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Abstract In this paper, the dynamics evolution of multipartite entanglement for each
qubit interacting with a local decoherence channel, such as phase damping, phase
flip, bit flip and bit-phase flip channel, is investigated. It is shown that the initial
concurrence monotonously decreases much faster with the number of qubit increases
and there exists entanglement sudden death (ESD) only for the bit flip channel and
bit-phase flip channels. Meanwhile, the time of ESD decreases with the increases of
the number of qubit in the multipartite system.
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1 Introduction

It is well known that quantum entanglement, which is a strong nonclassical corre-
lation between the bipartite quantum system, has been considered as a fundamental
physical resource playing an important role in the practical application of quantum
information processing, such as quantum dense coding, teleportation and so on [1–5].
Furthermore, in the past decades, the investigation into quantum entanglement has
been promoted; however, the analytical results are actually known only for a few class
of mixed bipartite state [6–10], so it is difficult to explicitly quantify the entanglement
for an arbitrary two-qubit mixed state. What is more, this problem becomes much more
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knotty for the multipartite system, which has been thought to play a crucial function
in many important physics phenomena including quantum phase transitions [11,12]
and quantum metrology [13].

As far as we know, some measures adopted in the previous studies of the mul-
tipartite quantum system are not always capture accurately the entanglement evolu-
tion [14–17], which is mainly due to the restricted forms of matrices and the lack of
an analytical measure of multipartite entanglement. In order to settle this question,
Rafsanjani etc. [18] have proposed a universal concurrence formula of an N -qubit
X matrix where only nonzero elements are diagonal or antidiagonal when written in
an orthonormal product basis; furthermore, they used the formula to investigate the
dynamics of N qubits in generalized GHZ state. On the other hand, quantum system is
inevitably subjected to the effect of its environment, in the case of some decoherence
channels, the entanglement of the initial maximally entangled state will be weakened
[19–28].

Due to that the X-state always remains X state under the most common noise influ-
ences [29,30], and it is also conducive to quantify the entanglement of them [31–33].
In this paper, we mainly research the multipartite system under some conditions (i.e.,
phase damping, phase flip, bit flip and bit-phase flip [34]) in detail, where each qubit
coupled with its own decoherence channel, respectively. Compared with the previous
studies [15,18], the most prominent superiority of our paper is that the concurrence just
monotonously decreases and does not occur sudden death for the cases of k ≥ 0, when
the system is coupled with the phase damping and phase flip channel. While Ref. [18]
has shown that only one type (k > 0) of GHZ state loses its entanglement in finite
time and entanglement dies out asymptotically for the rest (k = 0) when the system is
interacted with the amplitude damping channel. In addition, we also find out that the
initial entanglement monotonously decreases in company with an ESD for an arbitrary
k ≥ 0 under the bit flip and bit-phase flip channel. It shows that the multi-particle con-
currence under the phase damping and phase flip channel is more robust than that in the
amplitude damping, bit flip and bit-phase flip channel. Meanwhile, the result further
confirms that the time of ESD decreases with the number of qubit in the multipartite
system.

This paper is organized as follows. In Sect. 2, we briefly review multipartite con-
currence of N -qubit X matrices. In Sect. 3, we devote to investigate entanglement
dynamic under the different decoherence. Finally, the discussions and conclusions are
given in Sect. 4.

2 Multipartite concurrence of X matrices

The entanglement of a mixed state coupled with the noisy environments can be quan-
tified conveniently by the concurrence, which is a monotonic function and invariant
under the local unitary transformations for multipartite entanglement. Furthermore,
if we choose the orthonormal basis for the matrix, and then the density matrix for an
arbitrary X state can be written in the following form:
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Multipartite concurrence for X states under decoherence 1047

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0 0 0 0 0 0 c1
0 a2 0 0 0 0 0 0 c2 0
0 0 . 0 0 0 0 . 0 0
0 0 0 . 0 0 . 0 0 0
0 0 0 0 an cn 0 0 0 0
0 0 0 0 c∗

n bn 0 0 0 0
0 0 0 . 0 0 . 0 0 0
0 0 . 0 0 0 0 . 0 0
0 c∗

2 0 0 0 0 0 0 b2 0
c∗

1 0 0 0 0 0 0 0 0 b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

where n = 2N−1 and requiring
∑n

i (ai + bi ) = 1 to ensure that the density matrix is
positive and normalized. Then, the multipartite concurrence of N -qubit X matrix has
been defined in Ref. [18], which is given by:

C = 2 max {0, |ci | − wi } , i = 0, 1, . . . , n (2)

with wi = ∑n
j �=i

√
a j b j . This formula quantitatively provides an opening measure to

the concurrence of many-particle mixing system under the noisy scenarios as long as
the initial density matrix is an X matrix. In the following, we will utilize this formula
to study the dynamics of multiqubit system shared by GHZ states when each qubit is
subjected to a local decoherence channel, respectively.

3 Dynamics of entanglement in decoherence

Now, we discuss the concurrence dynamics of N -qubit GHZ state.

∣∣∣ϕ(k)
N , α

〉
= cos α

∣∣∣0⊗N−k1⊗k
〉
+ sin α

∣∣∣1⊗N−k0⊗k
〉

(3)

with N − k qubits either are primarily ground and the rest are in their excited state or
k qubits are initially ground and the rest are in their excited state. In order to facilitate
to study the variation in entanglement, we will present a detailed analysis only for the
case of k = 0 and N = 3 in the following study, and the initially state is shown as:

∣∣∣ϕ0
3 , α

〉
= cos α |000〉 + sin α |111〉 (4)

and the density matrix is given as follows:

ρ(0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2 α 0 0 0 0 0 0 cos α sin α

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

cos α sin α 0 0 0 0 0 0 sin2 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)
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Subsequently, we put our attention on the multipartite system coupled with their
noisy environments, which are the most usual channels for qubits, for instance, phase
damping channel and various flip channels.

3.1 Phase damping channel

Now, we utilize Eq. (2) to study the dynamics of the N -qubit GHZ state when each qubit
is subjected to a local phase damping channel, which describes a quantum noise process
with loss of quantum information without losing energy. The dissipative interaction
between the qubit and its environment can be given by [2]

U (t) |0〉S |0〉E → |0〉S |0〉E

U (t) |1〉S |0〉E → √
1 − p |1〉S |0〉E + √

p |1〉S |1〉E (6)

where U (t) is the local propagator, and the relationship between the parameter p and
time t is given by p = 1 − e−γ t , where γ is the decay rate.

Then we can easily obtain the evolution density matrix according to the Eqs. (5)
and (6); here, we are interested in the entanglement dynamics of the bipartite subsys-
tems (especially the system–system dynamics), so the corresponding bipartite reduced
matrixes should been considered, which can be obtained by taking the partial trace of
over the degrees of freedom of the environment:

ρ (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2 α 0 0 0 0 0 0 cos α sin α (1 − p)
3
2

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

cos α sin α (1 − p)
3
2 0 0 0 0 0 0 sin2 α

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

According to the formula given by Eq. (2), the multipartite concurrence of the initial
state

∣∣ϕ0
3 , α

〉
is given as:

C0
3 = 2 max {0, |z1| − w1} = max{0, Q0

3} = max
{

0, sin 2α (1 − p)
3
2

}

Simultaneously, we also calculate the cases of N = 2, 4, 5 and k > 0 in detail and
the results are shown in Table 1:

Then, according to above results as shown in Table 1, we can conjecture the generic
formula for multiqubit concurrence Ck

N , which can be organized into the following
form:

Ck
N = |sin 2α| (1 − p)

N
2
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Multipartite concurrence for X states under decoherence 1049

Table 1 Qk
N for various N with

arbitrary integer k under phase
damping channel

N Qk
N

2 Qk
2 = sin 2α (1 − p)

3 Qk
3 = sin 2α (1 − p)

3
2

4 Qk
4 = sin 2α (1 − p)2

5 Qk
5 = sin 2α (1 − p)

5
2

Fig. 1 The Ck
N versus p and N for the initial state

∣∣∣ϕk
N , π

4

〉
under phase damping channel

In order to intuitively study the influence of noisy environment and the number of
particles on the concurrence numerically, we choose the maximally entangled states
α = π/4 and the variation of concurrence versus p and N has been displayed in Fig. 1.

As shown in Fig. 1, we can see that either the noisy environment or the number of
particles has a great impact on the system entanglement, that is to say, the concurrence
decreases monotonically as p and N increases. In addition, we can also find that the
concurrence attenuated more quickly when N > 2.

Then, we study the effects of parameters α and noisy environment p on the three-
qubit system as follows:

As shown in Fig. 2, we can clearly see that the concurrence monotonically increases
as α increases in company with reaching to the maximum value at the critical point
α = π/4. Obviously, the concurrence decreases as p increases on the whole.

3.2 Various flip channels

Next, we discuss the evolution of entanglement dynamics when each qubit is sub-
jected to a flip channel, the evolved state of such a quantum system under the local
environments may be described as a completely positive trace preserving map, which,
written in the operator-sum representation, is given by [28]:

ρ (t) =
∑
i, j,k

�
(a)
i �

(b)
j �

(c)
k ρ (0) �

(c)τ

k �
(b)τ

j �
(a)τ

i (7)
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Fig. 2 The Ck
3 versus α and p for the initial state

∣∣∣ϕk
3 , α

〉
under phase damping channel

where �
(K )
i (K = a, b, c) are the Kraus operators that describe the noise channels A,

B and C.
In quantum computation, the set of Kraus operators for phase flip, bit flip and

bit-phase flip channels are given by:

M0 = √
1 − p/2I Mi

1 = √
p/2σi (8)

with i = z is the phase flip, i = x gives the bit flip and i = y the bit-phase flip. These
sets are easily interpreted as corresponding probability 1 − p/2 of remaining in the
same state, and a probability p/2 of having an error.

3.2.1 Phase flip channel

There is a quantum noise process with loss of quantum information without loss of
energy, and the Kraus operators are the following:

M0 = √
1 − p/2I M1 = √

p/2σz (9)

The phase flip channel has the same effects on the quantum system as the phase
damping channel [2]; hence, we obtain the same results as phase damping channel.
Simultaneously, the results showed that there is no phenomenon of entanglement
sudden death apart from the critical condition p = 1.

3.2.2 Bit flip channel

From Ref. [2], we obtain the Kraus operators for the bit flip channel, which can be
expressed as follows:

M0 = √
1 − p/2I M1 = √

p/2σx (10)
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Then according to Eq. (7), it is convenient to obtain the reduced-density matrix of
three qubits system:

ρ (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0 0 0 0 z1
0 a2 0 0 0 0 z2 0
0 0 a2 0 0 z2 0 0
0 0 0 b2 z2 0 0 0
0 0 0 z2 a2 0 0 0
0 0 z2 0 0 b2 0 0
0 z2 0 0 0 0 b2 0
z1 0 0 0 0 0 0 b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a1 =
(

1 − p

2

)3
cos2 α +

( p

2

)3
sin2 α b1 =

( p

2

)3
cos2 α +

(
1 − p

2

)3
sin2 α

a2 =
( p

2

) (
1 − p

2

)2
cos2 α +

( p

2

)2 (
1 − p

2

)
sin2 α

b2 =
( p

2

)2 (
1 − p

2

)
cos2 α +

( p

2

) (
1 − p

2

)2
sin2 α

z1 =
[(

1 − p

2

)3 +
( p

2

)3
]

cos α sin α

z2 =
[( p

2

) (
1 − p

2

)2 +
( p

2

)2 (
1 − p

2

)]
cos α sin α

If we consider the initial maximally entangle state
∣∣ϕ0

3 , π/4
〉

and according to the
formula given by Eq. (2), then the system concurrence can be written as

Q0
3 =

( p

2

)3 +
(

1 − p

2

)3 − 3
( p

2

) (
1 − p

2

)

Moreover, we calculate the case of N = 2, 4, 5 and k > 0 in detail, and then the
results are shown as follows:

From the Table 2, we can conjecture the multiqubit concurrence and organize into
the following form:

Ck
N = max

{
0,

( p

2

)N +
(

1 − p

2

)N − N
( p

2

) (
1 − p

2

)}

In order to reflect the variation in concurrence numerically, we display it in Fig. 3.

Table 2 Qk
N for various N

values with arbitrary integer k
under bit flip channel

Q0
N k ≥ 0

N = 2 Qk
2 = ( p

2
)2 + (

1 − p
2
)2 − 2

( p
2
) (

1 − p
2
)

N = 3 Qk
3 = ( p

2
)3 + (

1 − p
2
)3 − 3

( p
2
) (

1 − p
2
)

N = 4 Qk
4 = ( p

2
)4 + (

1 − p
2
)4 − 4

( p
2
) (

1 − p
2
)

N = 5 Qk
5 = ( p

2
)5 + (

1 − p
2
)5 − 5

( p
2
) (

1 − p
2
)
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Fig. 3 The Ck
N versus P and N for the initial state

∣∣∣ϕk
N , π

4

〉
under bit flip channel

As shown in Fig. 3, we plot the multiqubit concurrence as a function of the noisy
environment and the number of particles under bit flip channel. One can clearly find
out that the evolution of the entanglement is decreasing monotonically. Moreover, we
can also find the concurrence attenuated more rapidly with a sudden death (ESD) at
the critical point N > 2.

3.2.3 Bit-phase flip channel

The Kraus operators are the following:

M0 = √
1 − p/2I M1 = √

p/2σy (11)

When the system is coupled with this noise channel, we can obtain the density
matrix:

ρ (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 0 0 0 0 0 0 z1
0 a2 0 0 0 0 z2 0
0 0 a2 0 0 z2 0 0
0 0 0 b2 z2 0 0 0
0 0 0 z2 a2 0 0 0
0 0 z2 0 0 b2 0 0
0 z2 0 0 0 0 b2 0
z1 0 0 0 0 0 0 b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

a1 =
(

1 − p

2

)3
cos2 α +

( p

2

)3
sin2 α b1 =

( p

2

)3
cos2 α +

(
1 − p

2

)3
sin2 α

a2 =
( p

2

) (
1 − p

2

)2
cos2 α +

( p

2

)2 (
1 − p

2

)
sin2 α
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b2 =
( p

2

)2 (
1 − p

2

)
cos2 α +

( p

2

) (
1 − p

2

)2
sin2 α

z1 =
[(

1 − p

2

)3 −
( p

2

)3
]

cos α sin α

z2 =
[( p

2

)2 (
1 − p

2

)
−

( p

2

) (
1 − p

2

)2
]

cos α sin α

If we consider the maximally entangle state and according to Eq. (2), then the
multipartite concurrence of the initial state can be written as:

Q0
3 =

( p

2

)3 −
(

1 − p

2

)3 − 3
( p

2

) (
1 − p

2

)

In addition, we can calculate the case of N = 2, 4, 5 and k > 0 in detail and obtain
the following results:

Now, according to Table 3, we obtain the multiqubit concurrenceCk
N

Ck
N = max

{
0,

( p

2

)N + (−1)N
(

1 − p

2

)N − N
( p

2

) (
1 − p

2

)}

So for facilitating to compare the influence of different decoherence environment
on the concurrence numerically, we consider the maximally entangled state and the
variation of concurrence versus p for various Nas shown in Fig. 4.

From Fig. 4, we can see that the behaviors of concurrence when the system is
coupled with the different decoherence channels are analogous. It shows that the
initial entanglement monotonous decreases faster (at smaller p) as the number of
qubits increases. While the distinct difference between picture a and pictures b and c
is that the entanglement under the phase damping or phase flip channel is always exists,
and the system undergoes an ESD at the critical point only for the bit flip channel and
bit-phase flip channels.

From the above results Ck
N , we can see that the factor of Qk

N determines the decay
time of entanglement and the concurrence will undergo entanglement sudden death
from Fig. 4. In order to study the relationship between the ESD time and number of
particles, we adopt the numerical simulations and obtain the following approximate
results as shown in Fig. 5. It confirms that the time of the entanglement sudden death
decreases with the increases of the number N , and the result can be applied to both
the bit flip channel and bit-phase flip channels.

Table 3 Qk
N for various N

values with arbitrary integer k
under bit-phase flip channel

Q0
N k ≥ 0

N = 2 Q0
2 = (

1 − p
2
)2 + ( p

2
)2 − 2

( p
2
) (

1 − p
2
)

N = 3 Q0
3 = (

1 − p
2
)3 − ( p

2
)3 − 3

( p
2
) (

1 − p
2
)

N = 4 Q0
4 = (

1 − p
2
)4 + ( p

2
)4 − 4

( p
2
) (

1 − p
2
)

N = 5 Q0
5 = (

1 − p
2
)5 − ( p

2
)5 − 5

( p
2
) (

1 − p
2
)
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p
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c 

Fig. 4 The Ck
N versus P for various qubits in the different decoherence channels for the initial state

α = π/4, a Phase damping (flip) channel, b Bit flip channel, c Bit-Phase flip channel
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0.7

0.8

0.9

1

N

p

Fig. 5 The time of ESD versus N for bit flip channel and bit flip phase channel
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4 Discussion and conclusion

In this paper, we investigate the dynamics of multiparticle entanglement for the remote
qubits in generalized N -party GHZ state when each qubit interacts with a local deco-
herence channel. After a detailed calculation, we summarize some analogous algebraic
formulas for the multiparticle concurrence under the different channels, such as phase
damping, phase flip, bit flip and bit-phase flip channel. The results show that the
concurrence just monotonously decreases and does not occur sudden death when the
system is coupled with the phase damping and phase flip channel for the cases of k ≥ 0.
In addition, we also find out that the initial entanglement monotonously decreases in
company with an ESD for an arbitrary k ≥ 0 under the bit flip and bit-phase flip
channel. It is shown that the multi-particle entanglement under the phase damping
and phase flip channel is more robust than that in the amplitude damping, bit flip and
bit-phase flip channel. Meanwhile, we confirm the conclusion shown in the previous
studies about the time of ESD, that is, the time decreases with the number of qubit in
the multipartite system.

Acknowledgments This work was supported by the National Science Foundation of China under Grants
Nos. 11074002 and 61275119, by the Doctoral Foundation of the Ministry of Education of China under
Grant No. 20103401110003, by the Natural Science Research Project of Education Department of Anhui
Province of China (Grant No. KJ2013A205) and also by the Personal Development Foundation of Anhui
Province (2008Z018).

References

1. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature (London) 404, 247
(2000)

2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Communication. Cambridge Uni-
versity Press, Cambridge (2000)

3. Patrick, H., Debbie, L.: Superdense coding of quantum states. Phys. Rev. Lett. 92, 187901 (2004)
4. Hu, T.T., Xue, K., Sun, C.F.: Quantum teleportation and dense coding via topological basis. Quantum

Inf. Process. 12, 3369–3381 (2013)
5. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys.

81, 865 (2009)
6. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)
7. Jafarpour, M., Sabour, A.: A useful strong lower bound on two-qubit concurrence. Quantum Inf.

Process. 11, 1389–1402 (2012)
8. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001)
9. Zhao, M.J., Zhang, T.G., Jost, X.Q.L., Fei, S.M.: Entanglement detection and distillation for arbitrary

bipartite systems. Quantum Inf. Process. 12, 2861–2870 (2013)
10. Lohmayer, R., Osterloh, A., Siewert, J., Uhlmann, A.: Entangled three-qubit states without concurrence

and three-tangle. Phys. Rev. Lett. 97, 260502 (2006)
11. Song, X.K., Wu, T., Ye, L.: The monogamy relation and quantum phase transition in one-dimensional

anisotropic XXZ model. Quantum Inf. Process. 12, 3305–3317 (2013)
12. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys.

80, 517 (2008)
13. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quan-

tum limit. Science 306, 1330 (2004)
14. Christoph, S., Marcus, H., Andreas, G., Beatrix, C.H.: Examining the dimensionality of genuine mul-

tipartite entanglement. Quantum Inf. Process. 12, 269–278 (2013)
15. Aolita, L., Chaves, R., Cavalcanti, D., Acín, A., Davidovich, L.: Scaling laws for the decay of multiqubit

entanglement. Phys. Rev. Lett. 100, 080501 (2008)

123



1056 J. Shi et al.

16. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Decoherence and multipartite entanglement. Phys. Rev.
Lett. 93, 230501 (2004)

17. Simon, C., Kempe, J.: Robustness of multiparty entanglement. Phys. Rev. A 65, 052327 (2002)
18. Rafsanjani Hashemi, S.M., Huber, M., Broadbent, C.J., Eberly, J.H.: Genuinely multipartite concur-

rence of N-qubit X matrices. Phys. Rev. A 86, 062303 (2012)
19. Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoher-

ence. Phys. Rev. A 80, 044102 (2009)
20. Groisman, B., Popescu, S., Winter, A.: Quantum, classical, and total amount of correlations in a

quantum state. Phys. Rev. A 72, 032317 (2005)
21. Sen, A., Sarkar, D., Bhar, A.: Decoherence dynamics of measurement-induced nonlocality and com-

parison with geometric discord for two qubit systems. Quantum Inf. Process. 12, 3007–3022 (2013)
22. Vedral, V.: Classical correlations and entanglement in quantum measurements. Phys. Rev. Lett. 90,

050401 (2003)
23. Ramzan, M.: Decoherence dynamics of geometric measure of quantum discord and measurement

induced nonlocality for noninertial observers at finite temperature. Quantum Inf. Process. 12, 2721–
2738 (2013)

24. Yang, D., Horodecki, M., Wang, Z.D.: An additive and operational entanglement measure: conditional
entanglement of mutual information. Phys. Rev. Lett. 101, 140501 (2008)

25. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev.
Lett. 88, 017901 (2001)

26. Kaszlikowski, D., Sen, A., Vedral, V., Winter, A.: Quantum correlation without classical correlations.
Phys. Rev. Lett. 101, 070502 (2008)

27. Huang, P., Zhu, J., Qi, X.X.: Different dynamics of classical and quantum correlations under decoher-
ence. Quantum Inf. Process. 11, 1845–1865 (2012)

28. Maziero, J., Céleri, L.C., Serra, R.M., Vedral, V.: Classical and quantum correlations under decoher-
ence. Phys. Rev. A 80, 044102 (2009)

29. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quan-
tum Inf. Comput. 7, 459 (2007)

30. Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403 (2006)
31. Huang, Y.C.: Quantum discord for two-qubit X states: analytical formula with very small worst-case

error. Phys. Rev. A 88, 014302 (2013)
32. Chen, Q., Zhang, C.J., Yu, S.X., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys.

Rev. A 84, 042313 (2013)
33. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105

(2010)
34. Salles, A., Melo, F.D., Almeida, M.P., Hor-Meyll, M., Walborn, S.P., Ribeiro, P.S., Davidovich, L.:

Experimental investigation of the dynamics of entanglement: sudden death, complementarity, and
continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

123


	Multipartite concurrence for X states under decoherence
	Abstract
	1 Introduction
	2 Multipartite concurrence of X matrices
	3 Dynamics of entanglement in decoherence
	3.1 Phase damping channel
	3.2 Various flip channels
	3.2.1 Phase flip channel
	3.2.2 Bit flip channel
	3.2.3 Bit-phase flip channel


	4 Discussion and conclusion
	Acknowledgments
	References


