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Abstract Quantum-dot cellular automata (QCA) technique is one of the emerging
and promising nanotechnologies. It has considerable advantages versus CMOS tech-
nology in various aspects such as extremely low power dissipation, high operating
frequency and small size. In this paper, designing of a one-bit full adder is investi-
gated using a QCA implementation of Toffoli and Fredkin gates. Then, a full adder
design with reversible QCA1 gates is proposed regarding to overhead and power sav-
ings. Our proposed full adder design is more preferable when considering both circuit
area and speed. The proposed design uses only two QCA1 gates and maximizes the
circuit density and focuses on a layout of the circuit which is minimal in using QCA
cells.

Keywords QCA · Full adder · Reversible · QCA1 gate

1 Introduction

Nanotechnology has been the focus of extensive research in the recent years. Power
dissipation of the circuit is one of the most important difficulties in the development
of the modern computational systems [1]. A possible solution is reversible compu-
tations. Reversible computing considers the relation between information dissipation
and energy dissipation at the logical level. Energy dissipation could be caused by
information dissipation [2]. If a one-to-one mapping is established between the input
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and output vectors, reversible computation would be achieved at the logical level [3].
The one-to-one mapping is called bijective property. The bijective property investi-
gated by Landauer. He proved heat dissipation for losing any bit of information would
be KTln2 joules, where k is Boltzmann’s constant and T is the temperature at which
computation is performed. Consequently, without losing any bit of information, no
energy dissipation occurs [3].

The CMOS technology is accompanied by various problems such as high leakage
currents, high power density levels and extremely high lithography costs [4]. One of
the alternatives for CMOS technology is quantum-dot cellular automata (QCA). QCA
has none of these problems and potentially has small feature size and ultra-low power
consumption. An electron pair configuration within a quantum-dot cell specifies the
logical states. The information is transferred by propagation of a polarization state in
QCA technology [5]. QCA circuits can be constructed through molecular implemen-
tations by a self-assembly process [6]. QCA has a very high density, 1012 devices/cm2,
and operates at THZ frequencies [7].

Following paper presents a novel one-bit QCA full adder using QCA1 gates which
uses the minimum number of QCA cells and clock zones. The proposed full adder is
more efficient and less complex than previously reported designs. The structure of the
paper is as follows. In Sect. 2, the background of QCA concept, reversible QCA gates
and reversible full adders are presented. In Sect. 3, designing of a one-bit reversible
full adder with reversible QCA1 gates is investigated. Our proposed QCA one-bit full
adder is compared to available counterparts. In Sect. 4, simulation results verifying
the proposed full adder are provided. We conclude in Sect. 5.

2 Background

2.1 Basic QCA devices

A QCA cell, which is a set of four quantum dots located at the corners and an electron
pair, is used for constructing all components of circuits and wires [8]. If two electrons
are placed in two quantum dots, they would be far from each other to possible space
due to electron repulsion force. How electrons move in two quantum dots without
getting away is simply justifiable by tunneling predicted by quantum physics. Three
states can be occurred by providing tunneling junctions with potential barriers. The
potential barriers are raised to prevent electron movement and lowered to permit elec-
tron movement. The mobile electrons can localize on any dot when barriers are low
which is named as null state; two other states can occur when barriers are raised and
the cell is polarized. These two states representing logical “1” and “0” are shown in
Fig. 1 as P = +1 and P = −1, respectively. Due to columbic interactions and depending
on the polarization of a cell, the other cells next to the cell are forced into matching
polarization. Hence, the polarization is propagated and information is transferred [9].
Majority gate is the fundamental logic gate in QCA implementations and is shown in
Fig. 2a. Majority gate has three inputs and one output. The logic function of majority
gate is as Eq. 1. Depending on the value of the inputs A, B and C, two mobile electrons
in the other cells as well as output cell are forced into matching polarization and are
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Input A Output F=A

(e)   (f)

Fig. 2 a Majority gate, b inverter gate, c AND gate, d OR gate, e binary wire, f inverter chain

located to the corner positions by columbic repulsion [8]. If the number of “1” states
is more than “0” states in an input vector, the output of majority gate would be “1.”
For instance, if inputs A = 1, C = 1 and B = 0, then the middle cell would be “1”
because only two electrons are in the vicinity of each other in this case; Otherwise, If
the middle cell is set to “0” state, four electrons would be in the vicinity of each other.
Similarly, it is possible to obtain the outputs for other input vectors. The other basic
gate is inverter gate and is shown in Fig. 2b. QCA cells are arranged in a way that the
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opposite polarization of the input-A is transmitted to the output-F in the inverter gate.
Other logical functions such as AND and OR can be implemented by setting one input
of the majority gate to “0” and “1,” respectively. The logic functions of AND and OR
gates are as Eqs. 2a and 2b.

Majori ty(A, B, C) = AB + BC + AC (1)

Majori ty(A, B, 0) = AB + B × 0 + A × 0 = AB = AN D(A, B) (2a)

Majori ty(A, B, 1) = AB + B × 1 + A × 1 = AB + A + B = A(B + 1) + B

= A + B = O R(A, B) (2b)

AND and OR gates are shown in Fig. 2c, d. The binary wire and inverter chain are
shown in Fig. 2e, f. The polarization of one QCA cell will be directly affected by
the polarization of its neighbors. Hence, QCA cells are forced to synchronize their
polarizations; the state of the input-A is transmitted to the output-F by columbic
interactions in a QCA binary wire. For instance, if the input cell of a binary wire is set
to “0,” since electrons tend to get to the farthest state, nearest neighbor of the input cell
would set to “0” (two electrons would be consumedly approached to each other if the
cell is set to “1”). This leads to getting the third cell to “0”; consequently, fourth and
other cells would set to “0,” and the “0” state is propagated to the output cell (Fig. 2e).
The polarization of 45◦-quantum cell is on the opposite state of its nearest neighbor
in the inverter chain [5].

2.2 Clocking in QCA

Clock is a reference signal which controls timing in sequential CMOS circuits,
whereas timing in QCA technology is performed by clocking in four periodic phases
such as switch, hold, release and relax [6]. The four-phase clocking scheme is called
Landauer clocking and is used to modulate the inter-dot tunneling barrier of QCA
cells [8]. During the switch phase, in which actual computations are occurred, bar-
riers are raised and a cell is affected by the polarization of its neighbors and a
distinctive polarity is obtained. During the hold phase, barriers are high and the
polarization of the cell is retained. During the release phase, barriers are lowered
and the cell loses the polarity. In the relax phase, the cell is non-polarized. Four
phases are shown in Fig. 3a in which a cell is controlled by a clock signal (clock0).
A signal is latched and remained latched until the cells of the next clocking zone
switches to the hold phase and acts as an input to the subsequent zone. Hence,
inherent pipeline [10,11] is possible in Landauer clocking scheme in which the
cell is released after one clock cycle and it can participate in the next operation
[12]. Inherent pipeline allows transferring multi-bit of information in QCA imple-
mentations [8]. Landauer clocking scheme uses four clocks to control QCA cir-
cuits. These four clocks are shown in Fig. 3b as clock0, clock1, clock2 and clock3.
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Fig. 3 a Four phases of Landauer clocking scheme, b a binary wire

Each clock of Landauer clocking scheme is 90◦ out-of-phase from its previous clock
[13]. To figure out how the clocking scheme operates, a binary wire is shown in
Fig. 3b.
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A QCA circuit is partitioned into a number of clocking zones. QCA cells included
in the same clocking zone are controlled by one clocking signal. The clocking signals
are provided by CMOS wires which are located under the QCA circuit [12]. QCA cells
of the binary wire are divided into four clocking zones as shown Fig. 3b. Each zone is
controlled by a common clock signal. zone0 (input cell, cell1 and cell2) is controlled
by clock0, zone1 (cell3 and cell4) by clock1, zone2 (cell5 and cell6) by clock2 and
zone3 (cell7, cell8 and the output cell) by clock3. When QCA cells included in the
zone0 are in the switch phase of clock0, QCA cells included in the zone1 would be in
the relax phase of clock1, QCA cells in the zone2 in the release phase of clock2 and
QCA cells in the zone3 in the hold phase of clock3. Three remained phases of each
clock would be applied to these four zones, sequentially. After four phases of each
clock applied to the four zones, one clock cycle is accomplished. During a clock cycle,
all four clocks traverse four phases, however, with different starting phases [13].

During the switch phase of clock0, cell1 and cell2 are affected by the polarization
of the input cell. During the switch phase of clock1, which clock0 is in the hold phase,
cell3 and cell4 are polarized by cell2. When clock2 is in the switch phase and clock1
in the hold phase, cell5 and cell6 are polarized by cell4. When clock3 is in the switch
phase and clock2 is in the hold phase, cell7, cell8, and finally the output cell are affected
by the polarization of cell6. At the end, cell7, cell8 and the output cell switch to the
hold phase and this cycle repeats [13]. In other words, a signal is latched when one
clocking zone goes into the hold phase and acts as an input to the next zone. During a
clock cycle, the polarization of the input cell is exactly propagated to the output cell
and information propagation is performed in the binary wire.Clock0, clock1, clock2
and clock3 are shown with green, violet, blue and white colors, respectively, in QCA
implementations.

2.3 Reversible QCA Fredkin and Toffoli gates

In this section, the QCA implementations of Toffoli and Fredkin gates are pre-
sented [14,15]. There is neither energy loss nor information loss in reversible cir-
cuits. Reversible circuits are very attractive in nanotechnologies such as QCA where
extremely low power consumption or heat dissipation is desirable.

2.3.1 Fredkin gate

The Fredkin gate is a 3 × 3 universal gate. Using Fedkin gate, any logical reversible
circuit can be implemented [15]. The truth table of this gate is shown in Table 1 [8].

Input u acts as a control input. If the control input is u = 1, then outputs Y1 and Y2
are exactly duplicates of the inputs x1 and x2; otherwise, if u = 0, then two inputs x1
and x2 are swapped and transmitted to the outputs Y1 and Y2. The output functions of
Fredkin gate are shown in Eq. 3 [8].

V = u
Y 1 = u.x2 + u.x1
Y 2 = u.x1 + u.x2

(3)
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Table 1 Truth table of Fredkin
gate

u x1 x2 V Y1 Y2

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 1 1 1

V=u

Fixed
polarization=-1

u

x2

AND4=u.x2

AND3=u.x1 OR2
u.x1 Y2=u.x1+u.x2

u.x2

Fixed polarization=+1

x1

Input x2

x2

x2

u

u

u.x2

OR1

u u

Fixed
polarization=-1

Fixed polarization=+1

u Y1=u.x1+u.x2

AND1=u.x1

AND2=u.x2

u.x
1

x1

Input u
Input x1

u

u

u

Fig. 4 QCA implementation of Fredkin gate

When two identical Fredkin gates are cascaded, the outputs of the second gate are
same as the inputs of the first gate. Hence, Fredkin gate is named self-inverse. A QCA
implementation of the gate is shown in Fig. 4 [8]. Inverter chains, which are usually
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Table 2 Truth table of Toffoli
gate

x1 x2 x3 Y1 Y2 Y3

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 1 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 0 1 1

used to implement wire crossings in the same layers, are used for crossing wires in the
QCA implementation of Fredkin gate. The wire which is along the horizontal direction
is a binary wire, and the other wire is an inverter chain located in the perpendicular
direction.

The QCA implementation of Fredkin gate uses a two-level majority implementation
with six majority gates; four of them are programmed as AND gates and two of them
as OR gates [12].

2.3.2 Toffoli gate

The Toffoli gate is a reversible gate with three inputs and three outputs. It is also a
universal and self-inverse gate [15]. The truth table of Toffoli gate is shown in Table 2
[8]. It passes inputs x2 and x3 to the outputs Y 2 and Y 3 without any changes but
inverts input x1 when x2 = 1 and x3 = 1.

The output functions of Toffoli gate are shown in Eq. 4.

Y 1 = x1x2 + x1x3 + x1x2x3
Y 2 = x2
Y 3 = x3

(4)

The QCA implementation of Toffoli gate (Fig. 5) uses four majority gates which are
implemented in two levels. Two numbers of majority gates are programmed as AND
and OR gates [8].

2.3.3 Reversible QCA Feynman gate

Feynman gate is a reversible 2 × 2 gate. The truth table of Feynman gate is shown in
Table 3 [8]. The input x1 acts as a control input. If the control input x1 = 0, then the
output Y 2 is simply a duplicate of the input x2; otherwise, if the control input x1 = 1,
then the output Y 2 is inverse of the input x2.

The output functions of Feynman gate are shown in Eq. 5.

Y 1 = X1
Y 2 = X1xor X2 = x1x2 + x1x2

(5)
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Fig. 5 QCA implementation of Toffoli gate

Table 3 Truth table of
Feynman gate

x1 x2 Y1 Y2

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

As shown in Fig. 6, four clocking zones are used in the QCA implementation of
Feynman gate. The rectangular area occupied by its entire layout is an area of 15 × 15
cells [8].
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Fig. 6 QCA implementation of Feynman gate

2.4 QCA1 and QCA2 gates

Two new reversible gates, called QCA1 and QCA2 were proposed for reversible QCA
implementations in [12] and compared to QCA reversible Fredkin and Toffoli gates.
QCA1 is a reversible gate and has three inputs and three outputs. The truth table of
QCA1 gate is shown in Table 4 [8]. There is a one-to-one mapping between inputs
and outputs.

The output functions are expressed by Eq. 6.

Y 1 = Majori ty(x1 + x2 + x3)

Y 2 = Majori ty(x1 + x2 + x3)

Y 3 = Majori ty(x1 + x2 + x3)

(6)

Table 4 Truth table of QCA1
x1 x2 x3 Y1 Y2 Y3

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 1

0 1 1 1 0 1

1 0 0 0 1 0

1 0 1 1 0 0

1 1 0 1 1 0

1 1 1 1 1 1
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Fig. 7 QCA implementation of QCA1 gate

The QCA implementation of QCA1 gate is shown in Fig. 7 [8]. It requires only one
level of majority gates [12]. QCA implementation of QCA1 has only a delay of two
clocking zones and requires three majority gates [12].

QCA2 has similar properties to QCA1. The QCA implementation of QCA2 is
shown in Fig. 8 [8]. The truth table of QCA2 gate is shown in Table 5. Three output
functions of QCA2 gate are shown in Eq. 7 [8]:

Y 1 = Majori ty(x1 + x2 + x3)

Y 2 = Majori ty(x1 + x2 + x3)

Y 3 = Majori ty(x1 + x2 + x3)

(7)

Figure 9 shows a schematic diagram of the reversible Fredkin, Toffoli, Feynman,
QCA1 and QCA2 gates.

A comparison was done among four QCA reversible Fredkin, Toffoli, QCA1 and
QCA2 gates by [12]. The QCA1 and QCA2 gates have a one-level majority imple-
mentation and require only two clocking zones; therefore, their delays are less than
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Fig. 8 QCA implementation of QCA2 gate

Table 5 Truth table of QCA2
gate

x1 x2 x3 Y1 Y2 Y3

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 0 1 1

0 1 1 1 0 1

1 0 0 0 1 0

1 0 1 1 0 0

1 1 0 1 1 1

1 1 1 1 1 0

Fredkin and Toffoli gates. QCA1 and QCA2 occupy a smaller area with a reduced
number of QCA cells with no control cells. The thirteen standard combinational func-
tions are implemented using each of the four reversible QCA gates by [12] and the
number of required gates and clocking zones are obtained. The results are shown in
Table 6. In comparison, QCA1 and QCA2 gates are more preferable than Fredkin and
Toffoli gates for QCA implementation considering both circuit area and speed [12].
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Fig. 9 a Toffoli gate, b Fredkin gate, c Feynman gate, d QCA1 gate and e QCA2 gate

2.5 Reversible QCA full adder

In this section, designing of Full adder, which is a basic circuit in computing circuits, is
investigated using reversible QCA Fredkin and Toffoli gates. To implement a reversible
full adder, a reversible truth table is required. Hence, some extra don’t care inputs or
outputs are usually added to the truth table of full adder to provide the bijective property
and reversibility condition. Don’t cares (DCs) are some inputs whose corresponding
outputs are not determined in the truth table of the function. These extra inputs and
outputs are called constant inputs and garbage outputs. The value of a constant input
is arbitrary [16]. It is proved that there is an optimum value for the number of constant
inputs to obtain a circuit with minimum quantum cost (QC) [17]. The QC of a reversible
logic circuit is the number of 1 × 1 or 2 × 2 reversible, and quantum logic gates are
used to implement the circuit [18].The truth table of reversible full adder is depicted
in Table 7 [16].

In [16], some heuristic methods are presented to use these DCs when an optimization
algorithm such as the genetic algorithm is used as a synthesis tool. Figure 10 shows
some optimal circuits of a Toffoli full adder using a genetic algorithm (optimized for
quantum cost [18]).

Toffoli full adder has four inputs and four outputs which one of the inputs is a
constant input and two of the outputs are garbage outputs. Four gates are used to
synthesize Toffoli full adder. QCA implementation of Toffoli and Feynman gates are
investigated in Sects. 2.3.2 and 2.3.3, respectively. Each Toffoli gate consists of four
majority gates, and Feynman gate has three majority gates; therefore, 14 majority gates
are totally needed in the full adder design. Full adder with Toffoli gates totally uses
19 clocking zones, four clocking zones for each gate and three additional clocking
zones [12] for interconnections. The QC is extensively used as a figure of merit in
reversible and quantum designs. The QC of Toffoli full adder is 12 [19]. Toffolli full
adder layout is complex because of using two-level majority implementations.
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Table 7 Truth table of a reversible full adder

Constant input a b Cin Cout Sum Garbage output Garbage output

0 0 0 0 0 0 X X

0 0 0 1 0 1 X X

0 0 1 0 0 1 X X

0 0 1 1 1 0 X X

0 1 0 0 0 1 X X

0 1 0 1 1 0 X X

0 1 1 0 1 0 X X

0 1 1 1 1 1 X X

Fig. 10 Different implementation of full adder using Toffoli gates

Fig. 11 Different implementation of full adder using Fredkin gates

It is impossible to synthesize Fredkin full adder with four inputs and four outputs.
One extra constant input and one garbage output are added to the truth table of the
full adder to satisfy reversibility condition. The synthesis result of a Fredkin full adder
using genetic algorithm is a circuit consists of five Fredkin gates and a five-to-five
mapping with three garbage outputs. The QC of Fredkin full adder is 25. The results
are shown in Fig. 11. The Fredkin gate uses a two-level majority implementation with 6
majority gates. Synthesized Fredkin full adder uses totally 30 majority gates, which is
much more than Toffoli full adder. As a result, Toffoli full adder is more preferable than
Fredkin full adder for reversible implementations. In the next section, a new reversible
full adder with QCA1 gate is proposed which has significant improvements.

3 Proposed full adder design using QCA1 gates

In this section, a one-bit full adder is proposed using only two QCA1 gates, whereas
the conventional reversible Toffoli and Fredkin full adders use four and five gates,
respectively. On the other hand, QCA1 is more preferable for QCA implementation
compared to reversible QCA Toffoli and Fredkin gates considering circuit area and
speed [12]. Two clocking zones are only used in QCA1 implementation in comparison
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ab
Cin

Sum

Cout

Fig. 12 One-bit QCA full adder

with Toffoli gate which needs four clocking zones. As a result, occupied rectangular
area by the entire layout of our proposed full adder is lower and the number of clocking
zones is significantly reduced.

A one-bit full adder is defined as Eq. 8 [19]:

Sum = abCin + āb̄Cin + ābC̄in + ab̄C̄in (8a)

Cout = ab + aCin + bCin (8b)

where a, b and Cin are inputs; sum and Cout are the outputs of the full adder. Imple-
menting a one-bit irreversible full adder requires five majority gates and three inverters
to satisfy the set of equations sum and Cout, as shown in Fig. 12 [19].

An algorithm is proposed in [19] to reduce the number of required majority and
inverter gates in a QCA circuit. The simplified majority expressions of the thirteen
standard functions are presented in [20] using corresponding 3-cube structure. The
algorithm enables us to convert any three-variable Boolean functions into the simplest
majority expressions for QCA implementations. [20] proposes a procedure to build
simplified majority expressions for a given Boolean function; then applies the proposed
majority reduction method to QCA adders. The procedure uses a 4-step algorithm to
generate a majority gate expression. For more information, refer to [20]. Sum and
Cout equations are obtained as Eq. 9 using the reduction method [19]:

Cout = Majori ty(a, b, Cin) (9a)

Sum = Majori ty(Cout, Cin, M(a, b, Cin)) (9b)

Proof The proof of the Eq. 9b is as follows [19]:
Using the majority function (Eq. 1) and the Eq. 9a:

Cout = āb̄ + āC̄in + b̄C̄in = Majori ty(ā, b̄, C̄in)
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Then, the Eq. 9b can be rewritten as:

Sum = (ab + ab)Cin + (abCin + abCin)

= [(ab + aCin + Cinb) + (ab + aCin + Cinb)]Cin

+ (abCin+abCin)=(ab+aCin+Cinb)Cin + (ab + aCin + Cinb)Cin

+ (abCin+abCin)=(ab+aCin+Cinb)Cin + (ab + aCin + Cinb)Cin

+ (aCin + Cinb)(aCin + bCin)

= (ab + aCin + Cinb)Cin + (ab + aCin + Cinb)Cin

+ (ab + aCin + Cinb)(ab + aCin + bCin)

= Majori ty(a, b, Cin)Cin + Majori ty(a, b, Cin)Cin

+ Majori ty(a, b, Cin).Majori ty(a, b, Cin)

= Majori ty(Majori ty(a, b, Cin), Cin, M(a, b, Cin))

= Majori ty(Cout, Cin, Majori ty(a, b, Cin))

Based on the reduction method, Cout function involves one majority gate and sum
function involves two majority gates. There is no inverter gates to get inversions and
they can be directly obtained from interconnections of QCA cell lines (Cout and Cin).
The truth table of our proposed reversible full adder (Table 8) has the reversibility
condition with n ≤ m, in which n is the number of inputs and m is the number of
outputs. The inputs and outputs can be uniquely determined from each other and the
full adder is reversible. Our proposed QCA1full adder is implemented regarding to
the Eq. 9b. ��

We cascaded two reversible QCA1 gates to implement our proposed full adder
design as shown in Fig. 13. Our proposed full adder design is reversible because it
uses only reversible gates and its truth table has the reversibility condition.

Table 8 Truth table of the proposed reversible full adder

a b Cin Cout Sum Gar1 Gar2 Gar3

0 0 0 0 0 0 0 0

0 0 1 0 1 1 0 0

0 1 0 0 1 1 0 1

0 1 1 1 0 1 1 0

1 0 0 0 1 0 0 1

1 0 1 1 0 0 1 0

1 1 0 1 0 0 1 1

1 1 1 1 1 1 1 1
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First QCA1

x1

x2

x3

Y21=Majority(a,b,Cin) Y22=Majority(Cout,Y21,Cin)
=Gar3

Y12=Majority(Cout,Y21,Cin)
=Gar2

Y32=Majority(Cout,Y21,Cin)
=Sum

Y11=Majority(a,b,Cin)
=Cout

Y31=Majority(a,b,Cin)
=Gar1

x1

x2

x3

Second QCA1

a

b

Cin

Fig. 13 Schematic diagram of the proposed full adder implementation with QCA1 gates

If we define inputs of the first QCA1 gate as x1 = a, x2 = b, and x3 = Cin, and Yij
as ith output of jth QCA1 gate, then the outputs of the first QCA1 gate are as follows:

Y 11 = Majori ty(X1, X2, X3) = Majori ty(a, b, Cin) = Cout
Y 21 = Majori ty(X1, X2, X3) = Majori ty(a, b, Cin)

Y 31 = Majori ty(X1, X2, X3) = Majori ty(a, b, Cin) = Gar1

Therefore, Cout is directly obtained by Y11. The output Y31 is garbage output and
is denoted as Gar1. Then, Y11 and Y21 are applied to the first and second inputs of
the next QCA1 gate as shown in Fig. 13. The outputs of the second QCA1 gate are
obtained as follows:

Y 12 = Majori t y(X1, X2, X3) = Majori t y(Cout, Majori t y(a, b, Cin), Cin) = Gar2
Y 22 = Majori t y(X1, X2, X3) = Majori t y(Cout, Majori t y(a, b.Cin), Cin) = Gar3
Y 32 = Majori t y(X1, X2, X3) = Majori t y(Cout, Majori t y(a, b, Cin), Cin) = sum

The output Y 32 satisfies the sum function of the full adder (Eq. 9a). As a result, sum and
Cout functions of the one-bit full adder are obtained by cascading two reversible QCA1
gates. QCA implementation of the proposed full adder is shown in Fig. 14. To obtain
the minimum delay in the proposed circuit, the second QCA1 gate is implemented
in a way that inputs to the sum output delay is minimal. In other words, the second
QCA1 gate is implemented reversely; the sum function is obtained in the first output
of the second QCA1 gate. The rectangular area occupied by the entire layout as well
as interconnections is only 35 × 31, which in one QCA cell is considered as a unit
area. Inverter chains are usually used to implement wire crossings in the same layers,
but it is shown that binary wires can tolerate defects more than inverter chains [21].
Therefore, a multi-layer crossover scheme is used to decrease failure rate and wires
are passed over each other to ensure that no interferences occur in the proposed design.

The proposed full adder design implemented by reversible QCA1 gates requires
only two gates, and it has a total delay of 6 clocking zones. [12] verifies an additional
clocking zone that is required for interconnection between two reversible QCA gates.
We, however, added two additional clocking zones for interconnection between QCA1
gates to ensure correct operation of our proposed full adder. The number of used
clocking zones is lower than Toffoli full adder. The proposed design decreases QCA
cell counts and input to output delays.
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Fig. 14 QCA implementation of the proposed full adder design

4 Simulation and verification results

QCA designer software which is a popular simulation tool for complex QCA circuits is
used to simulate and verify the proposed full adder. The simulator tool uses an extensive
set of CAD tools [22]. The simulator version is 2.0.3 and the following parameters
are used: cell size = 18 nm, number of samples = 12,800, convergence tolerance =
0.001000, radius of effect = 65 nm, relative permittivity = 12.9, clock high = 9.8e−22,
clock low = 3.8e−23, clock amplitude factor = 2.000, layer separation = 11.5000 nm
and maximum iterations per sample = 100. Implementing a workable design with a
compact layout is considered in our proposed QCA layout. It is considerable that the
results are correct after one clock. Inputs a, b and Cin are marked with blue color, and
the outputs sum and Cout are shown with yellow color in the simulation box (Fig. 15).

Two reversible QCA full adders are compared and the results are shown in Table 9.
In this paper, five figures of merit (FoM) are evaluated. Majority gates figure identifies
the number of majority gates used in the QCA implementation. The number of constant
inputs and the number of garbage outputs are provided. These two FoMs are used to
evaluate reversible and quantum designs. The number of clocking zones is presented
to quantify the delay between inputs and outputs. The number of control cells are
also provided, which are the input cells with fixed polarization used for programming
2-input OR and AND gates.
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Fig. 15 Simulation results of the proposed full adder using QCA1 gates

Table 9 Comparison between two reversible QCA full adders

Constant
inputs

Garbage
outputs

Clocking
zones

Majority
gates

Control
cells

Toffoli full adder 1 2 19 14 10

Proposed QCA1 full adder 0 3 6 6 0

The obtained results by comparing designs indicate that our proposed full
adder design has demonstrated significant improvements and is more preferable for
reversible QCA implementation considering both circuit area and speed. Proposed
implementation of the reversible full adder design uses the minimum number of clock-
ing zones and gates, maximizes the circuit density and focuses on a layout of the circuit
which is minimal in using QCA cells. Hence, the proposed design greatly reduces occu-
pied area and decreases signal propagation delay from input to output. The design is
also very simple to implement by QCA cells.

5 Conclusions

Recently, QCA has attracted a lot of researchers’ attention for implementing reversible
computing. In this paper, designing a one-bit full adder investigated using reversible
QCA gates. Reversible QCA gates compared and the results indicated that QCA1
and QCA2 gates are more preferable than Toffoli and Fredkin gates for reversible
implementations. The conventional reversible full adders investigated using Toffoli and
Fredkin gates and a new reversible full adder design proposed using only two QCA1
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gates. Our proposed reversible full adder uses the minimum number of QCA cells,
clocking zones and gates versus Toffoli full adder. Therefore, the proposed reversible
QCA full adder is more efficient and less complex than its previous counterparts.
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