15〉.
(11)

As a consequence, Bob knows his qubits (B1, B2, B3, B4) are now in the state

| f (x∗
0 , x∗

1 , x∗
2 , x∗

3 , x∗
4 , x∗

5 , x∗
6 , x∗

7 )〉 (12)

which can be rewritten as

| f (g(±x0,±x1,±x2,±x3,±x4,±x5,±x6,±x7))〉 (13)

up to a global phase eiτg . Then, Bob can perform appropriate unitary operations on
his particles (B1, B2, B3, B4) and get the χ -state.

3 Two three-qubit GHZ states and a four-qubit GHZ state as the quantum
channel

In this section, we demonstrate the other deterministic scheme by performing two-step
three-particle projective measurement and adding local operation.

Suppose the quantum channel shared between the sender Alice and the receiver
Bob is two three-qubit GHZ states and a four-qubit GHZ state:

|�〉14B1 = 1√
2
(|000〉 + |111〉)14B1 ,

|�〉25B2 = 1√
2
(|000〉 + |111〉)25B2 ,

|�〉36B3 B4 = 1√
2
(|0000〉 + |1111〉)36B3 B4 .

(14)

The particles (1, 2, 3, 4, 5, 6) are held by Alice, while the particles (B1, B2, B3, B4)

by Bob. Obviously, the initial state of the combined system can be expressed as

|�〉123456B1 B2 B3 B4 = |�〉14B1 ⊗ |�〉25B2 ⊗ |�〉36B3 B4

= 1
2
√

2

1∑

p,q,t=0
|pqtpqtpqtt〉123456B1 B2 B3 B4 .

(15)

Notice that the four-qubit χ -state in Eq. (1) can be rewritten as

|χ〉 = r0eiθ0 |0000〉 + r1eiθ1 |0011〉 + r2eiθ2 |0101〉 + r3eiθ3 |0110〉
+ r4eiθ4 |1001〉 + r5eiθ5 |1010〉 + r6eiθ6 |1100〉 + r7eiθ7 |1111〉, (16)
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where r j eiθ j = x j , j = 0, 1, . . . , 7, real coefficients r j ≥ 0 with the normalization
condition

∑7
j=0 r2

j = 1, and θ j ∈ [0, 2π), j = 0, 1, . . . , 7. Since Alice knows x j , she
knows r j , θ j completely. Alice first performs a three-particle projective measurement
on the particle (1, 2, 3) under the complete orthogonal basis {|ξ0〉, . . . , |ξ7〉}, which
are related to the computation basis {|000〉, . . . , |111〉} by the following relation:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

|ξ0〉
|ξ1〉
|ξ2〉
|ξ3〉
|ξ4〉
|ξ5〉
|ξ6〉
|ξ7〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r0 r1 r2 r3 r4 r5 r6 r7
r1 −r0 r3 −r2 r5 −r4 r7 −r6
r2 −r3 −r0 r1 −r6 r7 r4 −r5
r3 r2 −r1 −r0 r7 r6 −r5 −r4
r4 −r5 r6 −r7 −r0 r1 −r2 r3
r5 r4 −r7 −r6 −r1 −r0 r3 r2
r6 −r7 −r4 r5 r2 −r3 −r0 r1
r7 r6 r5 r4 −r3 −r2 −r1 −r0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (17)

After the measurement, Alice does not perform the second-step measurement imme-
diately but performs a unitary operation U k on her particles (4,5,6) conditioned on her
first measurement result |ξk〉123, k ∈ {0, 1, 2, 3, 4, 5, 6, 7}. Here,

U 0 = I ⊗ I ⊗ I, U 1 = I ⊗ I ⊗ X, U 2 = I ⊗ X ⊗ I, U 3 = I ⊗ X ⊗ X,

U 4 = X ⊗ I ⊗ I, U 5 = X ⊗ I ⊗ X, U 6 = X ⊗ X ⊗ I, U 7 = X ⊗ X ⊗ X,
(18)

with I is the identity operation, and X is the Pauli operation. Then, Alice performs
a three-particle projective measurement on the particles (4, 5, 6) under the complete
orthogonal basis {|η0〉, . . . , |η7〉}, which are defined by

(|η0〉, |η1〉, |η2〉, |η3〉, |η4〉, |η5〉, |η6〉, |η7〉)T

= 1
2
√

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e−iθ0 e−iθ1 e−iθ2 e−iθ3 e−iθ4 e−iθ5 e−iθ6 e−iθ7

e−iθ0 −e−iθ1 e−iθ2 −e−iθ3 e−iθ4 −e−iθ5 e−iθ6 −e−iθ7

e−iθ0 −e−iθ1 −e−iθ2 e−iθ3 e−iθ4 −e−iθ5 −e−iθ6 e−iθ7

e−iθ0 e−iθ1 −e−iθ2 −e−iθ3 e−iθ4 e−iθ5 −e−iθ6 −e−iθ7

e−iθ0 −e−iθ1 e−iθ2 −e−iθ3 −e−iθ4 e−iθ5 −e−iθ6 e−iθ7

e−iθ0 e−iθ1 −e−iθ2 −e−iθ3 −e−iθ4 −e−iθ5 e−iθ6 e−iθ7

e−iθ0 e−iθ1 e−iθ2 e−iθ3 −e−iθ4 −e−iθ5 −e−iθ6 −e−iθ7

e−iθ0 −e−iθ1 −e−iθ2 e−iθ3 −e−iθ4 e−iθ5 e−iθ6 −e−iθ7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

|000〉
|001〉
|010〉
|011〉
|100〉
|101〉
|110〉
|111〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(19)

To see how our protocol works, without loss of generality, assume Alice’s first
measurement result on her particles (1,2,3) is |ξ1〉123. Then, the particles collapse into

(r1|0000000〉 − r0|0010011〉 + r3|0100100〉 − r2|0110111〉
+ r5|1001000〉 − r4|1011011〉 + r7|1101100〉 − r6|1111111〉)456B1 B2 B3 B4 .

(20)
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In this situation, Alice performs the unitary operation U 1 = I ⊗ I ⊗ X on her particles
(4,5,6) and gets

(−r0|0000011〉 + r1|0010000〉 − r2|0100111〉 + r3|0110100〉
− r4|1001011〉 + r5|1011000〉 − r6|1101111〉 + r7|1111100〉)456B1 B2 B3 B4 .

(21)

Then, Alice performs a three-particle projective measurement on her particles (4,5,6)
under the basis {|η0〉, . . . , |η7〉} defined by Eq. (19). Since the state in Eq. (21) can be
rewritten as

|η0〉456(−x0|3〉 + x1|0〉 − x2|7〉 + x3|4〉
− x4|11〉 + x5|8〉 − x6|15〉 + x7|12〉)B1 B2 B3 B4

+ |η1〉456(−x0|3〉 − x1|0〉 − x2|7〉 − x3|4〉
− x4|11〉 − x5|8〉 − x6|15〉 − x7|12〉)B1 B2 B3 B4

+ |η2〉456(−x0|3〉 − x1|0〉 + x2|7〉 + x3|4〉
− x4|11〉 − x5|8〉 + x6|15〉 + x7|12〉)B1 B2 B3 B4

+ |η3〉456(−x0|3〉 + x1|0〉 + x2|7〉 − x3|4〉
+ x4|11〉 − x5|8〉 − x6|15〉 + x7|12〉)B1 B2 B3 B4

+ |η4〉456(−x0|3〉 − x1|0〉 − x2|7〉 − x3|4〉
+ x4|11〉 + x5|8〉 + x6|15〉 + x7|12〉)B1 B2 B3 B4

+ |η5〉456(−x0|3〉 + x1|0〉 − x2|7〉 + x3|4〉
+ x4|11〉 − x5|8〉 + x6|15〉 − x7|12〉)B1 B2 B3 B4

+ |η6〉456(−x0|3〉 + x1|0〉 + x2|7〉 − x3|4〉
− x4|11〉 + x5|8〉 + x6|15〉 − x7|12〉)B1 B2 B3 B4

+ |η7〉456(−x0|3〉 − x1|0〉 + x2|7〉 + x3|4〉
+ x4|11〉 + x5|8〉 − x6|15〉 − x7|12〉)B1 B2 B3 B4 , (22)

where |0〉 = |0000〉, |3〉 = |0011〉, |7〉 = |0111〉, |4〉 = |0100〉, |11〉 =
|1011〉, |8〉 = |1000〉, |15〉 = |1111〉, |12〉 = |1100〉. From the above equation,
one can see whatever Alice’s second measurement outcome is, Bob can get the pre-
pared χ -state by performing appropriate unitary operation on his collapsed particles.
Firstly, Bob performs CNOT operations CB1 B4CB2 B4 on his qubits (B1, B2, B3, B4)

with (B1, B2) being the controlled qubits, B4 the target one. Then, Bob’s recovery oper-
ations conditioned on Alice’s second-step measurement results |η j 〉456 ( j = 0, . . . , 7)

after the CNOT operations, are summarized into the Table 2 (X,Y,Z are Pauli opera-
tions).

As for the other seven cases corresponding to Alice’s first-step measurement results,
similar analysis process can be made. Here, we do not depict them one by one anymore.
Therefore, the total success probability for preparing the χ -state is unit.
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Table 2 For Alice’s first-step measurement outcome |ξ1〉123, the relation between Alice’s second-step
measurement outcome |η j 〉456 ( j = 0, . . . , 7), and Bob’s appropriate unitary operation (BAUO) on the
particles (B1, B2, B3, B4) after the CNOT operations CB1 B4 CB2 B4

j 0 1 2 3

BAUO YB3 X B4 X B3 X B4 Z B2 X B3 X B4 X B3 YB4

j 4 5 6 7

BAUO Z B1 X B3 X B4 Z B1 YB3 X B4 Z B2 YB3 X B4 YB3 YB4

4 Non-maximally entangled sates as the quantum channel

In real situations, however, it is most of the time not possible to have a maximally
entangled state at one’s disposal. Because of the interaction with the environment, the
quantum state of any system will become the mixed state after a certain period. This
problem of decoherence can be mitigated but cannot be completely overcome. Also,
it may happen that the source does not produce perfect maximally entangled states
rather non-maximally entangled pairs. Therefore, it is important to investigate the RSP
via non-maximally entangled quantum channel.

In this section, we extend the proposed schemes via the maximally entangled quan-
tum channel to the case that non-maximally entangled states are taken as quantum
channel. Take the scheme in Sect. 2 as an example.

Suppose the quantum channel is composed of two non-maximally entangled EPR
pairs and a four-qubit GHZ state:

|�̃〉1B1 = (a|00〉 + b|11〉)1B1 ,

|�̃〉2B2 = (c|00〉 + d|11〉)2B2 , (23)

|�̃〉34B3 B4 = (e|0000〉 + f |1111〉)34B3 B4 ,

where a, b, c, d, e, f are real, |a| ≤ |b|, |c| ≤ |d|, |e| ≤ | f | and |a|2 + |b|2 =
|c|2 + |d|2 = |e|2 + | f |2 = 1. The particles (1, 2, 3, 4) are held by Alice, while the
particles (B1, B2, B3, B4) by Bob. a, b, c, d, e, f are known to both the sender Alice
and the receiver Bob. Here, we give two equivalent schemes with the same success
probability.

On the one hand, the sender Alice can perform normal local filtering [39] to convert
the non-maximally entangled quantum channel to the maximally entangled quantum
channel with a certain probability before the RSP and then follow the scheme in Sect.
2. In detail, Alice introduces an auxiliary two-level particle with initial state |0〉A into
|�̃〉1B1 , and makes a unitary transformation

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0

0 a
b 0

√
1 − ( a

b )2

0 0 −1 0

0
√

1 − ( a
b )2 0 − a

b

⎞

⎟
⎟
⎟
⎟
⎠

(24)
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under the basis {|00〉1A, |10〉1A, |01〉1A, |11〉1A}, then Alice gets

a(|00〉 + |11〉)1B1 |0〉A + b

√

1 −
(a

b

)2|11〉1B1 |1〉A. (25)

Alice can obtain the maximally entangled state 1√
2
(|00〉 + |11〉)1B1 with the proba-

bility 2a2 by measuring the auxiliary particle A under the basis {|0〉A, |1〉A}. Simi-
larly, Alice can get maximally entangled states 1√

2
(|00〉 + |11〉)2B2 and 1√

2
(|0000〉 +

|1111〉)34B3 B4 from the non-maximally entangled states (c|00〉 + d|11〉)2B2 and
(e|0000〉 + f |1111〉)34B3 B4 with the probability 2c2 and 2e2, respectively. It means
that Alice can change the non-maximally entangled quantum channel in Eq. (23) into
the maximally entangled quantum channel in Eq. (2) with the probability 8a2c2e2.
Therefore, following the scheme in Sect. 2, the RSP can be successfully realized with
the probability (8a2c2e2) × 1

2 = 4a2c2e2.
On the other hand, the local filtering can be completed in an equivalent form by

the receiver Bob after the sender Alice’s measurement, i.e., Alice and Bob first follow
the similar scheme as that in Sect. 2, and then, Bob performs the local filtering. The
initial state of the combined system can be expressed as

|�̃〉1B1 ⊗ |�̃〉2B2 ⊗ |�̃〉34B3 B4

= (ace|00000000〉 + ac f |00110011〉 + ad f |01110111〉 + ade|01000100〉
+ bc f |10111011〉 + bce|10001000〉 + bde|11001100〉
+ bd f |11111111〉)1234B1 B2 B3 B4 . (26)

Alice performs a four-qubit projective measurement on her particles (1, 2, 3, 4) under
the basis |ζ1〉, . . . , |ζ16〉 defined by Eq. (8). After the measurement, Alice sends the
measurement outcome to Bob through a classical channel. If Alice’s measurement
result is |ζ1〉1234, by performing appropriate unitary operation as that in Sect. 2 on the
collapsed particles (B1, B2, B3, B4), Bob can get

(acex0|0000〉 + ac f x1|0011〉 + ad f x2|0101〉 + adex3|0110〉
+ bc f x4|1001〉 + bcex5|1010〉 + bdex6|1100〉 + bd f x7|1111〉)B1 B2 B3 B4 .

(27)

To obtain the prepared state, Bob introduces an auxiliary two-level particle B with the
initial state |0〉B and makes a unitary transformation

(
D1 D2
D2 −D1

)

(28)

on the particles (B1, B2, B3, B) under the basis {|0000〉, |0010〉, |0100〉, |0110〉,
|1000〉, |1010〉, |1100〉, |1110〉, {|0001〉, |0011〉, |0101〉, |0111〉, |1001〉, |1011〉,
|1101〉, |1111〉}. Here, D1, D2 are 8 × 8 diagonal matrices defined as follows:
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D1 = diag{d0, d1, d2, d3, d4, d5, d6, d7},
D2 = diag

{√
1 − d2

0 ,

√
1 − d2

1 ,

√
1 − d2

2 ,

√
1 − d2

3 ,

√
1 − d2

4 ,

√
1 − d2

5 ,

√
1 − d2

6 ,

√
1 − d2

7

}

, (29)

with d0 = 1, d1 = e
f , d2 = ce

d f , d3 = c
d , d4 = ae

b f , d5 = a
b , d6 = ac

bd , d7 = ace
bd f .

Then, Bob can get

ace|χ〉B1 B2 B3 B4 ⊗ |0〉B + (ac f x1

√
1 − d2

1 |0011〉 + ad f x2

√
1 − d2

2 |0101〉
+ adex3

√
1 − d2

3 |0110〉 + bc f x4

√
1 − d2

4 |1001〉 + bcex5

√
1 − d2

5 |1010〉
+ bdex6

√
1 − d2

6 |1100〉 + bd f x7

√
1 − d2

7 |1111〉)B1 B2 B3 B4 ⊗ |1〉B . (30)

At last, Bob makes a measurement on the auxiliary particle B. If the measurement result
is |1〉B , the RSP fails as Bob cannot reconstruct the original state on his particles. While
if the measurement result is |0〉B , Bob can get the original state in his position. Similar
discussion can be made when Alice’s measurement result is |ζ j 〉1234, j ∈ {2, . . . , 8}.
Hence, the total success possibility is 8 × 1

16 × 8a2c2e2 = 4a2c2e2.
Consider the case that the quantum channel in Sect. 3 is non-maximally entangled.

Assume that the quantum channel shared between the sender Alice and the receiver
Bob is

|�̃〉14B1 = (a|000〉 + b|111〉)14B1 ,

|�̃〉25B2 = (c|000〉 + d|111〉)25B2 , (31)

|�̃〉36B3 B4 = (e|0000〉 + f |1111〉)36B3 B4 ,

where a, b, c, d, e, f are real, |a| ≤ |b|, |c| ≤ |d|, |e| ≤ | f | and |a|2 + |b|2 =
|c|2 + |d|2 = |e|2 + | f |2 = 1. The particles (1, 2, 3, 4, 5, 6) are held by Alice,
while the particles (B1, B2, B3, B4) belong to Bob. By the similar discussion, we can
construct two equivalent schemes with the success probability 8a2c2e2.

5 Classical communication cost

Classical communication plays an important role in quantum information. In this
section, we calculate the classical communication cost to weigh the classical resources
required.

Consider the RSP scheme via two EPR pairs and a four-particle GHZ state as
the quantum channel in Sect. 2. Only 2.5 cbits are needed. In fact, only eight cases
{|ζ1〉, . . . , |ζ8〉} out of 16 measurement results are useful for successful RSP, and
each of the measurement results can be obtained with the probability 1

16 . Take other
measurement outcomes leading to failed RSP as one type. Therefore, CCC for Alice
is 8 × 1

16 log2 16 + 1
2 log2 2 = 2.5 cbits. As far as the deterministic scheme in Sect. 3,

CCC for Alice is 8 × 1
8 log2 8 + 8 × 1

8 log2 8 = 6 cbits.
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6 Conclusions

In conclusion, two efficient schemes via various entanglement resources are proposed
to remotely prepare a four-particle χ -state with high success probabilities. In the
first scheme, two EPR pairs and a four-particle GHZ state are used as the quantum
channel. Through a four-particle measurement under a novel set of measurement basis,
the original state can be successfully prepared with the probability 50 %. Moreover, by
introducing the permutation group S8, we have classified some special cases of the state
that the success probability can reach 100 %. In the second scheme, two three-qubit
GHZ states and a four-qubit GHZ state are used as the quantum channel. To design
the deterministic scheme, we have constructed another useful measurement basis.
Under the basis, the sender performs two-step three-particle projective measurement
on her particles. After achieving the sender’s measurement results, the receiver can
recover the prepared state deterministically. The classical communication costs in
the proposed schemes are 2.5 and 6 cbits, respectively. Comparing with the previous
schemes for remotely preparing the state with eight coefficients, the measurement
basis we construct has no restriction on the coefficients, which means the proposed
schemes are more applicable.

Furthermore, the two schemes are extended to the non-maximally entangled quan-
tum channel. On the one hand, the sender can perform normal local filtering to convert
the partially entangled quantum channel to the maximally entangled quantum channel
before the beginning of RSP. On the other hand, the local filtering can be completed
in an equivalent form at the site of the receiver after the sender performs projective
measurement. It is shown that the receiver can reestablish the χ -state with the success
probabilities 4a2c2e2 and 8a2c2e2, respectively.

At last, we simply compare the proposed two schemes. On the one hand, three-
particle projective measurement is more easily performed than four-particle projective
measurement, and the success probability of the second scheme is twice as the first
one. On the other hand, compared to the first scheme in Sect. 2, the second scheme also
has unfavorable aspects. The sender Alice needs to use the information splitting and
divide the complex coefficients {p + qi(= reiθ )} of the original state into {r} and {θ}
before constructing the measurement basis. Also, before performing the second-step
three-particle projective measurement, the sender Alice needs to perform an additional
unitary operation conditioned on her first-step projective measurement outcome.
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