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Abstract Multi-dimensional color image processing has two difficulties: One is that
a large number of bits are needed to store multi-dimensional color images, such as, a
three-dimensional color image of 1024 × 1024 × 1024 needs 1024 × 1024 × 1024 ×
24 bits. The other one is that the efficiency or accuracy of image segmentation is not
high enough for some images to be used in content-based image search. In order
to solve the above problems, this paper proposes a new representation for multi-
dimensional color image, called a (n + 1)-qubit normal arbitrary quantum superposi-
tion state (NAQSS), where n qubits represent colors and coordinates of 2n pixels (e.g.,
represent a three-dimensional color image of 1024×1024×1024 only using 30 qubits),
and the remaining 1 qubit represents an image segmentation information to improve
the accuracy of image segmentation. And then we design a general quantum circuit to
create the NAQSS state in order to store a multi-dimensional color image in a quantum
system and propose a quantum circuit simplification algorithm to reduce the number
of the quantum gates of the general quantum circuit. Finally, different strategies to
retrieve a whole image or the target sub-image of an image from a quantum system
are studied, including Monte Carlo sampling and improved Grover’s algorithm which
can search out a coordinate of a target sub-image only running in O(

√
N/r)where N

and r are the numbers of pixels of an image and a target sub-image, respectively.
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1 Introduction

Quantum computing [1] which has the unique computing performance of quantum
coherence, entanglement, superposition of quantum states and other inherent charac-
teristics quickly becomes an international research focus. In fact, utilizing the unique
properties, Shor’s discrete logarithms and integer factoring algorithms in polynomial
time [2], Deutsh’s parallel computing algorithm with quantum parallelism and coher-
ence [3] and Grover’s quadratic speedup for unordered database search algorithm [4]
are insurmountable so far by any known classical algorithms.

Since the amplitude or phase of a quantum state can be used to store information
[16], a quantum system is superior to a classical computer for information storage (e.g.,
we may consider a system of n qubits which can store 2n complex numbers. For n =
500, 2500, this number is lager than the estimated number of atoms in the Universe!
Trying to store all these complex numbers would not possible on any conceivable
computer [12]). In a quantum system, frequency of the physical nature of color could
represent a color instead of the RGB model or the HIS model, so a color was represented
by only a 1-qubit quantum state [5] and an image was stored in a quantum array [5,6].
A quantum composite state (FRQI state) stored the colors and the coordinates of a
2D gray image of 2n pixels with (n + 1) qubits [7]. A set of quantum states (QSMC)
was proposed to represent M colors in an image and discussed how to retrieve images
stored in a quantum system [8]. The phase-space distribution functions (Wigner and
Husimi functions) were used to store an image in a quantum system [10].

Quantum computing can be realized by quantum gate operations. A finite set of
basic gate operations was used to construct any quantum gate operation [11]. Universal
quantum gates were expressed as the combination of one-bit gate and two-bit gates
[12,13], and two-bit gates were universal for quantum computing [14]. An efficient
scheme was proposed for initializing a quantum register with an arbitrary superposed
state, and application of the scheme in three special cases was discussed [15].

Many scholars have studied Grover search algorithms. Grover’s algorithm was
generalized to deal with an arbitrary initial amplitude distribution, and a bound of
the success probability of searching a marked state was derived [17]. For the known
number of solutions, the rotation phase π in Grover’s algorithm was replaced with an
arbitrary phase of the rotation and modified algorithm’s properties were analyzed by
recursion equations [18]. In order to search out marked states with the maximum suc-
cess probability, rotational phases of Grover algorithm must satisfy certain matching
conditions [9,19,20].

Content-based image search is an emerging technology [21], and the image seg-
mentation is a key technology. Significant progress had been made in field of image
segmentation, for example, snake- and region growing were combined with a princi-
pled framework [21]. But for content-based image search, the accuracy or efficiency
of image segmentation is not high enough for some images by employing classical
segmentation algorithms. Such as, snake [22], region growing [23], clustering [24],
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Multi-dimensional color image storage and retrieval 993

these algorithms search out a coordinate of a target object in o(N ) where N is the
number of pixels. For some special images (e.g., overlapping target objects [6], the
target object and the background whose colors are similar [25]), classical algorithms
are difficult to segment target objects. In order to improve the efficiency and accuracy
of content-based image search, image segmentation information is extracted from an
original image by using classic segmentation algorithms in advance. For some special
images (e.g., overlapping target objects), we can get segmentation information of tar-
get objects from the image with human–computer interaction (e.g., using Photoshop
software). And then, we store the colors, coordinates and segmentation information of
an image in a quantum system. It is a motivation to propose that a (n +1)-qubit normal
arbitrary quantum superposition state (NAQSS) represents a multi-dimensional color
image (including segmentation information) in this paper. On the basis of the color
treatment strategy in the paper [8], we design a generic quantum circuit to transform
a simple initial state |0〉⊗(n+1) into a NAQSS state to realize an image storage. And
the generic quantum circuit is optimized by a quantum circuit simplification (QCS)
algorithm. For the purpose of retrieving the entire image from a quantum system, we
measure directly the NAQSS state with a set of projection measurement operators and
calculate the maximum number of measurements (namely, Monte Carlo sampling).
We adopt an improved Grover search algorithm with arbitrary rotation phases and an
arbitrary initial state to efficiently retrieve a target sub-image of an image (e.g., search
out a coordinate of a target sub-image only running in O(

√
N/r)).

The paper is organized as follows: An image representation are presented in Sect. 2.
The realizations of image storage and quantum circuit optimization are discussed in
Sect. 3. Multi-dimensional color image retrievals are described in detail in Sect. 4.
Conclusion is shown in Sect. 5.

2 Basic quantum gates and representation of a quantum image

2.1 Representation of a quantum image

We describe briefly an angle how to represent a color [8] as follows.
A bijective function F1 which sets up a one-to-one relationship between color and

angle is created

F1 : Color ↔ φ (1)

where Color = {color1, color2, · · · , colorM }, colori corresponds to the i th color
in ordered M colors, φ = {φ1, φ2, . . . , φM }, φi = π(i−1)

2(M−1) , i ∈ {1, 2, . . . ,M}. For
grayscale images, M = 256, colors are sorted in ascending order by the grayscale
values. For example, color1 and color256 correspond to grayscale values 0 and 255,
respectively. For color images, M = 224, we make x, y, z be the values of R,G, B in
24-bit RGB true color, and let i = x × 256 × 256 + y × 256 + z + 1, thus, colori

corresponds to the value (x, y, z) of RG B. For instance, color1 and color16777216
correspond to RGB values (0,0,0) and (255,255,255).

If V is a k-dimensional Euclidean space spanned by the orthogonal basis vectors
b1, b2, . . . bk , a k-dimensional digital image is represented as the function f : V → R

123



994 H.-S. Li et al.

where V notates the position information of an image and f (V ) is a color set of pixels
corresponding to the position V . Let f (V ) ⊂ color in this paper, we obtain that the
angle set φ represents colors of a k-dimensional digital image by (1).

A quantum superposition state in 2n dimensional Hilbert space may be expressed
as |ψa〉 = ∑2n−1

i=0 ai |i〉 where |i〉 , i = 0, 1, · · · 2n − 1, is a set of orthogonal basis
and ai is an arbitrary real.

In order to represent a k-dimensional color digital image, |ψa〉 = ∑2n−1
i=0 ai |i〉 is

changed

∣
∣ψφ

〉 =
2n−1∑

i=0

ai |v1〉 |v2〉 · · · |vk〉 (2)

where i = i1 · · · i j i j+1 · · · il · · · im · · · in, v1 = i1 · · · i j , v2 = i j+1 · · · il and
vk = im · · · in are the binary expansions for i, v1, v2 and vk , respectively; |i〉 =
|v1〉 |v2〉 · · · |vk〉 is a coordinate (v1, v2, . . . , vk) in the k-dimensional space V and
ai ∈ φ (see (1)) notates the color of pixel corresponding to the coordinate.

To normalize the state
∣
∣ψφ

〉
in (2), we set

θi = ai
√

2n−1∑

y=0
a2

y

(3)

Substituting (3) for ai in (2), we obtain a state |ψN 〉

|ψN 〉 =
2n−1∑

i=0

θi |v1〉 |v2〉 · · · |vk〉 (4)

where (
∑2n−1

i=0 θ2
i ) = 1 and i = v1v2 · · · vk .

Thus, the state |ψN 〉 can represent a k-dimensional color image. For the sake of
storing image segmentation information in a quantum state, we create a bijective
function F2 which sets up a one-to-one relationship between an angle and an integer

F2 : Number ↔ Angle (5)

where Angle = {β0, β2, . . . , βm−1} is an angle set, and Number = {1, 2, . . . ,m} is
a set of integers, βi = iπ

2(m−1) , i ∈ {0, 1, . . . ,m − 1}; if m = 1, let β0 = 0.
Assuming that an image is divided into m sub-images numbered as 1, 2, . . .m, we

define a quantum state |ψ〉 by changing (4) to represent the whole image (including
segmentation information)

|ψ〉 =
2n−1∑

i=0

θi |v1〉 |v2〉 · · · |vk〉 |χi 〉 (6)

where |χi 〉 = cos γi |0〉+sin γi |1〉 , γi ∈ Angle corresponding to an integer from (5),
represents the serial number of the sub-image which contains the pixel corresponding
to the coordinate |v1〉 |v2〉 · · · |vk〉.
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Multi-dimensional color image storage and retrieval 995

Since‖|ψ〉‖ =
√∑2n−1

i=0 θ2
i (cos2 γi + sin2 γi ) = 1, |ψ〉 is called a normal arbitrary

quantum superposition state (NAQSS).

3 Realizations of image storage and circuit optimization

Two unitary matrixes are defined as

Rx (θ) =
[

cos θ sin θ
sin θ − cos θ

]

, θ ∈ [0, 2π ] (7)

Ry(θ) =
[

cos θ − sin θ
sin θ cos θ

]

, θ ∈ [0, 2π ] (8)

Rx (θ) and Ry(θ) have the following properties

Ry(θ) · Ry(−θ) = Ry(−θ) · Ry(θ) = I

Ry(θ) |0〉 = cos θ |0〉 + sin θ |1〉
Ry(0) = I, Ry

(π

2

)
|0〉 = |1〉

Rx (θ) · Rx (θ) = I, Rx

(π

4

)
= H, and Rx

(π

2

)
= X (9)

where I, H, X are an identity matrix, a Hadamard matrix and a pauli-x matric, respec-
tively.

A sequence of angles is given as follows

α1 = arctan

√
√
√
√
∑

i2···in

∣
∣θ1i2···in

∣
∣2

∑
i2···in

∣
∣θ0i2···in

∣
∣2

(10)

α j,i1···i j−1 = arctan

√
√
√
√
√

∑
i j+1···in

∣
∣θi1···i j−11i j+1···in

∣
∣2

∑
i j+1···in

∣
∣θi1···i j−10i j+1···in

∣
∣2

(11)

where j = 2, 3, . . . n and i1i2 · · · i j−1 is the binary expansion of an integer. For
instance, when j = 2, (11) is rewritten

α2,0 = arctan

√
√
√
√
∑

i3···in

∣
∣θ01i3···in

∣
∣2

∑
i3···in

∣
∣θ00i3···in

∣
∣2

(12)

α2,1 = arctan

√
√
√
√
∑

i3···in

∣
∣θ11i3···in

∣
∣2

∑
i3···in

∣
∣θ10i3···in

∣
∣2

(13)

A controlled-Rxyi operation is defined

Rx ji =
⎛

⎝
2 j−1−1∑

k=0,k 
=i

|k〉 〈k|
⎞

⎠⊗ I + |i〉 〈i | ⊗ Rx (α j,i ), j ≥ 2 (14)
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Fig. 1 The realization of a normal arbitrary quantum superposition state. Dashed box i(i = 1, 2, n)

corresponds to Rx j ( j = 1, 2, n), Dashed box n + 1 corresponds to
∏2n−1

i=0 Ryi . γ0, γ1, . . . γ2n−1 ∈
{β1, β2, . . . βm } (see (5))

The controlled-Rxyi operation is a unitary matrix, since Rxyi R+
xyi = I ⊗ j . A unitary

matrix Rx j is given for j = 1 and j ≥ 2

Rx j = Rx (α1)⊗ I ⊗(n−1), j = 1 (15)

and

Rx j =
2 j−1
∏

i=0

−1
(

Rx ji ⊗ I ⊗(n− j)
)
, j ≥ 2 (16)

Applying successively the unitary matrix Rx j on the initial state |0〉⊗n , we acquire

that |ψN 〉 = (
∏n

j=1 Rx j )|0〉⊗n = ∑2n−1
i=0 θi |v1〉 |v2〉 · · · |vk〉.

A controlled-Ryi operation is defined

Ryi =
⎛

⎝
2n−1∑

j=0, j 
=i

| j〉 〈 j |
⎞

⎠⊗ I + |i〉 〈i | ⊗ Ry(γi ) (17)

Applying successively the unitary matrix Ryi on the initial state |ψN 〉 ⊗ |0〉, we
achieve a NAQSS state |ψ〉

|ψ〉 =
⎛

⎝
2n−1∏

i=0

Ryi

⎞

⎠ (|ψN 〉 ⊗ |0〉) =
N−1∑

i=0

θi |v1〉 |v2〉 · · · |vk〉 (cos γi |0〉 + sin γi |1〉)

(18)

|ψ〉 is realized by the quantum circuit shown in Fig. 1. The circuit is built with
(2n+1 − 1) quantum gates which can be constructed by one-bit and two-bit gates
whose total number is o(Nlog2 N ) where N = 2n is the pixel’s number of an image.
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Multi-dimensional color image storage and retrieval 997

Usually, an image may have many same colors or be locally symmetric, and a large
number of pixels belong to a sub-image, so we design QCS algorithm (see Algorithm 1)
to reduce the quantum gates in Fig. 1. The computational complexity of this algorithm
is o(N 2 log N ).

Algorithm 1 Quantum circuit simplification (QCS) algorithm

1. Analyzing 2 j−1 angles α j,i1···i j−1 (see Eq. (11)), divide angles into t groups according to the values
of angles and notate G1,G2, · · · Gt , respectively.

2. Regard the second subscript i1 · · · i j−1 of α j,i1···i j−1 in Gi as a set of code and merge angles of Gi
by the following strategy:

while (there are at least two codes whose Hamming distance equals 1 in Gi ) do
Find two codes whose hamming distance is equal to 1 and merge them, e.g., i1 · · · 0 · · · i j−1 and
i1 · · · 1 · · · i j−1 can be merged into i1 · · · x · · · i j−1 where x means there is no gate operator on
the corresponding qubit (see Fig. (3).

end while
3. Successively take i = 1, 2, · · · , t , repeating Step 2.
4. Successively take j = 1, 2, · · · , n , repeating Step 1 to Step 3.
5. Analyzing 2n angles γi1i2···in , divide angles into m groups according to the values of angles and notate

G1,G2, · · · Gm , respectively.
6. Regard the subscript i1i2 · · · in of γi1i2···in in Gi as a set of code, and merge angles of Gi by the

following strategy
while (there are at least two codes whose Hamming distance equals 1 in Gi ) do

Find two codes whose hamming distance is equal to 1 and merge them, e.g., i1 · · · 0 · · · in and
i1 · · · 1 · · · in can be merged into i1 · · · x · · · in .

end while
7. Successively take i = 1, 2, · · · ,m , repeating Step 6.

In order to make the above algorithm explicit, let us consider a 4 × 4 × 2 image
shown in Fig. 2 as an example. From formulas (7)–(18) and Fig. 2, values of α j,i1···i j−1

are given and QCS algorithm implementation is shown in Table 1. The optimized
quantum circuit for the image is shown in Fig. 3.

4 Image retrieval

In order to retrieve images from a quantum system, we adopt two strategies: direct
measurement (namely retrieve a whole image by Monte Carlo sampling), retrieve target

Fig. 2 Left a 4×4×2 image which is divided into two sub-images (numbered 0 and 1) and on the right for
lower sub-image. The image is represented as |ψ〉 = ∑31

i=0 θi |v1〉 |v2〉 |v3〉 (cosβi |0〉 + sin βi |1〉) where
|v1〉 |v2〉 |v3〉 = |x〉 |y〉 |z〉 = |x1x2〉 |y1 y2〉 |z1〉 , xi , yi , zi ∈ {0, 1}
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998 H.-S. Li et al.

Table 1 QCS algorithm
implementation

j or m Group Angles before merging Angles after
merging

j = 1 G1 α1 = π
4 Not to merge

j = 2 G1 α2,0 = α2,1 = π
4 α2,x = π

4
j = 3 G1 α3,0 = α3,1 = α3,2 = α3,3 α3,xx

j = 4 G1 α4,i1 i2i3
= π

4 , i1, i2, i3 ∈ {0, 1} α4,xxx

j = 5 G1 α5,i1 i2i3i4
= π

4 , i1, i2, i3, i4 ∈ {0, 1} α5,xxxx

m = 2 G1 γi1i20i4i5 = β0 = 0 γxx0xx

G2 γi1i21i4i5 = β1 = π
2 γxx1xx

Fig. 3 The optimized quantum circuit for the 4×4×2 image. Dashed box i(i = 1, 2, · · · , 6) corresponds,
respectively, to α1 = π

4 (Rx (
π
4 ) = H), α2,x = π

4 , α3,xx , α4,xxx = π
4 , α5,xxxx = π

4 , γxx0xx =
0(Ry(0) = I ), γxx1xx = π

2 (Ry(
π
2 ))

sub-images whose amplitudes are amplified by applying improved improved Grover’s
algorithm. To be simply, we substitute |i〉 for |v1〉 · · · |vk〉 in (6) in the section, i.e., the
NAQSS state is expressed as

|ψ〉 =
2n−1∑

i=0

θi |i〉 |χi 〉 (19)

We define dim(|vi 〉) as the dimensions of the subspace |vi 〉, i.e., |vi 〉 is expressed
with dim(|vi 〉) 1-qubit states. To successfully retrieve images, suppose we have a doc-
umentation, including the following known information: the values of k and dim(|vi 〉)
of |i〉 = |v1〉 · · · |vk〉, the value of

√∑2n−1
i=0 a2

i , the number of sub-images, the number
of pixels of each sub-image, average and variance of color values of each sub-image,
projection measurement operator.
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4.1 Retrieving a whole image from a quantum system

We define the observable operator M = ∑2n+1−1
j=0 m j Pj where Pj = | j〉 〈 j |, apply M

to measure the quantum state |ψ〉 in Eq. (19), and obtain result m j with probability
p(m j ) = 〈ψ ∣∣Pj

∣
∣ ψ〉 = θ2

j , i.e.,

θ j =
√

p(m j ) (20)

Define ns as the number of samples and suppose that the results of ns measurements
are n j times of m j , set p̂(m j ) = n j

/
ns , so we know that p̂(m j ), θ̂ j are the estimates

of p(m j ) and θ j , i.e.,

θ̂ j =
√

p̂(m j ) (21)

Assuming that a quantum state is detected with the probability of 1 − α in nmax
measurements, now, we describe how to solve the value of nmax (i.e., how many mea-
surements are necessary to acquire the correct value of θ j ) by appropriately changing
the method in Sect. 2.2 of paper [8].

Set

Z =
{

0, result of measurment is not m j

1, result of measurment is m j
(22)

Since Z is either 1 or 0, Z is a Bernoulli random variable. The probability mass
function of random variable Z is given by

{
p(m̃ j ) = P{Z = 0} = 1 − p
p(m j ) = P{Z = 1} = p

(23)

where m̃ j notates result of measurement is not m j .
The expectation μ and variance σ of Z are μ = p and σ 2 = p(1 − p),

respectively. Suppose that Z1, Z2, · · · Zns are ns samples of Z and ns is suffi-
ciently large, then (

∑ns
i=1 Zi − ns p)

/√
ns p(1 − p) = (ns Z − ns p)

/√
ns p(1 − p)

has approximately a standard normal distribution by the Central Limit Theorem.
Thus, P{∣∣(ns Z − ns p)

/√
ns p(1 − p)

∣
∣ < Z2

α/2} ≈ 1 − α where 1 − α is a confi-
dence level (the value of Z

α
/

2
can be found in standard normal distribution lookup

tables: e.g., when α = 0.05, we can obtain Zα/2 = 1.96). Solving the inequality∣
∣(ns Z − ns p)

/√
ns p(1 − p)

∣
∣ < Z2

α/2, we obtain that the confidence interval of p is
[pmin, pmax] with approximate confidence level 1 − α. pmin and pmax are expressed
as follows

pmin = 2ns Z + λ−
√

(2ns Z + λ)
2 − 4(ns + λ)ns Z

2

2ns + 2λ
(24)
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1000 H.-S. Li et al.

and

pmax = 2ns Z + λ+
√

(2ns Z + λ)
2 − 4(ns + λ)ns Z

2

2ns + 2λ
(25)

where λ = Z2
α/2.

The size of the confidence interval [pmin, pmax] is

Δp = pmax − pmin =
√

4nsλZ − 4nsλZ
2 + λ2

ns + λ
(26)

Define

θmax = √
pmax, θmin = √

pmin (27)

From (26) and (27), we infer

Δθ = √
pmax − √

pmin ≤ √
pmax − pmin = √

Δp (28)

where Δθ = θmax − θmin.
Since Z = ∑ns

i=1 Zi
/

ns and p̂(m j ) = Z , we know that θ̂ j =
√

Z and Z ≈ p
by Law of Large Numbers. The confidence interval of p is [pmin, pmax]; therefore,
Z ∈ [pmin, pmax] and p ∈ [pmin, pmax] are with the approximate probability of 1−α.
Thus

θ j ∈ [θmin, θmax], θ̂ j ∈ [θmin, θmax] (29)

By (29), we find
∣
∣θ̂ j − θ j

∣
∣ ≤ Δθ (30)

Since a j = θ j

√∑2n−1
i=0 a2

i (see (3)), from (29) and (30), we yield

∣
∣̂a j − a j

∣
∣

Gφ

≤ Δθ (31)

and

a j , â j ∈ [Gφθmin,Gφθmax
]

(32)

where Gφ =
√∑2n−1

i=0 a2
i and â j = θ̂ j

√∑2n−1
i=0 a2

i .
According to (1), we calculate

Δφ = |φi+1 − φi | = π

2(M − 1)
(33)

where i ∈ {1, 2, · · · (M − 1)}, M = 224 or M = 256.
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Multi-dimensional color image storage and retrieval 1001

Fig. 4 The relation ofΔφ̂, Δφ, a j , â j , Gφθmin, Gφθmax and GφΔθ . When θ̂ j ∈ Δθ (i.e., â j ∈ GφΔθ),
we derive that a j = φi from the figure

Suppose

√
Δp <

Δφ

Gφ

(34)

Let Δφ̂ = ∣
∣a j − â j

∣
∣, from (28), (31), (32) and (34), we see

Δφ̂ ≤ GφΔθ < Δφ (35)

Δφ̂, Δφ, a j , â j , Gφθmin, Gφθmax and GφΔθ are shown in Fig. 4.
Formula (34) is equivalent to

y4ns
2 +

[
2λy4 − 4λ

(
Z − Z

2
)]

ns + y4λ2 − λ2 > 0 (36)

where y = Δφ
Gφ

.
Solving (36), two solutions are

n− = λ

⎡

⎢
⎢
⎣

2(Z − Z
2
)

y4 − 1 −

√
√
√
√
√

⎛

⎝
2
(

Z − Z
2
)

y4 − 1

⎞

⎠

2

+ (1 − y8)

⎤

⎥
⎥
⎦ (37)

n+ = λ

⎡

⎢
⎣

2
(

Z − Z
2
)

y4 − 1 +
√
√
√
√
(

2(Z − Z
2
)

y4 − 1

)2

+ (1 − y8)

⎤

⎥
⎦ <

4λ(Z − Z
2
)

y4

(38)

where λ= Z2
α
/

2
, y = Δφ

Gφ
, Δφ= π

2(M−1) , Gφ=
√∑2n−1

i=0 a2
i and Z =∑ns

i=1 Zi
/

ns .

Let

nmax =
⌈

4λ(Z − Z
2
)

y4

⌉

(39)

where �·� means rounding up.
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Since n− ≤ 0 in (37), n− is not selected. Thus, we can acquire the correct quantum
state after at most nmax (see Eq. (39)) measurements with the approximate probability
of 1 − α.

Defining a =
∑2n−1

i=0 a2
i

2n , we have

Gφ = √
2n

√
a (40)

Since ai ∈ [0, π2 ] (see (2)), we yield that
√

a ∈ [0, π2 ] and
√

a can be seen as a
number which is irrelevant to the size of the number n. From (22), (23) and (40), we
infer

z ≈ p = θ2
j =

(
a j

Gφ

)2

= a2
j

2na
(41)

Substitute Δφ = π
2(M−1) , Gφ = √

2n
√

a and z ≈ a2
j

2na into (39), so that

nmax =
⌈

N 2(M − 1)4
26λ(Z − Z

2
)a2

π4

⌉

≈ N (M − 1)4
26λa2

j

(

a − a2
j

N

)

π4

≈ N (M − 1)4
26λa2

j a

π4 (42)

where N = 2n (suppose N � 1) is the number of pixels and M is the number of
colors (M = 224 for color images and M = 256 for grayscale images).

We can conclude that nmax is proportional to N (M − 1)4 by (42).

4.2 Retrieving a target sub-image from a quantum system

Suppose an image is only divided into two sub-images (i.e., target and background),
in the case, Angle = {β0 = 0, β1 = π/2} in (5), let γi = β0 for i ∈ B and γi = β1
for i ∈ A, the NAQSS state |ψ〉 in (19) is rewritten

|ψ(r)〉 =
2n−1∑

i=0,i∈B

θi |i〉 ⊗ |0〉 +
2n−1∑

i=0,i∈A

θi |i〉 ⊗ |1〉 (43)

where A and B are defined as sets contain coordinates of the target and background
in an image, respectively. That is to say, A is a set of marked states and B is a set
of unmarked states. We employ Grover search algorithm to efficiently search out the
target sub-image corresponding to marked states. Synthesizing papers [9] and [17–
20], we propose an improved Grover’s algorithm which is suitable for the NAQSS
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Multi-dimensional color image storage and retrieval 1003

state |ψ(r)〉 in (43) and describe in detail the Grover search algorithm how to search
out the marked states with the minimum number of iterations and the largest success
probability.

We assume : N = 2n is a total of states, and r is a number of marked states; A
and B are sets of marked and unmarked states, respectively; Ir is the rotation operator
of marked states, and I0 is the rotation operator of the initial state |ψ(r)〉 in (43). So
Grover search operator is expressed as Gψ = G ⊗ I = −H⊗n I0(H⊗n)−1 Ir ⊗ I
where H and I are Hadamard and identity matrixes, respectively. A, B , I0 and Ir are
listed as follows

A = {i | f (i1i2 · · · in j) = 1}, B = {i | f (i1i2 · · · in j) = 0} (44)

where f (·) is a quantum oracle (a blank box) of Grover’s algorithm , f (i1i2 · · · in1) =
1, f (i1i2 · · · in0) = 0, i = i1i2 · · · in and i1, i2, . . . in, j ∈ {0, 1}.

Ir = I ⊗n − (1 − eiα)
∑

τ∈A

|τ 〉 〈τ | (45)

I0 = I ⊗n − (1 − eiα) |0〉 〈0| (46)

where α is a rotation angle of marked and initial states in (45) and (46).
Applying Grover search operator Gψ on |ψ(r)〉

Gψ |ψ(r)〉 = (G ⊗ I )

⎛

⎝
2n−1∑

i=0,i∈B

θi |i〉 ⊗ |0〉 +
2n−1∑

i=0,i∈A

θi |i〉 ⊗ |1〉
⎞

⎠

=
N∑

i=0,i∈B

G(θi |i〉)⊗ |0〉 +
N∑

i=0,i∈A

(Gθi |i〉)⊗ |1〉) (47)

The state |ψ(r)〉 after t iterations of Gψ is changed into

|ψ(t)〉 =
∑

i∈B

li (t) |i〉 |0〉 +
∑

i∈A

ki (t) |i〉 |1〉 (48)

We denote the averages of the amplitudes as follows

l(t) = 1

N − r

∑

i∈B

li (t) (49)

k(t) = 1

r

∑

i∈A

ki (t) (50)

C(t) = r(1 − eiα)eiα

N
k(t)+ (1 − eiα)(N − r)

N
l(t) (51)
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1004 H.-S. Li et al.

The recursion equations of the amplitudes take

ki (t + 1) = C(t)− eiαki (t) (52)

and

li (t + 1) = C(t)− li (t) (53)

Accumulating (52) and (53) from i = 0 to i = N − 1 , we gain another recursion
equations

k(t + 1) = C(t)− eiαk(t) (54)

and

l(t + 1) = C(t)− l(t) (55)

Solving the recurrence Eqs. (54) and (55) to give

k(t) = (−1)t eiαt
[

d sin(tβ)− sin(tβ − β)

sin β
k(0)

+ (1 − e−iα) cos2 θ sin(tβ)

sin β
l(0)

]

(56)

and

l(t) = (−1)t eiαt
[

sin(tβ + β)− d sin(tβ)

sin β
l(0)

−
(
d2 + 1

)
sin(tβ)− 2d cosβ sin(tβ)

(1 − e−iα) cos2 θ sin β
k(0)

]

(57)

where d = eiαsin2θ + cos2θ, sin θ =
√

r
N , cos θ =

√
N−r

N ( 0 ≤ θ ≤ π/2), and

cosβ = 1 − 2sin2θsin2(α
/

2) ( 0 ≤ β ≤ 2π, 0 < α < 2π ).
Subtracting (52) from (54) and subtracting (53) from (55), we find

ki (t)− k(t) = ki (t − 1)− k(t − 1) = · · · = ki (0)− k(0) (58)

and

li (t)− l(t) = − [li (t − 1)− l(t − 1)
] = · · · = (−1)t

[
li (0)− l(0)

]
(59)

So, we acquire the solutions of (52) and (53) from (58) and (59)

ki (t) = k(t)+ ki (0)− k(0) (60)
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and

li (t) = l(t)+ (−1)t
[
li (0)− l(0)

]
(61)

From (58) and (59), we can denote the variances of the amplitudes as follows

σ 2
k (t) = 1

r

∑

i∈A

∣
∣ki (t)− k(t)

∣
∣2 = σ 2

k (0) (62)

and

σ 2
l (t) = 1

N − r

∑

i∈B

∣
∣li (t)− l(t)

∣
∣2 = σ 2

l (0) (63)

Set Pt is the probability of success after t iterations to search out marked states

Pt =
∑

i∈A

|ki (t)|2 = 1 −
∑

i∈B

|li (t)|2 = 1 − (N − r)σ 2
l (t)− (N − r)

∣
∣l(t)

∣
∣2 (64)

Since σl(t) = σl(0), (64) can be rewritten as

Pt = 1 − (N − r)σ 2
l (0)− (N − r)

∣
∣l(t)

∣
∣2 (65)

When l(t) = 0, we define

Pmax = Pt = 1 − (N − r)σ 2
l (0) (66)

Simplifying the equation l(t) = 0, results are

sin(tβ)
[
(1 + cosα)(1 − cosβ)(cos2 θ)l(0)− 2 cos2 θ(1 − cosβ)k(0)

]

+ cos(tβ) sin β(1 − cosα)(cos2θ)l(0) = 0 (67)

and

sin(tβ)(cosβ − 1) sin α(cos2 θ)l(0)+ cos(tβ) sin β sin α(cos2 θ)l(0) (68)

Since 0 < α < 2π and cos θ 
= 0 (otherwise, the search space is composed by the
marked states), we rewrite (67) as

sin(tβ)(1 + cosα) sin2 θ + cos(tβ) sin β

2sin2θ sin(tβ)
= k(0)

l(0)
(69)
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Solving (69), the optimal iterations of Grover is

t =
⎢
⎢
⎢
⎣

π
2 − arctan

[(
k(0)
l(0)

− 1+cosα
2

)
2sin2θ
sin β

]

β

⎥
⎥
⎥
⎦ (70)

Where �� means rounding down.
Substitute t = 1 in (69), we derive that the rotation angle α satisfies

cosα = k(0)

l(0)
− 1

2sin2θ
(71)

Thus, Pt = Pmax after applying just one iteration when −1 ≤ cosα < 1, i.e.,

−1 ≤ k(0)

l(0)
− 1

2sin2θ
< 1 (72)

Substitute t = 2 in (69), we derive that the rotation angle α satisfies

cosα = 1

2

(

1 + k(0)

l(0)

)

−
3 ±

√[
2 sin2 θ(1 − k(0)

l(0)
)− 1

]2 + 4

4sin2θ
(73)

Thus, Pt = Pmax after applying just two iterations when

−1 ≤ 1

2

(

1 + k(0)

l(0)

)

−
3 ±

√[
2 sin2 θ

(
1 − k(0)

l(0)

)
− 1

]2 + 4

4sin2θ
< 1 (74)

If (72) or (74) are not satisfied, we take α = π in (70) and Pt ≈ Pmax after

t =
⎢
⎢
⎢
⎣

π
2 − arctan

[
k(0)
l(0)

√
r

N−r

]

arccos (1 − 2 r
N )

⎥
⎥
⎥
⎦ (75)

iterations.
When r � N , t is in maximum. Setting r � N , from (75), we infer

t <
π

2

1

arccos (1 − 2 r
N )

<

π
4

√
N/r

√
1 − r

N

≈ π

4

√
N/r (76)

Therefore, the minimum number of iterations t is in O(
√

N/r) from (71), (73) and
(76).
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Suppose that

|ki (t)|2 = Pi
t , |ki (0)|2 = Pi

0 (77)

So
∑

i∈A Pi
t = Pt ,

∑
i∈A Pi

0 = P0 from (64). We rewrite (60) as

ki (0) = ki (t)− k(t)+ k(0) (78)

By (72), (74) or (75), taking appropriate t and α in (56), we calculate k(t). Since ki (0)
and k(0) are real , by (78), we can suppose

k(t) = a + bi, ki (t) = ci + bi (79)

For ki (0) > 0(i = 0, 1, . . . (N − 1)), Grover search algorithm increases the total
probability of the marked states and keeps the relative amplitude among the marked
states, so a × ci > 0 (i.e., the signs of a and ci are the same). Hence, from (77) and
(79), we yield

ci =
√

Pi
t − b2, when a > 0 (80)

ci = −
√

Pi
t − b2, when a < 0 (81)

From (78) and (79), we obtain

ki (0) = ci − a + k(0) (82)

Therefore, select α, after t iterations, Pt = Pmax or Pt ≈ Pmax. We detect the state
(Gφ)

t (|ψ〉) to acquire values of |ki (t)|2(i = 0, 1, . . . (N − 1)) by the method shown
in Sect. 4.1 in this paper, and further get values of ki (0) (i.e., amplitudes of the initial
state |ψ(r)〉) from (80), (81) and (82). When σ 2

l (0) ≈ 0 (colors of the background
sub-image are similar), Pt ≈ 1 , in this case, measuring (Gφ)

t (|ψ〉) ≈ ∑

i∈A
ki (t) |i〉 |1〉,

we retrieve a coordinate of the marked sub-image with approximate probability 100 %
every time.

In order to make the above description explicit, let us consider a 512 × 512 image
shown on the left of Fig. 5 as an example. We consider two cases: Only retrieve the
coordinates of the edge of the airplane (see the middle of Fig. 5) and retrieve the whole
airplane including colors and coordinates (see the right of Fig. 5). The process of the
example consists of the following steps.

(1) Store the original image on the left of Fig. 5 in quantum systems as a quantum
state |ψ(1)〉 or |ψ(2)〉.

(2) Apply improved Grover’s algorithm on a quantum state |ψ(1)〉 or |ψ(2)〉.
(3) Measure the quantum state after t iterations of Grover and retrieve the target

sub-image.
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1008 H.-S. Li et al.

Fig. 5 (left) The original image is segmented into two sub-images, one of which is marked ’0’ as a
background sub-image and the other one is marked ’1’ as a target sub-image. (middle) The target sub-image
is the edge of the airplane, and the background sub-image is the original image except the edge of the
airplane. (right) The target sub-image is the whole airplane, and the background sub-image is the original
image except the airplane

Table 2 Gφ, N (number of
pixels of the original image), r
(number of pixels of the target
sub-image),
k(0) = 1

r
∑

i∈A θi , l(0) =
1

N−r
∑

i∈B θi and σ 2
l (0) =

1
N−r

∑
i∈B

∣
∣θi − l(0)

∣
∣2 are

some priori data

Priori
data

No. 1 case No. 2 case

Gφ 577.4167784268036 577.4167784268036

N 262144 262144

r 1294 29459

k(0) 0.001584193144183 0.001589671717044

l(0) 0.001896058040768 0.001933113637537

σ 2
l (0) 2.248558073521673 × 10−7 1.896400939105966 × 10−7

In (1) step, first, we represent colors of the original image by using angles {ai } (see

Eq. (2)). Second, calculating θi = ai
Gφ

where Gφ =
√∑N−1

y=0 a2
y and N = 262144 ,

we acquire a quantum state (|ψ(1)〉 or |ψ(2)〉) as the representation of the original
image for No. 1 (the edge of an airplane) or No. 2 (the whole airplane) case.

|ψ(1)〉 =
262143∑

i=0,i∈B

θi |i〉 ⊗ |0〉 +
262143∑

i=0,i∈A

θi |i〉 ⊗ |1〉 (83)

where B and A are defined as two sets containing coordinates of the background
sub-image and the edge of the airplane (see the middle of Fig. 5), respectively.

|ψ(2)〉 =
262143∑

i=0,i∈B

θi |i〉 ⊗ |0〉 +
262143∑

i=0,i∈A

θi |i〉 ⊗ |1〉 (84)

where B and A are defined as two sets contain coordinates of the background sub-
image and the whole airplane (see the right of Fig. 5), respectively. Third, we create
the quantum state (|ψ(1)〉 or |ψ(2)〉) by the quantum circuit in Fig. 1. Finally, we store
some priori data in quantum systems shown in Table 2.
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Table 3 Some calculated data
Calculated data No. 1 case No. 2 case

α π 2.545259554463482

t 11 2

Pmax 1,294 29,459

k(0) 0.9413 0.9559

(a) (b)

Fig. 6 The quantum circuit of the improved Grover’s algorithm. a for No. 1 case and b for No. 2 case,
dashed box is an oracle (i.e., Ir in Eq. (48)) and solid box is −H⊗18(I⊗18 − (1 − eiα) |0〉 〈0|)H⊗18 where

α = π and α = 2.545259554463482, respectively. Note |χi 〉 is a state |0〉 or |1〉, R(α) =
[

eiα 0
0 eiα

]

in

Fig. 6

In (2) step, α (a rotation angle of marked and unmarked states corresponding to
the target sub-image and the background sub-image), t (the number of iterations of
Grover), Pmax (the max probability of success after t iterations to search out marked
states) are calculated by Eqs. (71–75), (66) and shown in Table 3. And then, we design
the quantum circuit of the improved Grover’s algorithm shown in Fig. 6.

In (3) step, for No. 1 case, we retrieve a coordinate of the edge of the airplane with
probability 94.13 % by measuring the first 19 qubits in (a) of Fig. 6 every time. For No.
2 case, we know that |ψ(t)〉 = ∑

i∈B li (t) |i〉 |0〉 +∑
i∈A ki (t) |i〉 |1〉 after t Grover

iterations where ki (t) and li (t) are amplitudes of the marked and unmarked states, and
obtain |ki (t)|2 by measuring the first 19 qubits in (b) of Fig. 6. Then, we get ki (0)
(i.e., θi ) by Eqs. (77–82) and calculate ai = θi × Gφ which represents a color. We
can retrieve a coordinate of the airplane with probability 95.59 % by measuring (b) of
Fig. 6 every time, but we retrieve a coordinate of the airplane with probability 8.63 %
(
∑

i∈A (θi )
2 = 0.0863) by measuring directly the original image in Fig. 5.

If the number of sub-images 2 < m ≤ 8, the NAQSS state |ψ(r)〉 in (43) is small
changed into
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1010 H.-S. Li et al.

Fig. 7 A 4 × 4 × 2 image which is divided into four sub-images (numbered as 0, 1, 2, 3), and on the right
for lower sub-image

|ψm〉 =
N−1∑

i=0

θi |i〉 ⊗ | j〉 , j ∈
{

0, 1, · · · (2�log(m)� − 1)
}

(85)

For example, suppose m = 4, let us consider a 4 × 4 × 2 image shown in Fig. 7
as an example. Grover search algorithm for state |ψm〉 in (85) just needs to rede-
fine the quantum Oracles as following: f (i1i2 · · · in00) = 1, f (i1i2 · · · in01) =
1, f (i1i2 · · · in10) = 1 and f (i1i2 · · · in11) = 1 correspond, respectively, to No.
0, 1, 2, 3 sub-images in Fig. 7. For example, we retrieve No. 0 sub-image using Grover
search algorithm by redefined A and B

A = {i | f (i1i2 · · · in j1 j2) = 1}, B = {i | f (i1i2 · · · in j1 j2) = 0} (86)

where f (i1i2 · · · in00) = 1, f (i1i2 · · · in j1 j2) = 0 for j1 j2 
= 00, i = i1i2 · · · in and
i1, i2, . . . in, j1, j2 ∈ {0, 1}.

5 Conclusion

In this paper, a (n +1)-qubit NAQSS state can represent a k-dimensional color image,
where n qubits represent colors and coordinates of 2n pixels and 1 qubit represents an
image segmentation information to improve the accuracy of image segmentation, while
only the image (not including additional segmentation information) is represented by
(n +1)-qubits in paper [7]. And we design a general quantum circuit to store an image
in quantum systems and study the different strategies to retrieve images from quantum
systems. So, the NAQSS provides a foundation not only to represent images but also to
explore theoretical and practical aspects of image processing on quantum computers.
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