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Abstract In this paper, we investigate the quantum phase transition (QTP) and
quantum correlation in the one-dimensional mixed-spin (1/2, 1) XXZ model with
Dzyaloshinskii–Moriya (DM) interaction under an inhomogeneous magnetic field.
By controlling the strength of DM interaction and inhomogeneous magnetic field,
we can change the phase transition points. The results show that the DM interaction
plays an important role in improving the quantum correlation, which can be gained at
higher temperature by choosing the proper strength of DM interaction. Moreover, the
homogeneous magnetic field cannot change the critical temperature Tc alone, while
the inhomogeneous magnetic parameter b can suppress the effects of temperature on
negativity. In addition, we make an explicit comparison between the negativity and
measurement-induced disturbance (MID) for this model and discover that MID is more
robust than thermal entanglement against temperature T and may reveal more prop-
erties about quantum correlations of the system than entanglement. Furthermore, in
some circumstances, the MID can detect the critical points of quantum phase transition
while the negativity cannot.

Keywords Quantum phase transition · Negativity · Measurement-induced
disturbance · Quantum correlation

1 Introduction

The research of quantum correlation or, more precisely, quantum entanglement can
date back to a paper [1] in 1935, but we do not get the accurate definition of this
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at that time. Nowadays, quantum entanglement, which is one of the most significant
concepts, has attracted much attention in quantum information processing because
of its importance in developing the idea of quantum computers and other quantum
information devices [2–8], such as quantum cryptograph, quantum key distribution,
and quantum teleportation [2,9]. However, in recent years, investigations show that
entanglement is not a unique measure of quantum correlations because there exist
other types of nonclassical correlations which are not captured by entanglement, and
it can offer support for lots of quantum tasks. For instance, some separate states are
also useful in improving performance in some tasks of quantum computer [9]. Then the
quantum discord [10], which is used as a tool to measure nonclassical correlations of
quantum states, appeared. Recently, numerous works have been devoted on the study
of quantum discord [11–19]. However, it is usually troublesome to calculate quantum
discord analytically because of the complicated optimization involved. In view of these
facts, Luo introduced a new method to classify and quantify statistical correlations in
bipartite states. They use measurement-induced disturbance (MID), which does not
involves optimization procedure, to characterize correlations as classical or quantum
[20]. In this paper, we will investigate the quantum correlations base on MID in our
model.

As we know, the quantum entanglement of condensed matter systems is an impor-
tant emerging field recently. People have made several investigations of quantum
entanglement on thermal equilibrium states of spin chains subject to an external mag-
netic field at finite temperature [21–25]. In addition, the quantum correlations of two
qubits with Dzyaloshinskii–Moriya (DM) interaction, which can influence the phase
transition, also have attracted much attention [26–30]. In this paper, in comparison with
the thermal quantum discord of two qubits [31–34], we not only expand the study on
thermal quantum correlation to mixed-spin (1/2, 1) XXZ model, but also consider the
effects of DM interaction and external magnetic field on thermal quantum correlation
measured by MID.

The paper is organized as follows. In Sect. 2, we give the model and obtain the
expression of the negativity and measurement-induced disturbance (MID) through
mathematical calculations and analysis. Then we will investigate quantum phase tran-
sitions (QPT) of the ground states in Sect. 3. In Sect. 4, the effects of DM interaction
and external magnetic field on N and MID are given out. Moreover, we will compare
the negativity and MID in detail to obtain some significative conclusions. Finally, we
will summarize in Sect. 5.

2 One-dimensional two-mixed-spin XXZ model with DM interaction

The Hamiltonian of one-dimensional mixed-spin (1/2, 1) XXZ model with DM
interaction in the z direction under an inhomogeneous magnetic field can be
written as

HXXZ = J
N∑

n=1

[
�sn �Sn+1 + �Sn+1�sn+2 + (γ − 1)(sz

n Sz
n+1 + Sz

n+1sz
n+2)

]
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+ D
N∑

n=1

(
sx

n Sy
n+1 − sy

n Sx
n+1 + Sx

n+1sy
n+2 − Sy

n+1sx
n+2

)

+ B
N∑

n=1

[
(B − b)sz

2n−1 + (B + b)Sz
2n

]
(1)

where J is the exchange constant and J > 0 corresponds with the antiferromagnetic
case as well as J < 0 is ferromagnetic case; γ is the anisotropy parameter, D is the
strength of DM interaction in the direction of z; (B + b) and (B − b) are external
magnetic field in z direction; sα

1 and Sα
2 (α = x, y, z) are the spin operators; b controls

the degree of inhomogeneity of magnetic field.
In this paper, for simplicity, we take the two-qubit case as an example to investigate

the given model. So the Hamiltonian in Eq. (1) can be simplified to

HXXZ = J
[(

sx
1 Sx

2 + sy
1 Sy

2 + γ sz
1 Sz

2

) + D
(
sx

1 Sy
2 − sy

1 Sx
2

)]+(B −b)sz
1 +(B +b)Sz

2
(2)

For this model, the spin operators’ components take the form

sx
1 = 1

2

(
0 1
1 0

)
, sy

1 = 1

2

(
0 −i
i 0

)
, sz

1 = 1

2

(
1 0
0 −1

)
,

Sx
2 = 1√

2

⎛

⎝
0 1 0
1 0 1
0 1 0

⎞

⎠ , Sy
2 = 1√

2

⎛

⎝
0 −i 0
i 0 −i
0 i 0

⎞

⎠ , Sz
2 =

⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ . (3)

For a system in equilibrium at temperature T, the state can be represented by the
density operator,

ρ(T ) = 1

Z
exp

(
− H

kB T

)
(4)

where Z = T r [exp(−H/kB T )] is the partition function, T is the thermodynamic tem-
perature, and kB is the Boltzmann constant which is considered as unity in the follow
for simplicity. In order to obtain the expression of negativity and measurement-induced
disturbance, we have to calculate the eigenvalues and the corresponding eigenstates
of Hamiltonian equation (2), which are given by

E0 = 1

2
(−b − 3B + Jγ ), |�0〉 =

∣∣∣∣
1

2
, 1

〉
;

E1 = 1

2
(b + 3B + Jγ ), |�1〉 =

∣∣∣∣−
1

2
,−1

〉
;

E2 = 1

4
(2b + 2B − Jγ − v), |�2〉 = 1√

a1a∗
1 + 1

(
a1

∣∣∣∣−
1

2
, 0

〉
+

∣∣∣∣
1

2
,−1

〉)
;

E3 = 1

4
(2b + 2B − Jγ + v), |�3〉 = 1√

a2a∗
2 + 1

(
a2

∣∣∣∣−
1

2
, 0

〉
+

∣∣∣∣
1

2
,−1

〉)
;
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E4 = 1

4
(−2b − 2B − Jγ − w), |�4〉 = 1√

a3a∗
3 + 1

(
a3

∣∣∣∣−
1

2
, 1

〉
+

∣∣∣∣
1

2
, 0

〉)
;

E5 = 1

4
(−2b − 2B − Jγ + w), |�5〉 = 1√

a4a∗
4 + 1

(
a4

∣∣∣∣−
1

2
, 1

〉
+

∣∣∣∣
1

2
, 0

〉)
.

(5)

where v =√
16b2+8J 2+8D2 J 2−8bJγ + J 2γ 2, w =√

16b2+8J 2+8D2 J 2+8bJγ + J 2γ 2,
a1 = −4b+Jγ−v

2
√

2J (D+i)
i , a2 = −4b+Jγ+v

2
√

2J (D+i)
i, a3 = − 4b+Jγ+w

2
√

2J (D+i)
i, a4 = − 4b+Jγ−w

2
√

2J (D+i)
i .

In the basis {| − 1/2,−1〉, | − 1/2, 0〉, | − 1/2, 1〉, |1/2,−1〉, |1/2, 0〉, |1/2, 1〉},
we can obtain the density operator of the system as follows

ρ(T ) = 1

Z

⎛

⎜⎜⎜⎜⎜⎜⎝

ρ11 0 0 0 0 0
0 ρ22 0 ρ24 0 0
0 0 ρ33 0 ρ35 0
0 ρ42 0 ρ44 0 0
0 0 ρ53 0 ρ55 0
0 0 0 0 0 ρ66

⎞

⎟⎟⎟⎟⎟⎟⎠
, (6)

here, ρ11 = δ1, ρ22 = a1a∗
1δ2

a1a∗
1+1 + a2a∗

2δ3

a2a∗
2+1 , ρ24 = a1δ2

a1a∗
1+1 + a2δ3

a2a∗
2+1 , ρ33 = a3a∗

3δ4

a3a∗
3+1 +

a4a∗
4δ5

a4a∗
4+1 , ρ35 = a3δ4

a3a∗
3+1 + a4δ5

a4a∗
4+1 , ρ44 = δ2

a1a∗
1+1 + δ3

a2a∗
2+1 , ρ55 = δ4

a3a∗
3+1 +

δ5
a4a∗

4+1 , ρ66 = δ0, ρ42 = ρ∗
24, ρ53 = ρ∗

35, δl = exp(−El/T )(l = 0, 1, 2, 3, 4, 5)

and the partition function Z = ∑5
j=0 δ j .

It is proven that the negativity, which is based on the partial transpose method
[35], is a useful entanglement measure introduced by Vidal and Werner [36], which
can be computed effectively for a bipartite system of any dimension. We will use the
convention of Ref. [37], which is twice the value of the original definition

N (ρ) =
∑

i

|μi |, (7)

where μi are the negative eigenvalues of the partial transpose ρT1(ρT2) of the total
state ρ respect to the first (second) system, and the ρT1 can be expressed as

ρT1 = 1

Z

⎛

⎜⎜⎜⎜⎜⎜⎝

ρ11 0 0 0 ρ42 0
0 ρ22 0 0 0 ρ53

0 0 ρ33 0 0 0
0 0 0 ρ44 0 0
ρ24 0 0 0 ρ55 0
0 ρ35 0 0 0 ρ66

⎞

⎟⎟⎟⎟⎟⎟⎠
. (8)

Applying these formulas to our model, we can obtain the negativity as follows
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N = 1

2Z

{
max

{
0,

√
ρ2

22 + 4ρ24ρ42 − 2ρ22ρ44 + ρ2
44 − ρ22 − ρ44

}
.

+ max
{

0,

√
ρ2

33 + 4ρ35ρ53 − 2ρ33ρ55 + ρ2
55 − ρ33 − ρ55

}}
(9)

In addition to this, we will investigate the quantum correlation of this model via
measurement-induced disturbance in this paper. For a bipartite state ρ, we can
apply local measurement {�k} to it, here �k = �a

i ⊗ �b
j and �a

i ,�b
j are com-

plete projective measurements composed by one-dimensional orthogonal projec-
tions for parties a and b. After the measurement, we get a classical state �(ρ) =∑

i, j (�a
i ⊗ �b

j )ρ(�a
i ⊗ �b

j ). If the spectral resolutions of the reduced states ρa =
∑

i pa
i �a

i and ρb = ∑
j pb

j �
b
j induce the measurement �, the measurement leaves

the marginal information invariant and is in a certain sense the least disturbing. So
�(ρ) is closest to the original state ρ since this kind of measurement can leave the
reduced states invariant. One can use any reasonable distance between ρ and �(ρ) to
measure the quantum correlation in ρ. According to Luo’s method [20], the quantum
correlation can be quantified by the measurement-induced disturbance (MID)

Q(ρ) = I (ρ) − I [�(ρ)], (10)

where I (ρ) = S(ρa) + S(ρb) − S(ρ) is quantum mutual information and S(ρ) =
−trρ log ρ denotes the von Neumann entropy.

Based on the definition of MID, the quantum correlation of our model can be
expressed as

Q(ρ) = −S(ρ) + S[�(ρ)]
= λ1log2λ1 + λ2log2λ2 + λ3log2λ3 + λ4log2λ4

−ρ22

Z
log2

ρ22

Z
− ρ33

Z
log2

ρ33

Z
− ρ44

Z
log2

ρ44

Z
− ρ55

Z
log2

ρ55

Z
(11)

with λ1,2 = ρ22+ρ44+
√

ρ2
22+4ρ24ρ42±2ρ22ρ44+ρ2

44

2Z , and λ3,4 = ρ33+ρ55+
√

ρ2
33+4ρ35ρ53±2ρ33ρ55+ρ2

55

2Z .

3 Quantum phase transitions of the ground states

We consider the exchange constant J as unity and γ = 2 for simplification. The Fig. 1
describe the eigenvalues of two-mixed-spin (1/2, 1) XXZ model as a function of DM
interaction parameter D for B = 1, 4 and b = 0.2. As we can see from Fig. 1a, there
are no crossing pattern among ground-state eigenvalues so the ground state is always
|�4〉, but the ground-state eigenvalues E4 has a sudden change which is called self-
avoiding level crossing at the point D = 0. Moreover, with the increasing B, E4 and
E0 become closer to each other, and when B is increased to critical value Bm ≈ 2.495
the curves of E4 and E0 have an intersection at D = 0, which means quantum phase
transition (QPT) occurs for our system. It is obvious that, these are two symmetrical
QPT points about D = 0 in this system when B > Bm as we see in Fig. 1b. The
changes of ground states are: entangled |�4〉 → disentangled state |�0〉 → entangled
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Fig. 1 (Color online) The dependence of energy eigenvalues on the DM interaction intensity D in different
magnetic field B (we choose the parameters J = 1, γ = 2, b = 0.2 for simplicity)
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Fig. 2 (Color online) The dependence of Energy eigenvalues on the external B in different D values.
(J = 1, γ = 2, b = 0.2)

state |�4〉. In addition to this, comparing Fig. 1a, b, the positions of two QPT points
shift with the increasing of B for the greater |D|. Figure 2c, d show the evolution
of the eigenvalues versus external B for different D values at b = 0.2. These are
three crossing points for each plot, two of which are symmetry about B = 0, and
another one is zero. Furthermore, the ground state of the system first jumps from a
disentangled state |�1〉 to an entangled state |�2〉, then it jumps from an entangled
state |�4〉 to a disentangled |�0〉 at the transformation points, respectively. Similarly,
the eigenvalues in terms of b for different values of D are plotted in Fig. 3e, f. It
can be seen that the existence of b makes the function curves become asymmetric.
From Fig. 3e, we can see the ground state of the system changes from an entangled
state |�2〉 to a disentangled state |�0〉, then jumps to an entangled state |�4〉 at the
transformation points. Moreover, by comparing Fig. 3e, f, we can get a conclusion
that these are only one QPT point when D is greater than critical point Dm , and the
change of ground state is from the entangled state |�2〉 to the entangled state |�4〉.
Through the above analysis, we find that the positions and the level spacing of QPT
points can be changed by controlling the DM interaction and external magnetic in our
model.
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Fig. 3 (Color online) The dependence of Energy eigenvalues on b in different D values. (J = 1, γ =
2, B = 4)

Fig. 4 (Color online) The negativity (N ) and measurement-induced disturbance (MID) as functions of T
and D when B = b = 0 (J = 1, γ = 2)

4 Quantum correlation analyses

As an example, we investigate the antiferromagnetic case for J = 1 and γ = 2 for
simplicity. From Fig. 4, which shows the negativity (N ) and MID as functions of
T and D when B = b = 0, we can see these exists a critical temperature Tm , and
when the system’s temperature exceeds the critical value the N and MID disappears,
that is to say, the quantum correlation exists only within a certain temperature range.
More importantly, the critical temperature of MID is larger than N ’s under the same
conditions and critical temperature Tc can increase by increasing the strength of DM
interaction. This point implies that the DM interaction may be an effective approach
to retain quantum correlation under finite temperature.

The evolution of N and MID in terms of B for different values of D are plotted in
Fig. 5. It is obvious that, with the DM interaction D increasing, the range in which
the quantum correlation exists become wider. Moreover, combined with the Fig. 6,
which describe the N and MID as a function of temperature T for different values of
D at the different external magnetic field B, we can draw a conclusion that D plays an
important role in improving the quantum correlation. In addition to this, we find that
D cannot enlarge the largest negativity alone without the external magnetic field B.
When B exists, D can improve the largest negativity obviously. But this phenomenon
does not occur in measurement-induced disturbance (MID). This point indicates that
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Fig. 5 (Color online) The evolution of N and MID in terms of B for different values of D (J = 1, γ =
2, T = 0.5, b = 0)

Fig. 6 (Color online) The N and MID as a function of temperature T for different values of D at the
different external magnetic field B (J = 1, γ = 2, b = 0)

MID is more stable than negativity under the influence of the external magnetic field,
especially when B closes to zero.

Now we begin to discuss the effect of magnetic field on negativity and MID with
Dzyaloshinskii–Moriya (DM) interaction, and we will consider DM interaction for
D = 3 for simplicity. Form Fig. 7, it can be seen obviously that (i) at the case of
homogeneous magnetic field, N and MID vary with the changes of B, but no matter
how the B changes, the critical temperature Tc is always a fixed value and (ii) to a
certain extent, critical temperature Tc of negativity can be enhanced by the increasing
of b under the inhomogeneous magnetic field. But this phenomenon is not obvious in
measurement-induced disturbance because the distinct difference between MID and
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Fig. 7 (Color online) The two-dimensional pictures of the N and MID when J = 1, γ = 2 and D = 3. a
and b Show N and MID in terms of T for different values of B at the case of homogeneous magnetic field
(b = 0), c and d show N and MID as a function of T for different values of b when B = 1 for simplicity

Fig. 8 Negativity and MID versus the exchange constant J and temperature T when γ = 1 and B = b =
D = 0

negativity is that MID vanishes in an asymptotic way, but negativity will be disappeared
at critical temperature.

In the following study, compared with the thermal entanglement measured by nega-
tivity, we will investigate the quantum correlation using measurement-induced distur-
bance (MID) in our system and consider B = b = D = 0 for simplicity. In Fig. 8, for
the case γ = 1, the negativity and MID versus the exchange constant J and tempera-
ture T are plotted. We can observe that both the negativity and MID decrease with the
temperature increasing, and MID vanishes in an asymptotic way, but negativity will
be disappeared at critical temperature. Moreover, from Fig. 8, we also find that there
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Fig. 9 (Color online) The two-dimensional pictures of the negativity and MID versus the exchange constant
J for different values of temperature T. (γ = 1 and B = b = D = 0)

is no entanglement for the ferromagnetic case (J < 0), but the MID always exists in
both the antiferromagnetic (J > 0) and ferromagnetic regions, only achieving zero at
the critical point J = 0. Through the above discussions, we can get a conclusion that
the thermal MID is more robust than thermal entanglement against temperature.

In addition to this, when J < 0, the ground state is the statistical combination of
|�0〉 , |�1〉 , |�2〉 and |�4〉 with equal probabilities, but the ground state become to the
statistical combination of |�2〉 and |�4〉 with equal probabilities when J > 0, that is to
say, the quantum phase transition (QPT) occurs for our system when J = 0. Figure 9
plot the two-dimensional pictures of the negativity and MID versus the exchange
constant J for different values of temperature T. It is obvious that with the decreasing
of J , the MID will decrease to zero at the critical point J = 0, after which it will
enhance to a nearly stable value. This indicates that the MID can detect the critical
points of quantum phase transition, while the negativity does not in such circumstances.

5 Conclusions

In this paper, we investigate the quantum phase transition (QTP) and quantum corre-
lation in the one-dimensional mixed-spin (1/2, 1) XXZ model with Dzyaloshinskii–
Moriya (DM) interaction under an inhomogeneous magnetic field. We discuss the QPT
and find that we can change the phase transition points by controlling the value of D, B
and b. Then we calculate the thermal entanglement by negativity and investigate the
quantum correlation using measurement-induced disturbance (MID) for our system.
Our results show that critical temperature Tc can increase by increasing the strength of
DM interaction, and D plays an important role in improving the quantum correlation.
That is to say, we can obtain more correlation at higher temperature by choosing the
proper strength of DM interaction. Moreover, we prove that D cannot enlarge the
largest negativity alone without the external magnetic field B, and when B exists, D
can improve the largest negativity obviously, but this phenomenon does not exist in
measurement-induced disturbance (MID). For the magnetic field, the homogeneous
magnetic field cannot change the critical temperature Tc alone, but it is shown that
the inhomogeneous magnetic parameter b can suppress the effects of temperature on
negativity.
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In addition, we compare the negativity and MID in detail and find that MID may
reveal more properties about quantum correlations of this system than entanglement,
in the sense that MID can be nonzero while there is no thermal entanglement. Fur-
thermore, we discover that MID is more robust than thermal entanglement against
temperature T , which behaves that MID decays asymptotically but entanglement van-
ishes completely at a finite critical temperature Tc. Besides, in some circumstances,
the MID can detect the critical points of quantum phase transition while the negativity
cannot. Through the above discussions, we come to a conclusion that MID may act
as a more general tool than negativity for studying quantum correlations quality of
quantum systems.
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