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Abstract Recently, Hwang et al. proposed two three-party authenticated quantum key
distribution protocols for two communicating parties to establish a session key via a
trusted center. They also showed their protocols were secure by using random oracle
model. However, their protocols were designed to run in an ideal world. In this paper,
we present a more practical protocol by considering some issues, which have not been
addressed in their protocols. These issues include (1) session key consistence, (2)
online guessing attack, and (3) noise in quantum channels. To deal with these issues,
we use error correction code and key evolution. We also give a formal proof for the
security of our protocols by using standard reduction, instead of the random oracle
model.
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1 Introduction

1.1 Motivations

In 1984, Bennett et al. proposed quantum key distribution (QKD) protocols, which
can be used by two authenticated parties to establish a random key without shar-
ing a common secret [1–4]. These protocols have been proved to be uncondition-
ally secure [2,5–12] under the assumption that the communication parties have been
authenticated. Thus, the security of these QKD protocols are based on the properties of
quantum physics, instead of the limitations of the computational power of the attacker.

User authentication is an important issue in secure communication. There exist
information theoretically secure user authentication protocols, which can be used
before applying the QKD [13]. However, in many applications, user authentication
and key distribution can be integrated into one step.

Recently, Hwang et al. [14] proposed two three-party authenticated quantum key
distribution protocols. The first one, which will be called 3AQKDP, can be used to
establishes a session key in a noiseless quantum channel between two communicating
parties, Alice and Bob, via a trusted center (TC). In their protocols, each communicat-
ing party shares a long-term secret key with the TC. User authentication is implicitly
verified by quantum information without public discussion. The second one, which
will be called 3QKDPMA, allows Alice and Bob to use the session key established by
3AQKDP to mutually authenticate each other and then create a new session key for
communication. Hwang et al. also proved the security of these two protocols under
the random oracle model. Both of their protocols are designed to run in a noiseless
environment.

In this paper, we try to design a protocol, which can be run in a more practical envi-
ronment under current technology. First, we briefly describe the issues that 3AQKDP
has not addressed.

(1) The attacker can learn some information about the long-term key in each attack,
and the information they learn can be accumulated. Thus, their protocols are
vulnerable to online guessing attack.

(2) The attacker may alter some bits of the session key without being detected. Thus,
the session key obtained by Alice and Bob may be inconsistent.

(3) The noise in the quantum channel was not considered in their protocols.

Note that the communicating parties must share a common secret to make authen-
tication possible. User authentication can be done via a trusted authority (TA). In this
case, each user and the TA need to share a common secret key. These secret keys
are very important in the design of the protocols, and they are usually referred as the
long-term secret key. Once the attacker learns the long-term secret key, the protocol
cannot be secure anymore.

Many literature have shown the impossibility of perfect quantum secure authentica-
tion [15–17]. If legitimate users authenticate themselves by using the same secret key
they shared, Eve can extract some information about the secret key from the protocol.
Moreover, since the same key is used again and again, the information she learned
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Three-party authenticated quantum key distribution 2357

can be accumulated. Thus, Eve can obtain the whole secret key after certain number
of attacks.

In Sect. 3, we describe an attack on 3AQKDP. We show that there is a non-negligible
probability that no eavesdropper can be detected, but the session key shared by Alice
and Bob may be inconsistent. Furthermore, the information learned by the attacker
can be accumulated. Therefore, the attacker can learn information about the long-term
secret key after certain number of attacks. Therefore, their protocols are vulnerable
to the online guessing attack. Note that this type of attack has been addressed by the
authors themselves [14]. They suggested updating the secret key if the protocol has
failed a certain number of times.

The third issue, the noise in quantum channel, is an important practical issue to
implement a quantum cryptosystem by using current technology.

In addition to the above three issues, in Hwang et al.’s [14] paper, they proved the
secrecy of the session key in 3AQKDP and 3QKDPMA by using the random oracle
model. However, using random oracle in the proof of the security of a protocol is
debatable. Canetti et al. have shown that there exist signature and encryption schemes
that are proved to be secure in the random oracle model, but no secure implementation
can exist [18,19].

1.2 Our main contributions

In this paper, we present a new three-party authenticated quantum key distribution
protocol, N3AQKDP, to address some important issues in 3AQKDP. Our protocol can
work in noisy quantum channels. This is closer to a real-world environment by using
current technologies. Furthermore, we show that our protocol can resist the online
guessing attack.

The main techniques used in our protocol against the online guessing attack are the
following:

1. If Eve attacks a few qubits, the communicating parties can correct their session
key by error correction codes and evolve the secret key efficiently. Hence, Eve
obtains almost no information about the new secret key.

2. If Eve attacks many qubits to make our protocol abort, although the secret key
cannot be updated, the information of the secret key obtained by Eve is negligible.
Hence, Eve cannot obtain the secret key within a polynomial number of attacks.

We formally define the security of our N3AQKDP, which is similar to that of the
BB84 protocol. We prove the security of our protocol N3AQKDP by standard reduction
to the security of the BB84 protocol. This implies that any attacks to our protocol can
also be used to attack BB84 protocol. Since BB84 protocol has been proven to be
secure [11], our protocols are secure.

In the case that our protocol aborts, the same secret key will be used in the next
run. We prove the following two facts to justify our claim that our protocol can resist
the online guessing attack.

(1) The expected value of Eve’s information gain about the shared secret key before
our protocol succeeds is less than 0.6 bits in average.

123



2358 D. J. Guan et al.

(2) The probability that Eve can break the secret key is negligible. That is, the prob-
ability for Eve to break the secret key is less than 1/p(λ), for any polynomial p
of the security parameter λ.

1.3 Main techniques used in our protocols

Classical error correction codes and key evolution [20] are the main techniques to make
our protocol secure. Note that quantum error correction codes can also be used in the
transmission of qubits to make quantum communication more reliable. Any quantum
error correction code, such as the Calderbank-Shor-Steane (CSS) codes [21,22] can
be used in our protocols. In this paper, we will omit these infrastructures for quantum
communication.

One of the advantages of using qubits in communication, instead of using classical
bits, is the attacker, Eve, can never learn all the information about the qubits. Further-
more, if Eve learns some information on the qubits, then she will also induce errors
in the qubits with high probability. Therefore, if the quantum bit error rate is above a
threshold, there is a high probability that there is an attacker who is trying to learn the
information about the key or the message. By estimating quantum bit error rate, one
can estimate the information leakage and thus to detect the adversary.

Our protocols use qubits to transmit the classical message. Each qubit is measured
in a basis according to the shared secret key. The outcome of a qubit measured can
be defined as 0 or 1 to represent a classical bit. Thus, the qubits are measured and
decoded as a classical message by the receiver. We note that although a qubit can be
disturbed by the noise of quantum channel and the attacker, in our protocol, the sender
and the receiver are interested in classical messages. Any error, whether it is due to
the attacker or the quantum system will be treated the same way.

We propose using key evolution [20] and error correction codes to deal with the
online guessing attack. The key evolution is based on the principle of privacy ampli-
fication [23,24]. Since repeatedly using the same key may not be secure, the key
evolution can be used to update the secret key so that a new key can be used in the
next run. Furthermore, key evolution is more efficient than creating a new secret key.

1.4 Structure of this paper

The remaining sections of the paper are organized as follows. In Sect. 2, some tech-
niques used in quantum cryptosystems are described. In Sect. 3, we briefly review
Hwang et al.’s 3AQKDP and address some issues which have not considered by the
authors on the design of 3AQKDP. The proposed protocol N3AQKDP is presented
in Sect. 4. We also give some parameters to show that our protocol are practical. In
Sect. 5, we prove and analyze the security of our protocol. We prove the security of
our protocol N3AQKDP by standard reduction to the BB84 protocol if the secret key
can be evolved in Sect. 5.1. We analyze the expected value of Eve’s information gain
and the probability of breaking our protocol to show that our protocol N3AQKDP can
resist the online guessing attack in Sect. 5.2. Finally, we conclude and discuss our
work in Sect. 6.
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2 Quantum cryptosystem techniques

Many techniques, including eavesdropper detection, error correction and privacy
amplification, can be used in the design of quantum cryptographic protocols. In this
section, we briefly describe those techniques, which will be used in the design of our
protocols.

A qubit can be described by a vector in two-dimensional Hilbert space. Let

R = {|0〉, |1〉}

be the computational basis of a qubit |q〉. Here |0〉 and |1〉 are two orthogonal qubit
states. Define |+〉 = 1√

2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉− |1〉). The two vectors |+〉 and

|−〉 are also orthogonal. Let

D = {|+〉, |−〉}

be another basis. The bases R and D are mutually unbiased bases [25]. These two
mutually unbiased bases are widely used in quantum cryptography, e. g., the BB84
protocol.

Assume that the state of a qubit |q〉 is in one of the four states |0〉, |1〉, |+〉,or |−〉.
Note that these states are the union of R and D. We call R and D the bases of |q〉.
The outcome is ‘random’ if the qubit |q〉 is prepared in one basis and it is measured
in the other basis. Let |0〉 and |+〉 correspond to 0 for a classical bit, and let |1〉 and
|−〉 correspond to 1. We call 0 and 1 the values of |q〉.

Let |q〉 be a qubit defined as above. It is well known that without knowing the basis
of a qubit, the attacker Eve will disturb its state with high probability if she measures
the qubit with a randomly chosen basis R or D.

Suppose that Alice and Bob communicate using the qubits. Assume that they know
the bases of the qubits, then they can check the states of the qubits to detect whether Eve
has eavesdropped in quantum channel or not. Combining this property with random
sampling test, a quantum cryptosystem can estimate the error rate in quantum channel.
This technique allows Alice and Bob to estimate Eve’s information gain by the error
rate. If the error rate is below the threshold, it means that not much information was
leaked to Eve. Then they can correct errors in their communicating messages by using
error correction code.

We also use the privacy amplification in our protocol. It is well known that Eve must
be able to learn some information during the communication even if qubits are used.
The technique of privacy amplification can be used to reduce Eve’s mutual information
on the secret key to a desired level of security if the information leakage is small. The
idea is to shorten the length of the secret key to eliminate Eve’s information.

A theorem of the privacy amplification [23] can be described as follows. Assume
that Alice sends an n-bit secret to Bob, and Eve learns l bits of information about the
secret in the transmission. Let s > 0 be a security parameter and let m = n – l – s.
Alice and Bob can shorten the secret to m bits to reduce Eve’s information about
the shortened secret to be less than 2−s/ ln 2 bits. One can properly choose s such
that Eve has almost no information about the m-bit secret if n > l. Furthermore,
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privacy amplification can be done efficiently by a universal hash function [13,26].
Alice chooses a hash function from a class of universal hash functions family and
announces it publicly. It has been shown that only a little information is needed to
identify the chosen hash function [23].

In order to overcome the noise and the attacker’s disturbance in the qubits, we use
classical error correction codes to correct the errors of the session key in our protocol.
Since the session keys in our protocol are classical bits and our protocol uses single
qubit to represent a classical bit, it is efficient to correct the errors of the session key
using classical error correction codes.

3 Hwang et al.’s 3AQKDP

In this section, we briefly describe 3AQKDP [14] and address some issues, which
have not been considered by the authors in the design of 3AQKDP.

3.1 A brief description of Hwang et al.’s protocol

Alice shares with the TC an n-bit secret key KT A, and Bob shares with the TC another
n-bit secret key KT B . Alice and Bob would like to establish a u-bit session key Ks by
the help of the trusted TC.

Let UA be the identity of Alice. Let UB be the identity of Bob. Both UA and UB

are k-bit binary string. Let R = {|0〉, |1〉} and D = {|+〉, |−〉} be two bases. The
3AQKDP can be described as follows.

1. The TC randomly chooses a session key Ks .
2. The TC picks two random l-bit strings rT A and rT B for Alice and Bob, respectively,

and then the TC computes RT A = h(KT A · rT A) ⊕ (Ks · UA · UB) for Alice and
RT B = h(KT B · rT B)⊕ (Ks ·UB ·UA) for Bob. Here h denotes the one-way hash
function {0, 1}∗ → {0, 1}m , ⊕ denotes modulo 2 addition or bit-wise exclusive-or
operation and ‘·’ denotes string concatenation. Note that the lengths of RT A, RT B ,
(Ks · UA · UB) and (Ks · UB · UA) are all m bits and m = u + 2k.

3. Let n = l + m. Hence, the lengths of KT A and (rT A · RT A) are both equal to n.
The TC creates n qubits QT A for Alice using KT A and (rT A · RT A). The structure
of QT A is depicted in Fig. 1. For (QT A)i , if (KT A)i = 0, the TC uses R as its
basis, otherwise D is the chosen basis. |0〉 or |+〉 is created if (rT A · RT A)i = 0;
and |1〉 or |−〉 if (rT A · RT A)i = 1. Table 1 lists the states to generate (QT A)i .
Similarly, the TC creates QT B for Bob.

KT A

rT A
h(KT A · rT A)
Ks UA UB

RT A

Bases

Values

KT A: n bits

rT A: l bits
h(KT A · rT A): m bits

Ks: u bits
UA, UB : k bits

Fig. 1 Structure of QT A in 3AQKDP
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Table 1 Qubit (QT A)i
generation

(QT A)i (rT A · RT A)i = 0 (rT A · RT A)i = 1

(KT A)i = 0 |0〉 |1〉
(KT A)i = 1 |+〉 |−〉

4. The TC sends QT A and QT B to Alice and Bob, respectively.
5. Alice receives QT A and measures it according to KT A. If (KT A)i = 0, R is used

to measure the (QT A)i ; otherwise D. Similarly, Bob measures QT B using R or
D depending on KT B .

6. The measuring outcomes are the values of (r ′
T A · R′

T A). Then Alice can compute
(K ′

s · UA · UB) = h(KT A · r ′
T A) ⊕ R′

T A. Similarly, Bob gets (r ′
T B · R′

T B) and
computes (K ′′

s · UB · UA) = h(KT B, r ′
T B) ⊕ R′

T B .
7. Alice and Bob verify the values of UA and UB . They accept the session key if the

values of UA and UB are correct.

Hwang et al. [14] proved the security of 3AQKDP under the random oracle model
and addressed that 3AQKDP suffers the online guessing attack. The security of
3AQKDP is defined as the amount of information leaked to the adversary attack-
ing the session key Ks . Since RT A = h(KT A · rT A) ⊕ (Ks · UA · UB), Eve needs to
call the hash function to get the value of h(KT A · rT A) if she wants to break the Ks .
They have shown the amount of information leaked to the adversary is negligible in
3AQKDP. However, the definition does not include the security of the shared secret
key. When Eve attacks the secret key using the online guessing attack, she does not
need to call the hash function. We show that Eve can attack the 3AQKDP without
calling the hash function in the next subsection.

3.2 Security issues on 3AQKDP

In this subsection, we discuss three security issues on 3AQKDP mentioned in Sect. 1.
We first present an attack on 3AQKDP that the session keys obtained by Alice and

Bob may not be consistent even if the values of UA and UB are correct. Assume that
Eve attacks QT A sent to Alice. Recall that the values of QT A depend on rT A · RT A =
rT A · (h(KT A · rT A)⊕ (Ks ·UA ·UB)). The QT A can be divided into three parts: rT A,
Ks and UA · UB . If Eve only attacks the qubits in the Ks , i.e., from the (l + 1)th to the
(l + u)th qubits of QT A, the values of rT A, h(KT A · rT A), UA and UB remain intact.
Therefore, UA and UB will always be correct when the users verify the identities. Alice
thus believes there is no eavesdropper. However, if some values of the qubits in Ks

are changed, the K ′
s received by Alice may be different from the Ks generated by the

TC. Therefore, the session key obtained by Alice and Bob may not be consistent even
if UA and UB are intact. The authors of 3AQKDP only considered that Eve disturbs
the qubits in rT A. Moreover, 3AQKDP does not verify the correctness of the session
keys or correct the errors of the session keys.

The second security issue of 3AQKDP is the online guessing attack that aims at
the long-term secret key between the users, Alice or Bob, and the TC. The details of
the attack can be described as follows. Eve intercepts the qubit sequence sent by the
TC. Without loss of generality, assume that Eve attacks the qubits sent to Alice. She
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measures one qubit of the sequence by randomly choosing a basis from R and D. After
the qubit is measured, we call it the measured qubit. Then Eve places the measured
qubit back to the original qubit sequence. She resends the new qubit sequence to Alice.
The protocol can either finish successfully or fail. If the protocol fails, it indicates that
Eve has measured the qubit in a wrong basis to make the identities incorrect. Therefore,
Eve learns the correct basis of the qubit.

The following calculation shows that the long-term secret key in 3AQKDP suffers
the online guessing attack. The protocol always succeeds if Eve used a correct basis to
measure. However, the protocol succeeds with probability 0.5 even if Eve measured
the qubit in a wrong basis. Alice’s reaction is called negative if the protocol failed [14].
Eve learns the correct basis of the qubit if a negative reaction occurs. The probability
is 0.25. On average she thus gets 0.25 × 1 + 0.75 × 0 = 0.25 bits of information in
each attack. Thus, Eve can get a some information about the shared secret key with a
non-negligible probability.

The worst thing is that Eve’s information about the long-term secret key can be
accumulated. If the long-term secret key is not updated, it can be broken by Eve after
about 4n attacks.

The third issue is the noise in quantum channel. The 3AQKDP is designed in a
noiseless environment. In a noiseless environment, all qubits disturbances are induced
by the attacker Eve. However, using current technology, a practical implementation is
always in a noisy environment.

4 Our protocol

A new three-party authenticated quantum key distribution protocol, N3AQKDP, is pre-
sented in this section. Our protocol N3AQKDP can work in a noisy quantum channel
and resist eavesdropping, replay attack, and the online guessing attack. Furthermore,
both users can be sure that the session key obtained is consistent if the protocol succeed.

The main idea of our protocol N3AQKDP can be described briefly as follows. The
TC encodes the session key into qubits sent to the two users according to the shared
secret key with the user. Each user can obtain a binary string by measuring qubits
and correct the errors to get the session key. The two users then verify whether their
session keys are consistent or not. If their session keys are consistent, it represents that
the users are legitimate and the information leaked to Eve is small. Then the users and
the TC can evolve their secret keys for next round.

Assume that Alice and Bob are the two users who would like to establish a k-bit
session key Ks via the TC. Let UA and UB be the identity of Alice and Bob, respectively.
The TC shares n-bit secret keys KT A and KT B with Alice and Bob, respectively. They
use the bases R = {|0〉, |1〉} and D = {|+〉, |−〉} to generate qubits. Some functions
used in our protocol N3AQKDP are defined as follows.

– A linear [n, k, e] code Cn
k to correct e errors is chosen to encode Ks into an n-bit

code word C . The value of e will be determined later.
– Let eK be an encryption algorithm agreed with Alice and Bob using a key K . Let

dK be a corresponding decryption algorithm agreed with Alice and Bob using K .
For every plaintext P , dK (eK (P)) = P .
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The TC (Share a secret KT A) Alice

1. Message encoding

2. Qubits generation
Sends QA

3. Qubits
transmission

4. Message
decoding

5. Error correction

6. Key consistence verification

7. Key evolution
Announces f

Fig. 2 The steps between Alice and the TC in our protocols

Table 2 Qubit (qA)i generation
(qA)i (gA)i = 0 (gA)i = 1

(kT A)i = 0 |0〉 |1〉
(kT A)i = 1 |+〉 |−〉

In our protocol, we use the uppercase symbols to denote sequences, sets and strings.
The lowercase symbols denote values and elements in a set. The lowercase symbol
with a subscript i indicates the i th bit of the string. For example, (kT A)i denotes the
i th bit of the KT A.

Our protocol can be divided into seven steps: (1) message encoding, (2) qubits
generation, (3) qubits transmission, (4) message decoding, (5) error correction, (6)
key consistence verification, and (7) key evolution. The steps between the TC and
Alice are depicted in Fig. 2. The thick line in step 3 denotes the quantum channel. The
thin lines in step 7 indicate the classical public channel.

4.1 Description of N3AQKDP

The detailed steps of our protocol N3AQKDP are described below.

1. (Message encoding) The TC randomly chooses a session key Ks and converts Ks

into the code word C using error correction code Cn
k .

2. (Qubits generation) Let G A = C ⊕ KT A. The TC creates n qubits, Q A, for Alice
using KT A and G A. The (qA)i denotes the i th qubit of the Q A. Table 2 lists the
states to generate (qA)i . Let G B = C ⊕ KT B . The TC creates Q B using KT B and
G B for Bob in a similar way.

3. (Qubits transmission) The TC sends Q A and Q B to Alice and Bob, respectively.
4. (Message decoding) Alice receives Q A and measures it according to KT A. If

(kT A)i = 0, the (qA)i is measured in basis R; otherwise D. Bob measures Q B

depending on KT B . Alice gets the outcomes HA = (h A)1 . . . (h A)n and Bob gets
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HB . Let DA = HA ⊕ KT A be the binary string extracted from the Q A by Alice.
Similarly, Bob gets DB = HB ⊕ KT B from the Q B .

5. (Error correction) The TC notices Alice and Bob to correct DA and DB using error
correction code Cn

k . Alice and Bob get CA and CB , respectively. Hence, Alice and
Bob can obtain the session key (Ks)A and (Ks)B , respectively.

6. (Key consistence verification) Alice generate a time stamp, t . She computes V1 =
e(Ks )A(UA · t) and sends V1 to Bob. Here e(Ks )A is an encryption algorithm using
the session key (Ks)A and ‘·’ denotes string concatenation. Bob decrypts V1 using
(Ks)B , obtaining t . Then, Bob computes V2 = e(Ks )B (t +1) and sends V2 to Alice.
Alice checks that d(Ks )A(V2) = t + 1. Here d(Ks )A is a corresponding decryption
algorithm using the session key (Ks)A. If this condition holds, it indicates that
CA = CB = C . They go to step 7. Otherwise, Alice aborts the session.

7. (Key evolution) The TC chooses a hash function f from a class of {0, 1}2n →
{0, 1}n universal hash functions and announces it. The TC and Alice compute

K ′
T A = f (KT A · CA)

as their new secret key. The TC and Bob compute their new secret key

K ′
T B = f (KT B · CB).

Alice verifies her session key with Bob’s session key in step 6. The key consis-
tence verification step ensures their session keys are consistent. This step is similar to
the verification process in Kerberos-type session key distribution schemes. Since the
(Ks)A and (Ks)B are used as a session key, this step dose not compromise the security
of the session key.

We compare the amounts of qubits and classical bits needed in our protocol with
those in 3AQKDP. In our protocol, the TC uses 2n qubits to establish a k-bit session key
for Alice and Bob. The classical messages are transmitted in step 6 and 7. Alice and Bob
use constant bits to verify the session key. The TC needs constant bits to announce
hash function f . Our protocol N3AQKDP thus needs constant bits to transmit the
session key. The 3AQKDP needs 2n qubits and no classical message to establish a
k-bit session key. Although our protocol needs a few classical messages, it solves
issues of 3AQKDP.

4.2 Session key consistency

We first note that both Alice and Bob obtain a consistent session key if the protocol
succeed. If the session keys are found to be inconsistent in step 6, this session is
aborted. When Alice and Bob require the TC to establish a session key for them next
time, a new session key is generated. Therefore, our protocol do not suffer the replay
attack. That is, either they establish a session key or none of them gets the session
key in our protocol. The case which one of the communicating parties asks to re-
transmit a session key cannot occur. It implies that our protocol do not suffer the replay
attack.
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4.3 Selection of the value of e

The selection of the value of e depends on the noise of environment and the tolerance
of the attack. We consider the errors caused by the quantum channel and the attacker
in the same way. When the number of errors caused by the environment and Eve is
below the threshold value e, Alice and Bob can obtain a consistent session key by error
correction. A large e can thus tolerate more disturbances induced by the environment
and the attacker Eve. However, for a fixed k, the length of the Ks , it needs more bits
to correct more errors. Therefore, a larger n and more qubits are needed to send Ks if
we expect the protocol to resist more disturbances.

We can set a proper error threshold e to let our protocol succeed with very high
probability. As we described in Sect. 3.2, the probability is 0.25 if Eve attacks one
qubit. If Eve attacks all n qubits, the number of errors she makes is 0.25n in average.
By the Chernoff bound in probability theory, the probability that Eve makes more than
0.25n errors decreases exponentially. Hence, we can take e = 0.25n + λ to let our
protocol succeed with very high probability, here λ > 0 is a security parameter.

Error correction codes with high correction rates may not be very efficient in decod-
ing. If error correction codes with less correction rates are used for efficient decoding,
then the attacker Eve can make our protocol fail with non-negligible probability, and
the information she learn can be accumulated. However, we show in Sect. 5 that, in
this case, the attacker can learn a very small amount of information in each attack, and
she cannot break our protocol with polynomial number of attacks.

We give examples for the selection of the value of e with small correction rates.
Suppose that the binary Bose–Chaudhuri–Hocquenhem (BCH) codes of length 255
are used. Assume the error rate caused by the environment is 0.01. If the error rate
caused by the adversary is 0.01, the total error rate is 0.02. Then the [255, 207] code
to correct 6 errors can be used and e = � n

255 × 6	 in our protocol. If the error rate
induced by the adversary is 0.04, the total error rate is 0.05, then the [255, 155] code
to correct 13 errors can be chosen and e = � n

255 ×13	. The session key can be divided
into many blocks. For a concrete example, let n = 255. The protocols can set e = 6 to
transmit 207 bits/block of Ks using 255 qubits to endures an overall error rate of 0.02.
If the overall error rate is 0.05, let e = 13, then 255 qubits can be used to transmit 155
bits/block of Ks .

Suppose the session key is used to encrypt messages by the Advanced Encryption
Standard (AES). Table 3 shows the parameters to establish session keys of lengths of
128, 192 and 256 bits in our protocol N3AQKDP. In Table 3, the values of k, n and

Table 3 Parameters to establish
session keys

k re BCH code t n e

128 0.02 [127, 106] 3 154 4

192 0.02 [127, 106] 3 231 6

256 0.02 [255, 207] 6 316 8

128 0.05 [127, 78] 7 209 12

192 0.05 [255, 155] 13 316 17

256 0.05 [255, 155] 13 422 22
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e are the length of Ks , the length of code word and the tolerable number of errors,
respectively. The re denotes the total error rate. The third and fourth columns are the
binary BCH codes to correct t errors which are chosen in our protocol N3AQKDP.

5 Security of our protocol

In this section, we analyze the security of our protocol. Our protocol do not reveal
any information about the bases and measuring outcomes of the qubits. Hence, the
attacker has no information about the transmitted session key. For the secret key shared
between TC and user, we consider the following two cases:

1. Our protocol succeeds, or
2. Our protocol fails.

In the first case, the secret key is updated. By the privacy amplification, the secret
key can be regarded as a random binary string to the attacker. We show that the secu-
rity of the BB84 protocol can be reduced to the security of our protocol N3AQKDP.
Thus, any attack to our protocol N3AQKDP can be used to attack BB84. The BB84
protocol has been proved to be secure [11], and consequently, our protocol N3AQKDP
is secure. Furthermore, our protocol evolves the secret key using key evolution based
on the principle of privacy amplification. Renner and König have shown that pri-
vacy amplification is universally composable [27]. Hence, key evolution can be done
repeatedly.

If the error threshold e has set to a small number, our protocol may fail with a
non-negligible probability. In this case, the same secret key will be used in subsequent
runs. We assume that our protocol N3AQKDP works in a noiseless environment. Eve
thus can apply the online guessing attack. We show that the expected value of Eve’s
information gain about the secret key before our protocol succeeds is less than 0.6
bits in average. Therefore, she cannot break our protocol. Suppose that Eve attacks
many qubits to make the protocol fails with a high probability. Then we show that
the information leaks to Eve is negligible. Thus, Eve cannot break our protocol with
polynomial number of attacks.

Consider Eve performs the online guessing attack on our protocol in a noise quantum
channel. If our protocol fails, she cannot know whether the errors come from her attack
or from the noise. Moreover, some errors made by Eve may be corrected by noise, and
vice versa. Noise increases the uncertainty of Eve’s information gain. This implies
that our protocol are more robust against the online guessing attack in a practical
environment. This is a strong evidence that our protocol is secure under online guessing
attack.

5.1 Case 1: The secret key is evolved

Theorem 1 Assume that there exists an adversary Eve who can break our protocol
N3AQKDP. Then there exists an adversary X who can break the BB84 protocol.

Before we prove Theorem 1, the BB84 protocol is briefly described as follows.
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The BB84 protocol can be described briefly as follows. Alice randomly chooses two
4n-bit strings a and b. She creates 4n qubits using a and b: for qubit i , if bi = 0, she
chooses R as the basis, otherwise D is the chosen basis. |0〉 or |+〉 is created if ai = 0;
and |1〉 or |−〉 if ai = 1. The 4n qubits are sent to Bob. Bob chooses a 4n-bit string b′
randomly and then measures the qubits according to b′. That is, he measures the i th
qubit in R if b′

i = 0, otherwise in D. Bob thus gets a 4n-bit string a′ of measuring
outcomes. After Bob measured the qubits, Alice announces b and Bob announces b′.
For qubit i , they discard ai and a′

i if bi 
= b′
i . If less than 2n bits of a (and a′) are

left, they abort and restart the protocol. Alice keeps 2n bits of a with bi = b′
i and Bob

keeps the corresponding bits of a′. Let the 2n bits of a and a′ be α and α′, respectively.
Alice randomly picks n bits from the α. Let T1 denote the n picked bits. Alice tells Bob
which bits she picked. Let T2 denote the corresponding n bits of α′. They announce
T1 and T2 and counts the number of errors of corresponding bits between T1 and T2.
They aborts and restarts the protocol if the number of errors is more than the threshold
of acceptance, otherwise each of them has n bits remained which are used as the sifted
key. They employ the procedure of information reconciliation to reconcile their sifted
keys and the procedure of privacy amplification to obtain a m-bit final secret key from
the n-bit sifted key.

Let X be an adversary of the BB84 protocol. If X could break the BB84 protocol,
he had to let the protocol succeed and get more information than Bob. Hence, X ’s
information gain on the final key was not negligible after the privacy amplification.
Definition 1 gives the definition of breaking the BB84 protocol.

Definition 1 Let the mutual information obtained by Bob and X from Alice on sifted
key in the BB84 protocol be I (A; B) and I (A; X), respectively. The quantum bit
error rate created by X is D. X breaks the BB84 protocol if I (A; X) ≥ I (A; B) and
D ≤ 11 % [11,28].

Let Eve be an adversary of our protocol N3AQKDP. If Eve could break our protocol
N3AQKDP, the protocol succeeded and she got enough information about the secret
key and the code word that would not be completely eliminated after the key evolution.
We note that both lengths of the secret key and the code word are n bits. In order to
update the secret key, a key evolution procedure is performed in our protocol. Without
loss of generality, assume that Eve attacks our protocol N3AQKDP running between
the TC and Alice. Let l denote Eve’s total information gain on the secret key KT A

and the code word CA. Recall that the universal hash function f is chosen from
{0, 1}2n → {0, 1}n . By the theorem of the privacy amplification [23], the security
parameter s = n − l > 0. Hence, the new key K ′

T A = f (KT A ·CA) is secure if l < n.
Definition 2 gives the definition of breaking our protocol N3AQKDP.

Definition 2 Assume that Eve attacks the qubits Q A sent from the TC to the user A.
Eve breaks our protocol N3AQKDP if she creates less than e errors in the Q A and
gets at least n bits of information about the secret key KT A and the code word CA.

Theorem 1 is proved as follows.

Proof We first show that an instance of the BB84 protocol has a corresponding instance
of our protocol as follows. Assume that Alice and Bob run the BB84 protocol to have
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n qubits which Bob measures using the same bases that Alice creates the qubits.
Let α = α1 . . . αn and β = β1 . . . βn denote the values and the bases to create the
qubits, respectively, here each αi , βi ∈ {0, 1}. They picks n/2 qubits from the n
qubits to test the quantum channel. Let the set of these n/2 picked qubits be T . The
outcomes of remaining n/2 qubits arranged in order are used as the sifted key (or
called the raw key) Kr . Hence, (α, β, T , Kr ) can represent an instance of the BB84
protocol.

An instance of our protocol can be described as (G A, KT A, TA, Cn
k , Ks) for the TC

and the user A. Here TA is the set of qubits that be chosen to verify whether the session
key is consistent or not. The TC uses α as the G A in our protocol N3AQKDP. Let
KT A = β, i.e., the TC and the user A share a secret key β. Hence, the n qubits created in
our protocol are the same as those in the BB84 protocol and CA = G A⊕KT A = α⊕β.
The TC uses Q A as the TA. The Ks can be converted from the value of CA by using
Cn

k . Therefore, an instance (α, β, T , Kr ) of the BB84 protocol can be transferred to
an instance (G A, KT A, TA, Cn

k , Ks) of our protocol N3AQKDP.
Assume that Eve has no information about the KT A at the beginning. Let B1 be the

given instance of the BB84 protocol. Let N1 be an instance of our protocol N3AQKDP.
We now show that if Eve can break N1, then we can construct X that can break B1.
The proof is as follows.

Suppose that X would like to break B1. By the definition 1 and I (A; X)+I (A; B) =
1 described in Ref. [29], I (A; X) ≥ 0.5 if X breaks B1. That is, X has to get at least
(0.5×n/2) bits of information about the sifted key Kr and only induce the quantum bit
error rate D ≤ 0.11 in the qubits of T . X can first transfer B1 to N1 as we described
above. And then X chooses e ≤ 0.11n and calls Eve to break N1. Therefore, Eve
induces less than e errors in TA = Q A and learns at least n bits of information about
KT A and CA. The following shows that if Eve can get at least n bits of information
about KT A and CA in N1, then X can get at least (0.5×n/2) bits of information about
the Kr in B1. Thus, X breaks B1.

We consider the information obtained by Eve in Q A. Since neither the bases nor
the values of Q A is revealed, Eve can only manipulate the qubits to get informa-
tion. She thus gets no information about the bases of Q A, i.e., the values of KT A.
Hwang et al. [30] have shown the fact if Eve attacks the qubits individually. We argue
that it is also correct even if Eve performs coherent attacks as follows. It cannot obtain
more information to attach probes on the qubits because no information is revealed
later. Eve can only measure the qubits to get information. Since the bases are chosen
randomly, there is no correlation between them. The best measuring method to get
the information about the bases is to measure each qubit individually. Therefore, Eve
learns no information about the bases of Q A, i.e., the values of KT A, even if she
performs coherent attacks.

We have shown that Eve gets no information on KT A. Since Eve learns at least n
bits of information about KT A and CA, she obtains at least n bits of information about
the CA. For X , the information about CA in N1 corresponds to the information about
Kr in B1. Therefore, X induces less than D = e/v ≤ 0.11 error rate on T and gets
at least n > (0.5 × n/2) bits of information about the sifted key Kr . X thus breaks
B1. ��
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5.2 Case 2: The secret key cannot be evolved

When Eve attacks our protocol by the online guessing attack, she can attack some
qubits and observes whether the protocol aborts or not. Eve has to attack more than
e qubits to make our protocols abort, because the code word C with no more than e
errors can be corrected by error correction code. When Eve attacks many qubits, we
can show that Eve’s information gained is negligible. Hence, error correction codes
in our protocols not only overcome the noise but also play an important role to resist
the online guessing attack.

We now show that the expected value of Eve’s information gain about the secret
key is less than 0.6 bits in average before the secret key is evolved in our protocol
N3AQKDP. Assume that Eve attacks α qubits when the TC sends Q A to Alice. Let Eα

be the event that Eve attacks α qubits in an attack. We define the notations as follows.

– Let I (α) be Eve’s information gain in an attack if Eα occurs and our protocol
N3AQKDP is aborted.

– Let P(α) be the probability that Eve makes our protocol N3AQKDP aborted when
Eve attacks α qubits in an attack.

– Let PK E (α) be the probability of performing key evolution when Eve attacks α

qubits in an attack.
– Let E(I α

1 ) be the expected value of Eve’s information gain obtained in an attack
of α qubits.

– Let E(I α) be the expected value of Eve’s information gain before our protocol
N3AQKDP succeeds if Eve attacks α qubits.

Note that PK E (α) = 1 − P(α).
We derive I (α) as follows. Since Eve attacks α qubits, there are 2α possible bases

for these α qubits. If our protocol N3AQKDP aborts, it means that some of the basis
of these α qubits were incorrect. For these α qubits, it needs at least 2α − 1 trials
to confirm the bases. Thus, the amount of information I (α) obtained by Eve can be
computed as follows.

I (α) = α

2α − 1
, for α ≥ 1. (1)

The value of I (α) decreases exponentially as the value of α increases.
The probability P(α) can be computed by

P(α) = 1

2α

(
α∑

i=1

(
α

i

)
×

(
1 − 1

2i

))
. (2)

Here i denotes the number of qubits that Eve measures in a wrong basis. In Eq. (2),(
α

i

)
is the number of possible cases for i qubits chosen from α qubits, and

(
1 − 1

2i

)
is

the probability of making our protocol N3AQKDP aborted. We note that the probability
of success of our protocol N3AQKDP is 1/2i even if Eve measures these i qubits with
wrong basis.
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Fig. 3 The values of E(Iα
1 ) versus the values of α

Since

PK E (α) = 1 − P(α). (3)

We can obtain

PK E (α) ≥
(

3

4

)α

. (4)

By Eq. (4), our protocol N3AQKDP has a high probability to evolve the secret key
if α is small. On the other hand, if α is large, Eve’s information is exponentially small.
We show the fact as follows.

When Eve attacks α qubits in an attack, the expected value of information gain,
E(I α

1 ), is as follows.

E(I α
1 ) = P(α) × I (α)

= 1

2α

(
α∑

i=1

(
α

i

)
×

(
1 − 1

2i

))
× α

2α − 1
. (5)

The values of E(I α
1 ) versus the values of α are plotted in Fig. 3. The value of

E(I α
1 ) decreases exponentially as the value of α increases, for α ≥ 2. Thus, when Eve

attacks many qubits in an attack, the expected value of information gain is negligible.
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Table 4 Some examples of the
values of PKE(α), E(Iα

1 ) and
E(Iα)

α PKE(α) E(Iα
1 ) E(Iα)

1 0.7500 0.2500 0.3333

2 0.5625 0.2917 0.5185

3 0.4219 0.2478 0.5873

4 0.3164 0.1823 0.5761

5 0.2373 0.1230 0.5184

6 0.1780 0.0783 0.4399

7 0.1335 0.0478 0.3578

8 0.1001 0.0282 0.2820

9 0.0751 0.0163 0.2170

10 0.0563 0.0092 0.1638

15 0.0134 0.0005 0.0338

20 0.0032 0.0000 0.0060

25 0.0008 0.0000 0.0010

30 0.0002 0.0000 0.0002

On the other hand, if α = 2, Eve can obtain maximum expected value of information,
which is less than 0.3 qubits. In this case, P(α = 2) = 0.4375. Thus, our protocol
N3AQKDP succeeds and the secret key is updated within 16 attacks with probability
of (1 − (1 − 0.4375)16) = 0.9999. Table 4 shows some examples to illustrate the
values of PK E (α) and E(I α

1 ).
Consider that Eve attacks α qubits in a row. Before our protocol N3AQKDP suc-

ceeds, the expected value of Eve’s information gain, E(I α), can be computed as
follows.

E(I α) = (1 + P(α) + (P(α))2 + · · · ) × E(I α
1 )

= 1

1 − P(α)
× E(I α

1 )

= 1

PK E (α)
× E(I α

1 )

=
(

4

3

)α

× E(I α
1 ). (6)

The values of E(I α) versus the values of α are plotted in Fig. 4. The maximum
expected value of Eve’s information before our protocol N3AQKDP succeeds is 0.5873
bits when α = 3. This concludes that Eve’s information about the secret key is very
little before the secret key is updated.

Now, we show that the probability that Eve can break the secret key is exponentially
small. By Eq. (1), I (β) ≤ 1. That is, Eve can obtain at most 1 bit of information in
an attack. In order to break the secret key, she has to abort our protocol N3AQKDP
in succession at least n times. Since P(α) < 1, the probability that Eve can break the
secret key is (P(α))n . It is exponentially small if n is sufficiently large. This implies
that the probability of breaking our protocol N3AQKDP by using online guessing
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Fig. 4 The values of E(Iα) versus the values of α

attack is negligible. In other words, our protocol N3AQKDP can resists the online
guessing attack.

6 Conclusions and discussions

In this work, we present a practical protocol, N3AQKDP, to improve a three-party
authenticated quantum key distribution protocol 3AQKDP proposed by Hwang et al.
Our protocol can work in a noisy quantum channel.

The proposed protocol resolve some issues that the authors of 3AQKDP have not
addressed, including the session key consistence, the online guessing attack, and the
noise in quantum channel. We resolve these issues by using error correction codes and
key evolution.

The security of our protocol N3AQKDP is proved by standard reduction to the
BB84 protocol. Since the long-term secret key are evolved after each successful run
and the message transmitted are unknown to the attacker, the new secret key can be
regarded as a random number to the attacker. Therefore, our security proof implies
that any attack to our protocol N3AQKDP can be used to attack the BB84 protocol.
Since the BB84 protocol is proved to be secure, our proposed protocols are secure.

Our protocols assume that the user shares a secret key with the TC for identity
authentication, and the session key distributed to the users is chosen by the TC. The
TC knows all secret information in our protocols. Hence, our protocols require the
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center to be trusted. It is an interesting research topic to design an authenticated
quantum key distribution protocols under the help of semi-honest TC.
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