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Abstract Two protocols of quantum key agreement (QKA) that solely use Bell state
and Bell measurement are proposed. The first protocol of QKA proposed here is
designed for two-party QKA, whereas the second protocol is designed for multi-party
QKA. The proposed protocols are also generalized to implement QKA using a set
of multi-partite entangled states (e.g., 4-qubit cluster state and � state). Security of
these protocols arises from the monogamy of entanglement. This is in contrast to the
existing protocols of QKA where security arises from the use of non-orthogonal state
(non-commutativity principle). Further, it is shown that all the quantum systems that
are useful for implementation of quantum dialogue and most of the protocols of secure
direct quantum communication can be modified to implement protocols of QKA.

Keywords Quantum key agreement · Multi-party key agreement ·
Quantum cryptography · Orthogonal-state-based quantum key agreement

1 Introduction

Since Bennett and Brassard [1] proposed the first protocol of unconditionally secure
quantum key distribution (QKD), several aspects of secure quantum communication
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have been explored [2–7]. One such idea is quantum key agreement (QKA) [8–11].
There are two notions of QKA. In the weaker notion of QKA that was followed in [12],
a key is generated by two or more parties through the negotiation, which happens in
public. Under this weaker notion of QKA, many of the existing protocols of QKD can
be viewed as protocols of QKA. For example, well-known BB84 [1], Ekert [2], and
B92 [3] protocols of QKD qualify as protocols of QKA if we follow the weaker notion
of QKA introduced in [12]. However, we are interested in a stronger notion of QKA
that was introduced in Ref. [8] and is subsequently followed in all the recent works on
QKA [9,10,13–19]. In this notion of QKA, all the parties involved in the key generation
process contribute equally to construct the key. This is in contrast to QKD where a
single party can control the entire key. Before we introduce new protocols of QKA,
it is important to understand the differences between key distribution (KD) and key
agreement (KA) in further detail. In a KD protocol, a trusted authority (TA) chooses
a secret key that will be used in future for communication and transmits (distributes)
it to other parties who want to communicate. In contrast, in a KA scheme (KAS): two
or more parties establish a secret key on their own. Thus in two-party scenario, we
may say that in protocols of KD, a key is created by Alice and the same is securely
transmitted to Bob, while in the protocols of KA, both Alice and Bob contribute
information that is subsequently used to derive the shared secret key. Further, in a
good KAS, each party contributes equally to the shared key, and a dishonest party or a
group of dishonest parties cannot control or completely decide the final key. The last
point shows why all the traditional protocols of quantum cryptography, e.g., BB84 [1],
B92 [3], ping-pong (PP) [5], and LM05 [6] are not protocols of QKA in their original
forms.

Several protocols of classical key agreement are studied since the well-known
Diffie–Hellman (DH) key agreement protocol or the exponential key agreement pro-
tocol was introduced by Diffie and Hellman in 1976 [20]. A large number of the
classical key agreement protocols are actually variant of the DH protocol as they are
based on intractability of the DH problem [[21] and references therein]. To be precise,
security of these protocols depends on the intractability of discrete logarithm (DL)
problem, which may be stated as follows: given a generator g of a cyclic group G and
an element gx in G, determine x . Quite similarly, the DH problem is stated as: given
gx and gy , determine gxy [22]. Clearly if we can solve DL problem in polynomial
time then we will be able to solve DH problem in polynomial time. As there is no
efficient classical algorithm for DL problem, modified and improved DH protocols
have been considered to be secure for long. Interestingly, in 1997, Shor introduced
polynomial-time quantum algorithms for prime factorization and discrete logarithms
[23]. These two quantum algorithms clearly established that neither the RSA protocol
nor the DH-based KA protocols would remain secure if a scalable quantum computer
is built. This fact along with the already established unconditional security of QKD
enhanced the interest on QKD and QKA.

First protocol of QKA was introduced by Zhou et al. in 2004 [8] using quan-
tum teleportation. Almost simultaneously Hsueh and Chen [24] proposed another
protocol of QKA. However, in 2009, Tsai and Hwang [13] showed that quantum
teleportation-based Zhou et al. protocol was not a true protocol of QKA as a par-
ticular user can completely determine the final (shared) key without being detected.
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Next year Tsai et al. [14] showed that even protocol of Hsueh and Chen does not
qualify as a protocol of QKA. In 2010, Chong and Hwang [9] developed a protocol
of QKA using mutually unbiased bases (MUBs). Apparently, Chong Hwang (CH)
protocol was the first successful protocol of QKA. They claimed that their proto-
col is based on BB84. However, a deeper analysis would show that their protocol is
closer to LM05 protocol [6]. Of course, the security of both LM05 and BB84 proto-
cols arises from the non-commutativity and nocloning principles. In 2011, Chong,
Tsai, and Hwang [15] proposed a modified version of Hsueh and Chen protocol
that is free from the limitations of the original protocol mentioned in Ref. [14].
All the successful and unsuccessful efforts of designing protocols of QKA until
recent past were limited to two-party case. Recently, an enhanced interest on multi-
party QKA schemes has been observed, and several protocols have been reported
[10,16–19]. A systematic review of all these existing works leads us to the following
observations.

1. The amount of works reported to date on QKA is much less compared with the
amount of works reported on other aspects of quantum cryptography, such as
QKD, deterministic secure quantum communication (DSQC), quantum secure
direct communication (QSDC), and quantum dialogue (QD). Thus, we may con-
clude that QKA is not yet studied rigorously, and probably many more combina-
tions of quantum states and protocols of QKA can be found. Keeping this in mind,
we show that majority of the existing protocols of QSDC, DSQC, and QD can be
turned into protocol of QKA by introducing a delayed measurement technique.

2. Security of all the protocols of two-party and multi-party QKA reported to date is
based on conjugate coding, i.e., the security is obtained using two or more MUBs,
and thus, the protocols are essentially of BB84 type. This leads to a question:
Is it essential to use non-orthogonal states (2 or more MUBs) for designing of
protocols of QKA? The question is not yet answered, but the expected answer is
“no” as QKA is related to QKD and a few orthogonal-state-based protocols of
QKD (e.g., Goldenberg-Vaidman (GV) protocol [4] and N09 or counter-factual
protocol [25]) are known since a few years. Further, some of the present authors
have recently shown that protocols of QSDC and DSQC can be designed using
orthogonal states [26,27]. In addition, several exciting experiments on orthogonal-
state-based QKD are reported in recent past [28–31]. These recent experimen-
tal observations and the recently proposed orthogonal-state-based protocols are
very interesting as they are fundamentally different from the traditional conju-
gate coding-based protocols where two or more MUBs (set of non-orthogonal
states) are used to provide security. Keeping these in mind, the present paper
aims to provide orthogonal-state-based protocols of two-party and multi-party
QKA.

Remaining part of the paper is organized as follows. In the next section, we present
a protocol of QKA for two-party scenario. In Sect. 3, we provide a protocol of three-
party QKA and discuss the possibilities of extending it to n-party (n > 3) scenario.
Specifically, we have shown that the proposed three-party protocol can be extended
to a five-party protocol of QKA that uses 4-qubit |�〉 state or 4-qubit cluster state.
In Sect. 4, security and efficiency of the proposed protocols are discussed and are
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compared with that of other existing protocols of QKA. In Sect. 5, we investigate
the possibilities of transforming the existing protocols of QSDC, DSQC, and QD to
protocols of QKA. Finally, the paper is concluded in Sect. 6.

2 Protocol 1: A two-party protocol of QKA

Step 1: Alice prepares |ψ+〉⊗n where |ψ+〉 = |00〉+|11〉√
2

. She uses first qubits of

each Bell state to form an ordered sequence pA = {p1
A, p2

A, p3
A, . . . , pn

A}.
Similarly, she forms an ordered sequence qA = {q1

A, q2
A, q3

A, . . . , qn
A} with

all the second qubits. Here, pi
A, qi

A denote the first and second particles of
i th copy of the Bell state |ψ+〉, for 1 ≤ i ≤ n. She also prepares a random
sequence K A = {K 1

A, K 2
A, K 3

A, . . . , K n
A}, where K i

A denotes the i th bit of
sequence K A and K i

A is randomly chosen from {0, 1}. K A may be considered
as Alice’s key.

Step 2: Alice prepares a sequence of n
2 Bell states ( |ψ+〉⊗ n

2 ) as decoy qubits and
concatenates the sequence with qA to form an extended sequence q ′

A. She
applies a permutation operator�2n on q ′

A to create a new sequence�2nq ′
A =

q ′′
A and sends that to Bob.

Step 3: After receiving the authentic acknowledgment of the receipt of the entire
sequence q ′′

A from Bob, Alice announces the coordinates of the qubits (�2n)
sent by her. Using the information, Bob rearranges the qubits and per-
forms Bell measurements on the decoy qubits and computes the error rate.
Ideally, in absence of Eve, all the decoy Bell states are to be found in
|ψ+〉. If the error rate is found to be within the tolerable limit, they con-
tinue to the next step, otherwise they discard the protocol and go back to
Step 1.

Step 4: Bob drops the decoy qubits to obtain qA. Now, he prepares a new random
sequence K B = {K 1

B, K 2
B, K 3

B, . . . , K n
B}, where K i

B denote the i th bit of
sequence K B , for 1 ≤ i ≤ n and K i

B is randomly chosen from {0, 1}. K B

may be considered as Bob’s key. He applies a unitary operation on each qubit
of sequence qA to encode K B . The encoding scheme is as follows: to encode
K i

B = 0 and K i
B = 1, he applies I and X , respectively, on qi

A. This forms
a new sequence qB . After encoding operation, Bob concatenates qB with a
sequence of n

2 Bell states ( |ψ+〉⊗ n
2 ) that is prepared as decoy qubits and

subsequently applies the permutation operator�2n to obtain an extended and
randomized sequence q ′

B which he sends to Alice.
Step 5: After receiving the authenticated acknowledgment of the receipt of the entire

sequence q ′
B from Alice, Bob announces the position of the decoy qubits

(note that he does not disclose the actual order of the message qubits), i.e.,
�n ∈ �2n . Alice checks the possibility of eavesdropping by following the
same procedure as in Step 3. If the error rate is found to be within the tolerable
limit, they continue to the next step, otherwise they discard the protocol and
go back to Step 1.

Step 6: Alice publicly announces her key K A and Bob uses that and his own key
(sequence) K B to form the shared key: K = K A ⊕ K B .
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Step 7: Bob announces the actual order of the message qubits (�n ∈ �2n) and
Alice uses that information to obtain qB . Now, she combines pA and qB and
performs Bell measurements on pi

Aqi
B . This would reveal K B as she knows

the initial state and the encoding scheme used by Bob.
Step 8: Using K A and K B , Alice prepares her copy of the shared key, i.e., K =

K A ⊕ K B .

The protocol discussed above is an orthogonal-state-based two-party protocol of
QKA. However, several multi-party protocols of QKA are introduced in recent past
[10,16–19]. Of course, none of these recently introduced multi-party QKA protocols
are based on orthogonal state. Keeping these in mind, we aim to provide a completely
orthogonal-state-based protocol of three-party QKA along the line of [10]. Further,
the possibility of extending the proposed orthogonal-state-based three-party protocol
into n-party case with n > 3 is also discussed in the following section.

3 Protocol 2: A multi-party protocol of QKA

In analogy to the previous protocol Alice, Bob and Charlie produce their secret keys:

K A = {K 1
A, K 2

A, K 3
A, . . . , K n

A},
K B = {K 1

B, K 2
B, K 3

B, . . . , K n
B},

KC = {K 1
C , K 2

C , K 3
C , . . . , K n

C },

where K i
A, K i

B, K i
C denote i th bit of key of Alice, Bob and Charlie, respectively,1

and i = 1, 2, . . . , n. We describe a protocol of multi-party QKA in the following
steps.

Step 1: Alice, Bob, and Charlie separately prepare |ψ+〉⊗n
A , |ψ+〉⊗n

B and |ψ+〉⊗n
C ,

respectively. As in Step 1 of the previous protocol, Alice prepares two ordered
sequences pA = {p1

A, p2
A, p3

A, . . . , pn
A} and qA = {q1

A, q2
A, q3

A, . . . , qn
A}

composed of all the first and the second qubits of the Bell states that she has
prepared. Similarly, Bob and Charlie prepare pB = {p1

B, p2
B, p3

B, . . . , pn
B},

qB = {q1
B, q2

B, q3
B, . . . , qn

B} and pC = {p1
C , p2

C , p3
C , . . . , pn

C }, qC =
{q1

C , q2
C , q3

C , . . . , qn
C } from |ψ+〉⊗n

B and |ψ+〉⊗n
C , respectively.

Step 2: Each of Alice, Bob, and Charlie separately prepares sequence of n
2 Bell states

(|ψ+〉⊗ n
2 ) j with j ∈ {A, B, C} as decoy qubits and concatenates the

sequence with q j to form extended sequences q ′
j . Subsequently, user j applies

permutation operator (�2n) j on q ′
j to create a new sequence (�2n) j q ′

j = q ′′
j

and sends that to user j + 1.
Here, we follow a notation in which j ∈ {A, B, C} and A, B,C follow a
modulo 3 algebra that gives us the relations: A + 3 = B + 2 = C + 1 = A,
A = C + 1, B = A + 1, C = B + 1 and so on.

1 Here subscripts A, B, C denote Alice, Bob, and Charlie, respectively.
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Step 3: After receiving the authentic acknowledgment of receipt from the receiver
(user j + 1), corresponding sender (user j) announces the coordinates of the
qubits (�2n) j sent by him/her. Each receiver computes error rate as in Step
3 of the previous protocol. If the computed error rates are found to be within
the tolerable limit, they continue to the next step, otherwise they discard the
protocol and go back to Step 1.

Step 4: After discarding the decoy qubits, each user j encodes his/her secret bits by
applying the unitary operation on each qubit of the sequence received by him
(i.e., on q j−1) in accordance with his/her key K j . The encoding scheme is
as follows: If K i

j = 0 (1) then user j applies I (X) on qi
j−1. As a result of

encoding operations, user j obtains a new sequence r j . After the encoding
operation, user j concatenates r j with a sequence of n

2 Bell states ( |ψ+〉⊗ n
2 ) j

that is prepared as decoy qubits and subsequently applies the permutation
operator (�2n) j to obtain an extended and randomized sequence r ′

j , which
he/she sends to the user j + 1.

Step 5: After receiving the authentic acknowledgment of the receipt of the sequence
r ′

j from the receiver j +1, the sender j announces the coordinates of the decoy
qubits, i.e., (�n) j ∈ (�2n) j . User j + 1 uses the information for computing
the error rate as before and if it is below the threshold value then they go
on to the next step, otherwise they discard the communication. In absence of
eavesdropping, user j announces the coordinates of the message qubits, i.e.,
(�n) j ∈ (�2n) j .

Step 6: Same as Step 4 with only difference that if K i
j = 0 and K i

j = 1 then user j

applies I and Z , respectively, on r i
j−1.As a result of encoding operations, user

j obtains a new sequence s j , and after insertion of decoy qubits and applying
permutation operator, he/she obtains a randomized sequence s′

j which he/she
sends to the user j + 1.

Step 7: Same as Step 5.
Step 8: After discarding the decoy qubits, each user rearranges the sequence received

by him/her. Now each user j has two ordered sequences p j and s j−1. Each of
the users j performs Bell measurements on pi

j s
i
j−1. According to the output

of the Bell measurement and Table 1 each user j can obtain the secret keys
of the other two parties. Hence, the shared secret key K = K A ⊕ K B ⊕ KC

can be generated.

Here, we note that {I, X, iY, Z} is a modified Pauli group2 under multiplica-
tion and {I, X}, {I, Z} are its disjoint subgroups. Here, disjoint subgroups refer
to two subgroups gi and g j of a group G that satisfy gi ∩ g j = {I }, where I is
the identity element. Thus, except identity element gi and g j do not contain any

2 In the stabilizer formalism of quantum error correction Pauli group is frequently used (see Section 10.5.1
of [32]). It is usually defined as G1 = {±I,±i I,±σx ,±iσx ,±σy ,±iσy ,±σz ,±iσz

}
, where σi is a

Pauli matrix. The inclusion of ±1 and ±i ensures that G1 is closed under standard matrix multiplication,
but the effect of σi , −σi , iσi , and −iσi on a quantum state is the same. So in [33], we redefined the
multiplication operation for two elements of the group in such a way that global phase is ignored from the
product of matrices. This is consistent with the quantum mechanics and it gives us a modified Pauli group
G1 = {I, σx , iσy , σz} = {I, X, iY, Z}.
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Table 1 Transformation of |ψ+〉 based on two operations

Initial state prepared
by user j

First operator applied
by user j + 1

Second operator applied
by user j + 2

Final state

|ψ+〉 I ⊗ I I ⊗ I |ψ+〉
I ⊗ I I ⊗ Z |ψ−〉
I ⊗ X I ⊗ I |φ+〉
I ⊗ X I ⊗ Z |φ−〉

Here, + refers to modulo 3 operations. j ∈ {A, B, C} where A, B, C stand for Alice, Bob, and Charlie,
respectively. Thus, A + 2 = C = A − 1 and so on. Further, to denote the Bell states, we have used the
following conventions: |ψ±〉 = 1√

2
(|00〉 ± |11〉) and |φ±〉 = 1√

2
(|01〉 ± |10〉)

other common element. Now, we assume that G is a group of order M under mul-
tiplication and elements of G are x-qubit unitary operators. Further, we assume
that there exist n mutually disjoint subgroups gi with i = 1, . . . , n of the group
G such that gi ’s are of equal size (say each of the gi ’s has 2y elements) and
�⊗m

i gi = g1⊗g2⊗g3⊗. . .⊗gm = {
U1,U2, . . . ,U(2y)m

}
where (2y)m ≤ M ; Ui ∈ G

and Ui 
= Ul ∀ i, l ∈ {
1, 2, . . . , (2y)m

}
. Now if we have I ⊗(N−x)Ui |φ0〉 = |φi 〉 and

〈φi |φl〉 = δi,l where |φi 〉 is an N -qubit quantum state with N > x, then we can have
an (m +1)-party version of Protocol 2 of QKA. In this (m +1)-party protocol of QKA
all the (m + 1) parties create quantum state |φ0〉 in the beginning. Each user keeps the
first N − x qubits of |φ0〉 with himself/herself and sends the remaining qubits to the
user j +1 after following the strategy for eavesdropping checking. Subsequently, user
j encodes his/her y-bit secret key (N > x ≥ y) by applying unitary operators from
g1 on the x qubits that he/she has received from the user j − 1 in the previous step
and sends the key encoded state to user j +1. After m rounds of such encoding (in kth

round of encoding operation, all the users encode their keys using elements of gk) and
communication operations user j measures the N qubits of his/her possession using
{|φi 〉} basis. From the input state (|φ0〉) and output state (say, |φfinal〉 = |φk〉), he/she
would know the unitary operator Uk that has converted the initial state into the final
state. Now, the condition�⊗m

i gi = {
U1,U2, . . . ,U(2y)m

}
where Ui ∈ G and Ui 
= Ul

ensures that every sequence of encoding operations will lead to different Uk , and this
is how user j can know the key encoded by the other users and he/she can use that to
create the shared key K1 ⊕ K2 ⊕ . . .⊕ Km, where the secret key of the user j is K j .

In Protocol 2, we have used modified Pauli group G = G1 = {I, X, iY, Z}. It
has three disjoint subgroups: g1 = {I, X}, g2 = {I, Z}, g3 = {I, iY } which satisfy
g1 ⊗ g2 = g2 ⊗ g3 = g3 ⊗ g1 = G1. Further, |φ0〉 = |ψ+〉 and as G1 is the set
of elements used for dense coding using Bell states so it naturally implies Ui |φ0〉 =
|φi 〉∀ Ui ∈ G : 〈φi |φl〉 = δi,l . Thus, Protocol 2 is a special case of a more general
scenario described here. Many more examples can be obtained from the properties of
Pauli groups discussed in Ref. [33]. Just to provide specific examples, we may note
that for the modified Pauli group

G2 = G1 ⊗ G1 = {I, X, iY, Z} ⊗ {I, X, iY, Z}
= {I ⊗ I, I ⊗ X, I ⊗ iY, I ⊗ Z , X ⊗ I, X ⊗ X,
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X ⊗ iY, X ⊗ Z , iY ⊗ I, iY ⊗ X, iY ⊗ iY,

iY ⊗ Z , Z ⊗ I, Z ⊗ X, Z ⊗ iY, Z ⊗ Z} (1)

we have following disjoint subgroups of order 2: g1 = {I ⊗ I, I ⊗ X} , g2 =
{I ⊗ I, X ⊗ I } , g3 = {I ⊗ I, I ⊗ Z} , g4 = {I ⊗ I, Z ⊗ I } , g5 = {I ⊗ I,
I ⊗ iY }, and g6 = {I ⊗ I, iY ⊗ I }. Further, these disjoint subgroups satisfy

g1 ⊗ g2 ⊗ g3 ⊗ g4 = g1 ⊗ g2 ⊗ g5 ⊗ g6 = g3 ⊗ g4 ⊗ g5 ⊗ g6 = G2 (2)

and the elements of G2 can be used for dense coding using 4-qubit maximally entangled
|�〉 state and cluster (|C〉) state if the elements of G2 operate on first and third qubits
of these states. Here,

|�〉 = 1

2
(|0000〉 + |0110〉 + |1001〉 − |1111〉),

|C〉 = 1

2
(|0000〉 + |0011〉 + |1100〉 − |1111〉).

The table of dense coding for these states using elements of G2 is explicitly shown in
our earlier work (see Table 1 of Ref. [33]). As the elements of G2 can be used for dense
coding using |�〉 and |C〉 states, output states obtained on application of the elements
of G2 on |�〉 or |C〉 are mutually orthogonal. This clearly implies that we can construct
a five-party protocol of QKA using |�〉 or |C〉 state where each user prepares a large
number of copies of one of these two states and keeps second and fourth qubit with
himself/herself and sends the remaining qubits to next user and later encodes his/her
secret key using g′

i s. In a five-party protocol, encoding operation should take place in 4
rounds and the users would use either g1, g2, g3, g4 or g1, g2, g5, g6 or g3, g4, g5, g6.

We can generate many more examples of multi-party protocols of QKA using similar
strategy and properties of modified Pauli group.

4 Security and efficiency analysis

Protocol 2 is designed along the line of existing protocol of Yin, Ma, and Liu [10]
with a modified strategy of eavesdropping checking that converts the non-orthogonal-
state-based protocol of Yin, Ma, and Liu into an orthogonal-state-based protocol.
Unconditional security of the eavesdropping checking using this technique is already
shown in our earlier works [26,27] where we have also established that security of
this orthogonal-state-based technique of eavesdropping checking originates from the
monogamy of entanglement [27]. Thus, the protocol is secure against external attacks
(eavesdropping). Remaining part of the protocol is technically equivalent to Yin Ma
Liu (YML) protocol, and consequently, the security of YML protocol against the
internal attacks (i.e., the attempts of malicious Alice, Bob, and Charlie to completely
control the key either individually or by mutual cooperation of any two users) is
applicable here, too. Thus, Protocol 2 is a secure protocol of QKA, and it does not
need any separate elaborate discussion. Keeping this in mind in the remaining part of
the present section, we have explicitly analyzed the security of Protocol 1.
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4.1 Security against eavesdropping

Our Protocol 1 and also the protocol of Chong and Hwang [9] may be viewed as
protocols of secure direct communication of K B from Bob to Alice added with a
classical communication of K A from Alice to Bob. Specifically, instead of sending
a meaningful message, Alice and Bob send random keys to each other. While Bob
sends his key K B by using a DSQC or QSDC scheme, Alice announces her key K A

publicly. Security proofs of the existing protocols of DSQC and QSDC ensure that
the key communicated by Bob (i.e., K B) using DSQC or QSDC scheme is uncon-
ditionally secure. Thus, Eve has no information about K B . On the other hand, the
key communicated by Alice (i.e., K A) is a public knowledge. However, it does not
affect the secrecy of the shared key as the final shared key to be produced and used is
K A ⊕ K B, knowledge of K A alone does not provide any information about K A ⊕ K B .
Thus, the shared key produced in this manner is secure from external attacks of
Eve. However, there may exist insider attacks in which Alice or Bob tries to com-
pletely control the shared key. Security of Protocol 1 against such attacks is described
below.

4.1.1 Security against dishonest Alice

To communicate K B if Alice and Bob use a standard protocol of DSQC or QSDC
(say they use PP protocol), then it would be possible for Alice to know Bob’s
secret key before she announces K A. In that case, she will be able to completely
control the shared key by manipulating K A as per her wish. To circumvent this
attack, we have modified the protocol in such a way that Bob does not announce
the coordinates of the message qubits sent by him till he receives K A. This strategy
introduces a delay in measurement of Alice, and this delayed measurement strategy
ensures that Alice cannot control the key by knowing K B prior to her announcement
of K A.

4.1.2 Security against dishonest Bob

Alice announces her key only after receiving the message qubits (without their actual
order) from Bob. This ensures that Bob cannot control the key by knowing Alice’s
key. Only thing that Bob can do after knowing K A is to change/modify the coordinates
of q ′

B , but any modification in that would lead to entanglement swapping in our case
and that would lead to probabilistic outcomes without any control of Bob. Further,
Bob will be completely unaware of K B to be generated by Alice in that case and
as a consequence any such effort of Bob would lead to different keys at ends of
Alice and Bob. Thus, the protocol ensures that Bob cannot control the key. Here, we
may note that similar strategy was used in Chong and Hwang [9] protocol. In their
protocol, modified QSDC scheme that was used for Bob to Alice communication
was equivalent to LM05 [6] protocol. In contrast, here, we have used a modified
orthogonal version of PP-type protocol, which may be referred to as PPGV protocol
[27].
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5 Turning existing protocols of quantum communication to protocols of QKA

In the previous sections, we have seen that there exist a strong link between protocols
of DSQC/QSDC and those of QKA. For example, PP [5] and LM05 [6] protocols of
QSDC have already been employed to design protocols of QKA (Protocol 1 presented
here and CH protocol [9]). This observation leads to an important question: Is it pos-
sible to convert all protocols of secure direct quantum communication into protocols
of QKA? In what follows we aim to answer this question. We also aim to study the
possibilities of transforming other protocols of quantum communication to protocols
of QKA.

5.1 Turning a protocol of QSDC/DSQC to a protocol of QKA

Recently, we have shown that maximally efficient protocols for secure direct quantum
communications can be constructed using any arbitrary orthogonal basis [26]. How-
ever, all of them will not lead to protocol of QKA. To be precise, eavesdropping can
be avoided in all protocols of DSQC and QSDC, and by randomizing the sequence
of key encoded bits sent by Bob (i.e., by delaying the measurement to be performed
by Alice), we can circumvent the attacks of dishonest Alice, but it is not sufficient to
build a protocol of QKA. We also need to avoid the attacks of dishonest Bob. To do
so, we need to restrict the information available to Bob. Specifically, Bob must not
have complete information of the basis that is used to prepare the qubits on which
he has encoded his key. In our Protocol 1 and in all orthogonal-state-based two-way
DSQC/QSDC protocols, this can be achieved if Alice keeps some of the qubits of each
entangled state with her as that would restrict Bob from changing K B after receiving
K A. The same can be achieved in a non-orthogonal-state-based protocol by using more
than one MUBs. If Alice prepares the state randomly using one of the basis sets and
do not disclose the basis set used by her till Bob discloses the sequence then Bob will
not have complete access of the basis set used for preparation of the message qubits.
As a consequence, he will not be able to control the key. This is shown in a particular
case in Ref. [9].

The above discussion shows that the DSQC/QSDC protocol to be used to implement
a QKA protocol cannot be one-way as in that case Bob will have complete access to
the basis in which the quantum state used for encoding of his key is prepared (since
in a one-way protocol Bob himself will prepare the quantum state). Thus, none of the
one-way protocol of DSQC or QSDC would lead to QKA. However, most of the two-
way protocols of secure quantum communication would lead to QKA. As example,
we may note both Deng Long Liu (DLL) protocol [34] and Cai Li (CL) protocol [35]
can be viewed as variant of PP protocol [36], but DLL being a one-way protocol would
not give us a QKA protocol, but two-way CL protocol would lead to a QKA protocol.

5.2 Turning a protocol of QD to a protocol of QKA

A very interesting two-way quantum communication scheme is QD [[33] and refer-
ences therein]. Since in the above, we have already seen that two-way secure direct
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communication is useful for QKA and since a large number of alternatives for imple-
menting quantum dialogue are recently proposed by us (see Table 4 of Ref. [33]),
it would be worthy to investigate the relation between QKA and QD. In a Ba An-
type QD protocol [37], Alice keeps part of an entangled state (|φ〉i ) with herself and
encodes her secret on the remaining qubits by applying unitary operation UA and
subsequently sends the message encoded qubits to Bob who applies UB on them and
returns the qubits to Alice with appropriate strategy of eavesdropping checking. Now,
Alice measures the final state (|φ〉 f ) and announces the outcome. As the states and
operators are chosen in such a way that |φ〉i and |φ〉 f are mutually orthogonal, from
the announcement of Alice we know UAUB . As Alice (Bob) knows UA (UB), she (he)
can easily obtain UB (UA) using UAUB obtained from the announcement of Alice.
For a detailed discussion, see Ref. [33] where it is explicitly shown that if we have
a set of mutually orthogonal n-qubit states {|φ0〉, |φ1〉, . . . , |φi 〉, . . . , |φ2n−1〉} and a
set of m-qubit unitary operators {U0,U1,U2, . . . ,U2n−1} such that Ui |φ0〉 = |φi 〉 and
{U0,U1,U2, . . . ,U2n−1} forms a group under multiplication then it would be suffi-
cient to construct a quantum dialogue protocol of Ba An type. Now assume that n > m
and Alice encodes nothing (i.e., she always choose UA = Im ) and keeps (n − m)-
qubits with herself and sends the remaining m-qubits to Bob who encodes his key by
applying an m-qubit unitary operation UB and sends that back to Alice, but only after
changing the order so that Alice cannot measure the final state immediately. Alice
announces her key after receiving the key encoded qubits from Bob as in Protocol 1
and subsequently Bob announces the sequence of the message qubits sent by him. In
QKA, Alice does not need to disclose her measurement outcome. This modified QD
protocol is equivalent to our Protocol 1. This clearly shows that all protocols of QD
with n > m would lead to protocols of QKA. It is interesting because in [33], we have
shown that a large number of alternative combinations of quantum states and unitary
operators can be used to implement QD. All of them (if n > m) will be useful for
QKA, too.

5.3 Efficiency analysis

A well-known measure of efficiency of secure quantum communication is known as
qubit efficiency [38], which is given as

η = c

q + b
, (3)

where c denotes the total number of transmitted classical bits (message bits), q denotes
the total number of qubits used, and b is the number of classical bits exchanged for
decoding of the message (classical communication used for checking of eavesdropping
is not counted). This measure was introduced by Cabello in 2000, and it has been
frequently used since then to compare protocols of secure direct communication.
As we are not interested in communicating a message here, so we may modify the
meaning of c in η to make it suitable for comparison of protocols of QKA. In the
modified notion, c is the length of the shared key generated by the protocol. Thus, in
case of our first protocol, if we generate an n-bit shared key then c = n. Further, in the
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entire protocol, we have used 2n Bell states, i.e., 4n qubits (of which n-Bell states were
used as decoy qubits). Thus, q = 4n. Now, Alice and Bob announce the coordinates
of the message qubits and Alice announces K A, each of these three steps require
communication of n classical bits. Thus, b = 3n. All other classical communications
incurred in the process are related to the checking of eavesdropping and classical bits
exchanged for eavesdropping checking are not counted in b. Thus, b = 3n.This makes
η = n

4n+3n = 1
7 = 14.29 %. In the similar manner, if an n-bit shared key is prepared

through Protocol 2 then c = n and q = 3(2n + 3n) as each party creates n Bell states
for key encryption and 3n

2 Bell states for eavesdropping checking. Further, each party
uses 3n bits of classical information for the disclosure of coordinates of the message
qubits. Thus, b = 3 × 3n = 9n and consequently η = n

15n+9n = 1
24 = 4.17%. As

YML protocol is similar to the Protocol 2 with only difference in the strategy adopted
for eavesdropping checking, for YML protocol also we obtain η = 4.17%. Clearly,
Protocol 1 is more efficient than Protocol 2 and YML protocol, but Protocol 1 is less
efficient than its QSDC counterpart (PPGV protocol) whose qubit efficiency as per the
unmodified definition is η = n

4n+2n = 1
6 = 16.67 %.3 This is expected as with the

increase on number of parties contributing to the key, q and b required to generate
the key of same size should also increase. This point can be further established by
noting that η for the five-party protocol described above will be 1

70 = 1.43 % as
q = 4n × 5 = 20n, b = 2n × 5 × 5 = 50n and c = n.

6 Conclusions

In the present work, we have proposed two protocols of QKA. The first one works
for two-party case and the second one works for multi-party case. Both the protocols
in their original form use only Bell basis for preparation of the encoding states and
their measurement for decoding and eavesdropping check. Subsequently, it is shown
that the applicability of the proposed protocols can be extended to 4-qubit cluster
state and�-state. This specific feature that the states are measured and prepared using
the same basis implies that conjugate coding (non-commutativity) is not essential for
obtaining the required security for QKA, and it is possible to construct completely
orthogonal-state-based protocols of QKA. Here, it would be apt to note that the use of
entangled states in general and Bell states in particular for implementation of protocols
of secure quantum communication is not new. From the early days of secure quantum
communication, entangled states were used to implement protocols of QKD, QSDC,
and DSQC [2,5,34,35]. However, in all those entangled-state-based protocols (e.g.,
Ekert’s protocol of QKD [2], CL protocol of QSDC [35] and DLL protocol of DSQC
[34]) eavesdropping was checked using two or more MUBs. For example, 3 MUBs
were used in Ekert’s protocol and 2 MUBs were used in DLL and CL protocols. As
mutually non-orthogonal bases (i.e., MUBs or non-commutativity) were used in these
protocols and in the YML protocol of QKA [10] for the eavesdropping check, none
of these entangled-state-based protocols are completely orthogonal-state-based pro-

3 In PPGVAlice does not need to disclose her key K A . Everything else is the same and as a consequence
b = 2n, q = 4n and c = n with c being the number of bits in the message or key that is transmitted.
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tocol and their security arises from conjugate coding. However, the protocols of QKA
proposed here use only a single (Bell) basis and consequently establish that conjugate
coding is not essential for the implementation of unconditionally secure protocols
of QKA. Thus, these protocols essentially establish that the protocols proposed here
are completely orthogonal-state-based protocols, and their security is independent of
conjugate coding.

The proposed protocols are the first set of orthogonal-state-based protocols of QKA
as all the existing protocols of QKA are based on conjugate coding. Thus, the proposed
protocols are fundamentally different from all the existing protocols of QKA. As the
orthogonal-state-based protocols show that the use of conjugate coding or in other
words use of non-commutativity principle is not essentially required for unconditional
security, they require lesser quantum resources in a sense. To be precise, monogamy
of entanglement is sufficient to protect these protocols [27].

We have also shown that most of the existing protocols of QSDC and DSQC and
all the protocols of QD can be turned into protocols of QKA. This is an interest-
ing observation as a protocol of QSDC, DSQC, or QD requires a relatively stricter
security compared with a protocol of QKD or QKA. The requirement of relatively
stricter security arises from the fact that in a protocol of QKD or QKA, if we obtain
signatures of eavesdropping, then we can drop the key and create a new one. Thus,
we do not bother about information leakage due to eavesdropping as long as we can
detect all attempts of eavesdropping. However, in a protocol of QSDC, DSQC, or
QD, we cannot afford to allow information leakage as in contrast to QKD (where a
random sequence is sent) a meaningful information is sent in a protocol of QSDC,
DSQC, or QD. This point may be elaborated by briefly noting that a protocol of
QSDC or DSQC can always be reduced to protocol of QKD, but the converse is
not true in general. Just as a simple example, we may consider that Alice and Bob
have devices to implement a protocol of QSDC. Thus, Alice is capable of securely
communicating a meaningful message to Bob. Now, if we assume that Alice has a
random number generator and she uses that to generate a sequence of random num-
bers and communicates that to Bob as a key (thus a random message is communi-
cated instead of a meaningful message), the key would be secure as any message sent
using the QSDC protocol is secure. Thus it is straightforward to reduce a protocol of
QSDC to a protocol of QKD. In brief, a protocol requiring stricter security can be
reduced to a protocol requiring relatively weaker security if other requirements are
satisfied. This fact is intrinsically used in Sect. 5 to establish that most of the exist-
ing protocols of QSDC and DSQC and all the protocols of QD can be turned into
protocols of QKA. As several schemes of implementing QSDC, DSQC, and QKD
are already known, the present work leads to several new options for implementation
of QKA. Further, as the orthogonal-state-based protocols of QKD are experimentally
implemented in recent past, the protocols proposed here seem to be experimentally
realizable.
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