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Abstract The quantum Fourier transform, the quantum wavelet transform, etc., have
been shown to be a powerful tool in developing quantum algorithms. However, in clas-
sical computing, there is another kind of transforms, image scrambling, which are as
useful as Fourier transform, wavelet transform, etc. The main aim of image scrambling,
which is generally used as the preprocessing or postprocessing in the confidentiality
storage and transmission, and image information hiding, was to transform a mean-
ingful image into a meaningless or disordered image in order to enhance the image
security. In classical image processing, Arnold and Fibonacci image scrambling are
often used. In order to realize these two image scrambling in quantum computers,
this paper proposes the scrambling quantum circuits based on the flexible represen-
tation for quantum images. The circuits take advantage of the plain adder and adder
modulo N to factor the classical transformations into basic unitary operators such as
Control-NOT gates and Toffoli gates. Theoretical analysis indicates that the network
complexity grows linearly with the size of the number to be operated.

Keywords Arnold image scrambling · Fibonacci image scrambling · Quantum
circuit · Quantum network · Quantum computation · Quantum watermarking

1 Introduction

In 1982, Feynman [1] proposed a novel computation model, named quantum com-
puters. A quantum computer is a physical machine that can accept input states
which represent a coherent superposition of many different possible inputs and sub-
sequently evolve them into a corresponding superposition of outputs. Computation,
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i.e., a sequence of unitary transformations, affects simultaneously each element of the
superposition, generating a massive parallel data processing albeit within one piece
of quantum hardware. By this way, quantum computers can efficiently solve some
problems which are believed to be intractable on any classical computer. A quantum
computer will be viewed as a quantum network (or a quantum circuit) composed of
quantum logic gates, each gate performing an elementary unitary operation on one,
two, or more two-state quantum systems called qubits [2].

The developing of quantum computer causes people’s interest to study quantum
image processing (QIP), which is still in its infancy [3–5]. At present, QIP has three
main directions: (1) representing quantum images; (2) expanding basic classical image
transformation into quantum computers; (3) watermarking quantum images.

1. Representing quantum images.
Research in the field of quantum image processing started with proposals on quan-
tum image representations such as qubit lattice [6], real ket [7], and FRQI [8] and
also a method for storing and representing binary geometrical forms [9]. The quan-
tum images are two-dimensional arrays of qubits in [6] and a quantum state in [7].
FRQI method that our circuits are based on captures information about colors and
their corresponding positions in an image into a normalized quantum state.

2. Expanding basic classical image transformation into quantum computers.
It has also been proven that there are quantum processing transformations more effi-
cient than their classical versions: quantum Fourier transform [3], quantum wavelet
transform [10], the quantum discrete cosine transform [11,12], and the geomet-
ric transformations on quantum images (GTQI) [26]. In fact, since all irreversible
operations have a reversible counterpart, convolution, and correlation, typically
defined in computer science as irreversible operations, can be applied on quantum
images only if reversible versions of those operations are used instead.

3. Watermarking quantum images.
Watermarking is different from cryptography. It aims at guard against image abuse
by embedding invisible signal (watermark) carrying information about the copy-
right owner into multimedia data (carrier, such as audio, video, and image). The
watermarked carriers are still readable. Several quantum images watermarking
methods have been proposed [14–16] which are all based on the quantum trans-
formations such as quantum Fourier transform (QFT) and GTQI.

In this paper, we address the second problem. The basic transformation we focused
on is image scrambling. We provide quantum circuits to realize the Arnold and the
Fibonacci image scrambling, respectively. As we know, this work has not been studied
yet.

Image scrambling as an encryption technology is a good tool to make the scrambled
image visually unrecognizable. It has become an important means of the digital image
transmission, the confidentiality storage, and digital image watermarking [17–22].
Throughout all the image scrambling methods, such as Hilbert [23], magic cube [24],
cat chaotic mapping [25], and so on, Arnold and Fibonacci transform algorithms
are commonly used [17,18]. All the experiences in classical computers indicate that
Arnold and Fibonacci image scrambling belongs to basic transformations in image
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processing. They are often used in many image processing algorithms. So, we use
quantum circuits to realize these two transformations to promote QIP.

The rest of the paper is organized as follows. A brief background on the FRQI
representation, Arnold and Fibonacci image scrambling, and quantum adder networks
is presented in Sect. 2. The quantum circuit architecture of Arnold image scrambling
and Fibonacci image scrambling is discussed in Sect. 3. This is followed in Sect. 4 by
the theoretical analysis of network complexity. Finally, a conclusion is given in Sect. 5.

2 Preliminaries

2.1 The flexible representation for quantum images (FRQI)

In order to represent images on quantum computers, the flexible representation for
quantum images (FRQI) was proposed in [8,26] which contents the color information
and corresponding position information of every pixel in image. According to the
FRQI, a quantum image can be written as the form shown below.

I (θ) = 1

2n

22n−1∑

i=0

|ci 〉 ⊗ |i〉,

|ci 〉 = cos θi |0〉 + sin θi |1〉, θi ∈ [0,
π

2
], i = 0, 1, . . . , 22n − 1.

where |0〉, |1〉 are two-dimensional computational basis quantum states, (θ0, θ1, . . . ,

θ22n−1) is the vector of angles encoding colors, |i〉, for i = 0, 1, . . . , 22n − 1, are 22n-
dimensional computational basis quantum states, and ⊗ denote the Kronecker product.
There are two parts in the FRQI of an image: |ci 〉 and |i〉, which encode information
about the colors and their corresponding positions in the image, respectively. The size
of the quantum image is 2n × 2n .

For two-dimensional images, the location information encoded in the position qubit
|i〉 includes two parts: the vertical and horizontal coordinates. Considering quantum
images in 2n-qubit systems, or n-sized images, the vector

|i〉 = |y〉|x〉 = |yn−1 yn−2 . . . y0〉|xn−1xn−2 . . . x0〉, |yi 〉|xi 〉 ∈ {0, 1}, i = 0, 1, . . . , n.

(1)

For every i = 0, 1, . . . , n, encodes the first n-qubit yn−1, yn−2, . . . , y0 along the
vertical location and the second n-qubit xn−1, xn−2, . . . , x0 along the horizontal axis.
An example of a 2 × 2 FRQI image is shown in Fig. 1. Its FRQI representation is
shown below. In this example, n=1.

|I 〉 = 1

2

[
(cos θ0|0〉 + sin θ0|1〉) ⊗ |00〉 + (cos θ1|0〉 + sin θ1|1〉) ⊗ |01〉

+ (cos θ2|0〉 + sin θ2|1〉) ⊗ |10〉 + (cos θ3|0〉 + sin θ3|1〉) ⊗ |11〉
]
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Fig. 1 A simple image and its
FRQI state

2.2 Arnold and Fibonacci image scrambling

The Arnold transform, or Arnold’s cat map, was set up during the research of ergodic
theory by V.I. Arnold [27]. Dyson et al. [28] quoted the transform as an image scram-
bling method in 1992. Since then, it has been widely used in image processing.

Assume I (x, y) is the original image, where (x, y) is the pixel coordinates, x, y =
0, 1, . . . , N − 1. N is the size of the image (that is, the image is generally considered
a square image). The two-dimensional Arnold scrambling is defined as follows:

(
xA

yA

)
=

(
1 1
1 2

) (
x
y

)
(modN )

i.e.,

xA = (x + y)modN

yA = (x + 2y)modN
(2)

(xA, yA) is the pixel coordinates in the Arnold transformed image. The inverse trans-
formation is:

(
x
y

)
=

(
1 1
1 2

)−1 (
xA

yA

)
(modN ) =

(
2 −1

−1 1

)(
xA

yA

)
(modN )

i.e.,

x = (2xA − yA)modN

y = (−xA + yA)modN
(3)

For example, a simple “image” has nine pixels. N = 3, x, y = 0, 1, 2. The Arnold
scrambling of this image is shown in Fig. 2.

Arnold transformation is not a “pure” two-dimensional affine transformation
because it has a “mod” operator. It can be seen as a process of cutting and splicing.

The two-dimensional Fibonacci scrambling is defined as follows:
(

xF

yF

)
=

(
1 1
1 0

)(
x
y

)
(modN )
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Fig. 2 A simple example for Arnold image scrambling

Table 1 The period of Arnold and Fibonacci transform

Size of image 4 8 16 32 64 128 256 512

Arnold period 3 6 12 24 48 96 192 384

Fibonacci period 6 12 24 48 96 192 384 768

i.e.,

xF = (x + y)modN

yF = x
(4)

(xF , yF ) is the pixel coordinates in the Fibonacci transformed image. The inverse
transformation is as follows:

(
x
y

)
=

(
1 1
1 0

)−1 (
xF

yF

)
(modN ) =

(
0 1
1 −1

) (
xF

yF

)
(modN )

i.e.,

x = yF

y = (xF − yF )modN
(5)

It is similar with Arnold image scrambling.
The two transformations all have period, i.e., when repeating Arnold/Fibonacci

transform to a certain iteration step, it will surely resume the image. In [28], Dyson
researched the period. Generally speaking, the explicit value of the period cannot be
calculated. Dyson gave the upper bounds and the lower bounds for the period, and
gave explicit values for particular cases as shown in Table 1. We can see that the period
is connected with image size N .

For real images, we can see the scrambling results and the period from Fig. 3.
For a more comprehensive survey of the state-of-the-art of this topic, readers can

referred to [27,28].
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3 The results and period of Arnold and Fibonacci image scrambling. The original image is 128 × 128
“Lena.” a–e Arnold transformation. f–j Fibonacci transformation. The subcaptions are the iteration times

2.3 Adder modulo N

From Eqs. (2) and (4), we can see that Arnold and Fibonacci image scrambling mainly
use additions modulo 2n operation. Hence, the quantum adder modulo N network is
fundamental for realizing these two scramblings in quantum computer. In, Vedral et
al. [2] have already given such network based on the plain adder.

2.3.1 Plain adder

The plain adder is a quantum network that can calculate the sum of two numbers which
are stored in two quantum registers |a〉 and |b〉.

The addition is probably the most basic operation, in the simplest form it can be
written as

|a, b, 0〉 → |a, b, a + b〉

Rewrite the result of the computation into the one of the input registers, which is
the usual way additions are performed in conventional irreversible hardware; i.e.,

|a, b〉 → |a, a + b〉 (6)

As one can reconstruct the input (a, b) out of the output (a, a + b), there is no
loss of information, and the calculation can be implemented reversibly. The operation
of the full addition network is illustrated in Fig. 4, where the basic carry and sum
operations for the plain addition network are shown in Fig. 5.

Note that, there was a thick black bar on the right- or left-hand side of basic carry and
sum networks. A network with a bar on the left side represents the reversed sequence
of elementary gates embedded in the same network with the bar on the right side.

In fact, operations such as addition, multiplication, and exponentiation cannot be
directly deduced from their classical Boolean counterparts because they are irre-
versible. For example, reading three at the output of the addition does not provide
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Fig. 4 Plain adder network

Fig. 5 Basic sum and carry operations

enough information to determine the input which could be (0, 3), (1, 2), (−1, 4), or
others. Quantum arithmetic must be built from reversible logical components. It has
been shown that reversible networks require some additional memory for storing inter-
mediate results [2].

If the action of the network is reversed with the input (a, b), the output will produce
(a, b − a) when b � a. When b < a, the output is (a, 2n − (a − b)).

2.3.2 Adder modulo N

The adder modulo N is a quantum network that can calculate the modulo sum of two
numbers.

A slight complication occurs when one attempts to build a network that effects

|a, b〉 → |a, (a + b)modN 〉 (7)

where 0 � a, b < N , because if we just omit the highest carry bn+1 from Fig. 4 to
gain adder modulo N as in classical computers, there will be a violation of unitarity
(a loss of information) since the input (a, b) cannot be reconstructed from the output
(a, (a + b)modN ). The approach used by Vedral is based on taking the output of the
plain adder network, and subtracting N , depending on whether the value a + b is
bigger or smaller than N . Figure 6 illustrates the various steps needed to implement
modular addition.

The plain adder and the adder modulo N are all unitary operators. Readers can find
more information of this topic from [2].
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Fig. 6 Adder modulo N

3 Quantum circuit architecture of Arnold and Fibonacci image scrambling

3.1 Arnold and Fibonacci image scrambling’s FRQI representation

In this paper, we use FRQI to represent quantum images. Because Arnold image
scrambling is the operation which focuses on manipulating the information about the
position of every pixel in the images, we only need to change the position information
|i〉 in Eq. (1). We define Arnold image scrambling as A, the original quantum image as
I, and the scrambled quantum image as IA. The operation A which on FRQI quantum
images can be defined as

IA(θ) = A
(

I (θ)
)

= 1

2n

22n−1∑

i=0

|ci 〉 ⊗ A(|i〉)

According to Eq. (2), we define A(|i〉) as

A(|i〉) = A(|y〉|x〉) = A(|y〉)A(|x〉)

where

|xA〉 = A(|x〉) = |x + y〉mod2n (8)

|yA〉 = A(|y〉) = |x + 2y〉mod2n (9)

Likewise, Fibonacci image scrambling F can be described as

IF (θ) = F(I (θ)) = 1

2n

22n−1∑

i=0

|ci 〉 ⊗ F(|i〉)

F(|i〉) = F(|y〉|x〉) = F(|y〉)F(|x〉)
|xF 〉 = F(|x〉) = |x + y〉mod2n (10)

|yF 〉 = F(|y〉) = |x〉 (11)
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Equations (8, 9) and (10, 11) give the quantum representations of Arnold and
Fibonacci image scrambling, respectively. In the following, the circuits we gave are
based on them.

3.2 Quantum circuit architecture of Arnold and Fibonacci image scrambling

3.2.1 The scrambling networks

Because the operators |xA〉, |yA〉, |xF 〉, and |yF 〉 are independent of each other as
shown in Eqs. (8–11), we can give several circuits to realize them, respectively.

1. The scrambling network that realize |xA〉 and |xF 〉. Eqs. (8) and (10) indicate
that |xA〉 is the same as |xF 〉. By contrasting Eqs. (8)/(10) with (7), we only need
to replace a, b, N in (7) with x, y, 2n , respectively, to construct |xA〉 and |xF 〉
networks.

|x, y〉 → |x, (x + y)mod2n〉 (12)

The adder modulo 2n network is shown in Fig. 7. The input is the position infor-
mation |x〉 and |y〉 of original images, and the output is the position information
|xA〉/|xF 〉 of Arnold/Fibonacci scrambled images.

2. The scrambling network that realize |yA〉. According to Eq. (8), because

(x + 2y)mod2n = (y + (y + x))mod2n,

we can divide the realization of |yA〉 into two steps.

|y, x〉 → |y, y + x〉 → |y, (y + (y + x))mod2n〉 (13)

The first step corresponds to the plain adder and the second one corresponds to
adder modulo 2n . We can cascade them to realize |yA〉 as shown in Fig. 8. The output
of the whole network, (y + (y + x))mod2n , which is the same as (x + 2y)mod2n ,
is the position information |yA〉 of Arnold scrambled images.

3. For |yF 〉,

|yF 〉 = |x〉 (14)

Fig. 7 |xA〉 and |xF 〉 network
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Fig. 8 |yA〉 network

It needs no circuit.

The reversibility of the two networks showed in Figs. 7 and 8 roots in the unitarity
of the plain adder and the adder modulo N proposed in [2].

If we reverse the action of the above networks (i.e., if we input a scrambled image
from the right), we will get the original image from the left. However, the reversed
networks also need the original coordinate |y〉 as their inputs. It is unrealistic. Appli-
cations require that the original image is regained only depending on the scrambled
image. Hence, the special inverse scrambling circuits are necessary.

3.2.2 The inverse circuits

From Eqs. (3) and (5), we can see that the inverse transformations use subtraction. It
can be realized by reversing the inputs and the outputs of adders as described in the
last paragraph of Sect. 2.3.1.

1. Inverse Arnold:
|x〉:

|xA, xA〉 → |xA, 2xA〉 → |yA, 2xA〉 → |yA, (2xA − yA)mod2n〉

The first step uses a plain adder to double xA; the second step replaces xA with yA;
and the third step uses an inverse adder modulo 2n to gain (2xA − yA)mod2n .
|y〉:

|xA, yA〉 → |xA, (yA − xA)mod2n〉

It is corresponding to an inverse adder modulo 2n .
2. Inverse Fibonacci:

|x〉:

|x〉 = |yF 〉

|y〉:

|yF , xF 〉 → |yF , (xF − yF )mod2n〉
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It is corresponding to an inverse adder modulo 2n .

Thus, the inverse circuits can be seen in Fig. 9.

3.2.3 A simple example

Let us consider the simple 4 × 4 image shown in Fig. 10a as an example. Here, n = 2.
According to the circuits, the truth table of the quantum circuits is shown in Table 2.
According to the truth table, the results of Arnold and Fibonacci image scrambling

results are shown in Fig. 10b and c, respectively.

4 Network complexity

The network complexity depends very much on what is considered to be an elementary
gate. In this section, we choose the Control-NOT to be our basic unit; then, the Toffoli
gate can be simulated by six Control-NOT gates [2].

The numbers of elementary gates in basic carry and sum operations are 13 and 2,
respectively. Consequently, the network complexity of the plain adder is 28n − 12
as it contains 2n − 1 carries, n sums, and one Control-NOT gate. It scales linearly
with the size of the circuit’s input n. Because the adder modulo N contains five plain
adders plus several Control-NOT gates and NOT gates, the network complexity of it,
approximately 140n, also is linear.

Fig. 9 The inverse circuits. a |(2xA − yA)mod2n〉. b |(yA − xA)mod2n〉. c |(xF − yF )mod2n〉
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Fig. 10 Arnold and Fibonacci image scrambling results on a quantum image sized 4 × 4. a The original
image. b The Arnold scrambled image. c The Fibonacci scrambled image

Table 2 The truth table

Symbol y1 y0 x1 x0 yA,1 yA,0 xA,1 xA,0 yF,1 yF,0 xF,1 xF,0

A 0 0 0 0 0 0 0 0 0 0 0 0

B 0 0 0 1 0 1 0 1 0 1 0 1

C 0 0 1 0 1 0 1 0 1 0 1 0

D 0 0 1 1 1 1 1 1 1 1 1 1

E 0 1 0 0 1 0 0 1 0 0 0 1

F 0 1 0 1 1 1 1 0 0 1 1 0

G 0 1 1 0 0 0 1 1 1 0 1 1

H 0 1 1 1 0 1 0 0 1 1 0 0

I 1 0 0 0 0 0 1 0 0 0 1 0

J 1 0 0 1 0 1 1 1 0 1 1 1

K 1 0 1 0 1 0 0 0 1 0 0 0

L 1 0 1 1 1 1 0 1 1 1 0 1

M 1 1 0 0 1 0 1 1 0 0 1 1

N 1 1 0 1 1 1 0 0 0 1 0 0

O 1 1 1 0 0 0 0 1 1 0 0 1

P 1 1 1 1 0 1 1 0 1 1 1 0

Therefore, the complexities of the scrambling networks and the inverse circuits are
all linear because they contain only one or two plain adder or adder modulo N .

Although the slope of 140n is high, its value will not exceed 2,000 in general
because the size of an image is less than 10,000×10,000 according to the empirical
value in classical computer. That is to say, n < 14 because 214 = 16, 384.

5 Conclusion

In this paper, Arnold and Fibonacci image scrambling circuits based on FRQI are
proposed. Arnold and Fibonacci image scrambling are fundamental image transfor-
mations as useful as discrete Fourier transform, discrete cosine transform, discrete
wavelet transform, and so on. The realization of them in quantum computers can pro-
mote QIP. The quantum circuits take advantage of the plain adder and adder modulo
N to scramble the quantum images. The complexity of the networks is linear.
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The future work includes the following:

1. Give the Hilbert image scrambling circuit because Hilbert transformation is a more
commonly used image scrambling algorithm. It cannot be simply boiled down to
the addition or other simple operations.

2. Give the affine transformation quantum circuit. Affine transformation is a collection
of transformations. Arnold and Fibonacci image scrambling belong to it. Affine
transformation can be defined as follows:

(
x ′
y′

)
=

(
a b
c d

) (
x
y

)
(modN )

where ad = bc ± 1, a, b, c, d ∈ Z , Z is the integer set.
3. Apply these circuits to quantum watermarking.
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