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Abstract A novel gray-level image encryption/decryption scheme is proposed, which
is based on quantum Fourier transform and double random-phase encoding technique.
The biggest contribution of our work lies in that it is the first time that the dou-
ble random-phase encoding technique is generalized to quantum scenarios. As the
encryption keys, two phase coding operations are applied in the quantum image spa-
tial domain and the Fourier transform domain respectively. Only applying the correct
keys, the original image can be retrieved successfully. Because all operations in quan-
tum computation must be invertible, decryption is the inverse of the encryption process.
A detailed theoretical analysis is given to clarify its robustness, computational com-
plexity and advantages over its classical counterparts. It paves the way for introducing
more optical information processing techniques into quantum scenarios.

Keywords Image processing · Double random-phase encoding · Encryption ·
Decryption · Quantum Fourier transform

1 Introduction

Image is one of the most important information representation models and widely
used in modern society. With the rapid development of Internet technology and digital
signal processing technology, the secure transmission of image data is becoming a
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most important problem. Thus, image encryption is of great significance but of differ-
ence from traditional text encryption due to some inherent features of the image, such
as bulk data capacity, high redundancy and strong correlation among adjacent pixels.
A variety of image encryption schemes have ever been proposed, based on scan pat-
terns methodology [1], double random-phase encoding (DRPE) [2], iterative random
encoding and gyrator transformation [3], vector quantization [4], quadtree compres-
sion [5,6], chaos maps with total shuffling [7], Kolmogorov flow [8] and so on.

Optical processing systems may be useful for security applications owing to their
ability to operate with high speed and in parallel and the characteristics of having vari-
ous attributes such as amplitude, phase, wavelength, polarization and so on. However,
up to date, most optical encryption systems are far from satisfactory. This is because
there exist two following reasons. On the one hand, optical elements via free space
transmission have big size, weak operating flexibility and stability. For example, the
DRPE scheme has skew alignment drawbacks [9,10] and the encryption results as the
complex amplitude distributions are difficult to store and transmit. On the other hand,
most optical encryption systems have vulnerabilities against attacks. For example, the
security of the DRPE method has been thoroughly analyzed and a few weaknesses
and attacks have started to appear, including known plaintext attack [11,12], chosen
ciphertext attack [13] and chosen-plaintext attack [14] and so on. Therefore, optical
encryption systems should be used cautiously in practice.

As we know, cryptography is the approach to protect data secrecy in public environ-
ment. The security of most classical cryptosystems is based on the assumption of com-
putational complexity and might be susceptible to the strong ability of quantum compu-
tation [15,16]. Fortunately, this difficulty can be overcome by quantum cryptography
[17,18], where the security is assured by quantum physical principles such as Heisen-
berg uncertainty principle, quantum no-cloning theorem and so on. With the advantage
of higher security, quantum cryptography has attracted a great deal of attention now.

Processing images on classical computers have been studied extensively. With
the development of quantum computation, classical image processing is naturally
extended to the quantum scenario. Research on quantum image processing started with
proposals on quantum image representations such as Qubit Lattice [19,20], Real Ket
[21] and Flexible Representation of Quantum Images (FRQI) [22]. On the other hand,
classical frequency domain transformations have been proposed to be implemented on
quantum computers such as quantum Fourier transform (QFT) [23], quantum discrete
cosine transform (QDCT) [24,25], quantum Wavelet transform (QWT) [26], quan-
tum fractional Walsh transform (QFWT) [27] and quantum discrete Hartley transform
(QDHT) [28,29]. These quantum transforms are more efficient than their classical
counterparts [23]. For example, as shown in Ref. [23], the quantum circuit provides a
�(n2) algorithm for performing the QFT. In contrast, the best classical algorithms for
computing the discrete Fourier transform on 2n elements are algorithms such as the
Fast Fourier Transform (FFT), which compute the discrete Fourier transform using
�(n2n) gates. That is, it requires exponentially more operations to compute the Fourier
transform on a classical computer than it does to implement the QFT on a quantum
computer. The similar conclusions can be drawn for other quantum transforms. Table 1
summarizes the classical and quantum algorithm complexities for some representative
transforms and applications.
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Table 1 Comparisons between classical and quantum algorithm complexities

Fourier
trans-
form

Discrete
cosine
trans-
form

Wavelet
trans-
form

Fractional
Walsh
trans-
form

Discrete
Hartley
trans-
form

Search
algo-
rithm

Prime
factor-
ization

C �(n2n) �(n2n) �(n2n) �(n2n) �(n2n) �(n) exp(�(n1/3 log2/3 n))

Q �(n2) �(n2) �(n2) �(n) �(n2) �(
√

n) �(n2 log n log log n)

In the first column, C denotes classical algorithm complexity, and Q for quantum algorithm complexity

However, there are some special classical image processing operations that cannot
be applied on quantum images, for example convolution and correlation [30], because
all operations in quantum computation must be invertible. Quantum transforms have
been used for images processing directly [22,31–34].

To solve the drawbacks of the optical encryption systems and combine the merits of
quantum cryptography, we propose a novel image encryption and decryption scheme
based on QFT and DRPE proposed by Refregier and Javidi [2]. Due to the proper-
ties of quantum parallel computation, the use of quantum transforms speeds up the
image encryption and decryption procedures. A detailed theoretical analysis is given
to clarify its robustness, computational complexity and advantages over its classical
counterparts.

The outline of this work is as follows. In Sect. 2, a novel and flexible quantum
representation for gray-level images (FQRGI) is introduced. Section 3 introduces the
proposed quantum encryption and decryption scheme. Section 4 is devoted to classical
simulation and performance comparison. Finally, the conclusion is drawn in Sect. 5.

2 Flexible quantum representation for gray-level images (FQRGI)

The properties of gray information and position are extracted from the gray-level
image to generate a representation of image in quantum states as follows,

|I (θ)〉 = 1

2n

22n−1∑

j=0

|c j 〉 ⊗ | j〉, (1)

|c j 〉 =
(
|0〉 + eiθ j |1〉

)
, (2)

where θ j ∈ [
0, π2

]
, j = 0, 1, . . . , 22n −1, |0〉, |1〉 are two dimensional computational

basis quantum states, (θ0, θ1, . . . , θ22n−1) is the vector of phases encoding information
about gray-level information, and | j〉, for j = 0, 1, . . . , 22n − 1 are 22n dimensional
computational basis quantum states. There are two parts in the quantum image repre-
sentation: |c j 〉 and | j〉 which encode gray-level information and their corresponding
positions in the image, respectively. To perform operation on gray-level information,

a phase gate U =
[

1 0
0 eiψ j

]
can be performed on |c j 〉.
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Fig. 1 Encoding procedure

For two dimensional images, the location information encoded in the position qubit
| j〉 includes two parts; the vertical and horizontal co-ordinates. In 2n-qubit systems
for preparing quantum images, or n-sized images, the vector

| j〉 = |y〉|x〉 = |yn−1 yn−2 . . . y0〉|xn−1xn−2 . . . x0〉, x j , y j ∈ {0, 1}

for every j = 0, 1, . . . , 22n − 1 encodes the first n-qubit yn−1 yn−2 · · · y0 along the
vertical location and the second n-qubit xn−1xn−2 · · · x0 along the horizontal axis.

3 Quantum image encryption and decryption scheme

In this section, we will first review the DRPE technique [2]. Then we will introduce
its idea into our quantum encryption and decryption strategies.

3.1 DRPE technique

The DRPE technique was proposed by Refregier and Javidi in 1995 [2]. This method
allows one to encode a primary image into a stationary white noise, which has been
receiving much interest because of its high-level data security. The encoding procedure
is given by the following steps and can be shown in Fig. 1.

Assume f (x, y) is the plaintext image and the size is M × N , ϕ(x, y) is the cipher
image. The formulas of the encoding and decoding procedures are given respectively
as follows:

ϕ(x, y) = FT −1{FT { f (x, y) exp[ j2πn(x, y)]} exp[ j2πb(ξ, η)]}, (3)

f (x, y) = FT −1{FT {ϕ(x, y)} exp[− j2πb(ξ, η)]} exp[− j2πn(x, y)], (4)

where n(x, y) and b(ξ, η) are the two random-phase functions in spatial domain and
frequency domain, respectively, which are uniformly distributed in [0; 1]. FT and
FT −1 represent the Fourier transform and its inverse Fourier transform, respectively.
f (x, y) denotes the plaintext image, which is a complex image.

The basic principle of this technique is as follows. Two unrelated random phase
marks (RPM, i.e. exp[ j2πn(x, y)] and exp[ j2πb(ξ, η)]) act as the keys to be applied
on the input plane and Fourier spectrum plane respectively, as shown in Fig. 1. The
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input image is encrypted to get the encrypted image on the output plane. The encrypted
image is complex-amplitude stationary white noise. The cipher image cannot be
decrypted successfully by any unauthorized people without keys, thus the security
of the image is protected well. If only the first RPM is used to encrypt the original
image, the encrypted image is white but nonstationary and not encoded. If one only
uses the second RPM on the Fourier spectrum plane to encrypt image, the encrypted
image can easily be deciphered.

To learn the DRPE technique further, refer to Ref. [2] for details. There is no
spectrum apodization in the Fourier domain, and this method leads to a robust recon-
struction of the primary image as well as to high optical efficiency and robustness
against blind deconvolution. This is an attractive optical technique for high-security
applications. However, as mentioned above, the DRPE scheme is far from satisfactory
because of its skew alignment drawbacks and the difficulty of storing and transmitting
the encryption results as the complex amplitude distributions. In addition, the security
of the DRPE scheme has been thoroughly analyzed and been found a few weaknesses
and attacks mentioned above [11–14]. Therefore, there exists the difficulty in practical
use for the DRPE scheme.

3.2 Quantum image encryption

As shown in Sect. 2, we just take the gray-level information of quantum image into

consideration. A quantum image is written as |I (θ)〉 = 1
2n

∑22n−1
j=0 |c j 〉 ⊗ | j〉, where

|c j 〉 represents the vectors in color space. Assume the plaintext quantum image is

|O〉 = 1
2n

∑22n−1
j=0 |c j 〉⊗| j〉, the keys for spatial and QFT domain are phase operations

UK1 =
[

1 0
0 eiψ j

]
and UK2 =

[
1 0
0 eiυ j

]
, respectively. Here ψ j , υ j are real numbers

and distributed uniformly between 0 and 2π .
Step 1. Encode the original plaintext image in spatial domain to get |M〉 using the

key K1.

|M〉 = K1|O〉 = UK1 ⊗ I22n |O〉

= UK1 ⊗ I22n
1

2n

22n−1∑

j=0

|c j 〉 ⊗ | j〉

= 1

2n

22n−1∑

j=0

UK1 |c j 〉 ⊗ | j〉

= 1

2n

22n−1∑

j=0

|d j 〉 ⊗ | j〉. (5)

Here, |d j 〉 = (|0〉 + ei(θ j +ψ j )|1〉).
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Step 2. Execute QFT on |M〉 to get its QFT QFT (|M〉) shown as follows.

QFT (|M〉) = QFT

⎛

⎝ 1

2n

22n−1∑

j=0

|d j 〉 ⊗ | j〉
⎞

⎠ . (6)

Here, the QFT on an orthonormal basis |0〉, . . . , |N − 1〉 is defined to be a linear
operator with the following action on the basis states,

QFT : | j〉 → 1√
N

N−1∑

k=0

e2π i jk/N |k〉. (7)

Step 3. Encrypt QFT (|M〉) using the key K2, and get |M1〉.

|M1〉 = K2 QFT (|M〉)
= UK2 ⊗ I22n QFT (|M〉)

= UK2 ⊗ I22n QFT

⎛

⎝ 1

2n

22n−1∑

j=0

|d j 〉 ⊗ | j〉
⎞

⎠

= 1

2n

22n−1∑

j=0

UK2 QFT
(|d j 〉 ⊗ | j〉). (8)

Step 4. Execute the inverse QFT to get the quantum cipher image |C〉 what we expect
as follows.

|C〉 = inQFT (|M1〉)

= inQFT

⎛

⎝ 1

2n

22n−1∑

j=0

UK2 QFT
(|d j 〉 ⊗ | j〉)

⎞

⎠ . (9)

Here the inverse QFT is the implementation of the quantum circuit of QFT in the
reverse order.

The quantum image encryption procedures can be implemented by the following
quantum circuit, as shown in Fig. 2.

Fig. 2 The quantum image encryption circuit
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3.3 Quantum image decryption

In this phase, only two keys are needed to decrypt the cipher image, i.e. the phase
operations UK1 and UK2 . Because all the transformations used in quantum computation
are unitary transformations, the encryption procedure is completely reversible. Our
decrypting procedure is as follows.

Step 1. Execute QFT on |C〉, and get QFT (|C〉) shown as follows.

QFT (|C〉) = QFT (inQFT (|M1〉)) = |M1〉. (10)

Step 2. Perform the decryption operation on |M1〉 using the key K2 shown as
follows.

K −1
2 |M1〉 = U+

K2
⊗ I22n |M1〉

= U+
K2

⊗ I22n K2 QFT (|M〉)
= (U+

K2
⊗ I22n )(UK2 ⊗ I22n )QFT (|M〉)

= U+
K2

UK2 ⊗ I22n QFT (|M〉)
= QFT (|M〉) . (11)

Step 3. Execute the inverse QFT to get |M〉 shown as follows.

inQFT (QFT (|M〉)) = |M〉. (12)

Step 4. Perform the inverse operation on |M〉 using the key K1 to get the quantum
plaintext image |O〉 as follows.

K −1
1 |M〉 = U+

K1
⊗ I22n |M〉

= U+
K1

⊗ I22n K1|O〉
= (U+

K1
⊗ I22n )(UK1 ⊗ I22n )|O〉

= U+
K1

UK1 ⊗ I22n |O〉
= |O〉. (13)

4 Numerical simulation

We will give a detailed theoretical analysis to clarify its robustness, computational
complexity and advantages over its classical counterparts.

Since a practical and useful quantum computer is unavailable, we cannot clearly
say what the hardware will be like. Nevertheless, we can assume that any practical
quantum computer will have an in-built error correction mechanism to protect the
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quantum information from errors due to uncontrolled interactions with the environ-
ment, or due to imperfect implementations of the quantum logical operations [23,35].
It may be possible to incorporate intrinsic fault tolerance into the design of quantum
computing hardware.

The simulations are based on linear algebraic constructions. To simulate the quan-
tum effects such as quantum entanglement or superposition, the complex vectors are
used, and the image processing operations are simulated by the unitary matrices. The
final step in these simulations is the measurement, which converts the quantum infor-
mation into the classical information in form of probability distributions. Extracting
and analyzing these distributions gives information for retrieving the transformed
images [22,36].

MATLAB is a mathematical software. It facilitates the representation and manipu-
lation of large arrays of vectors and matrices which makes it a good tool for simulating
quantum states (such as our images) and their transformations. In particular, by treating
the quantum images as large matrices the required simulation of their transformation
using linear algebraic constructions equivalent to the quantum circuit elements is pos-
sible. MATLAB’s Image Processing Toolbox provides a set of graphical tools for
image processing, analysis, visualization, and algorithm development using which
these images and circuit to manipulate them, can be effectively simulated. The results
reported in this section are based on classical simulation experiments using a dataset
of five different images.

In this section, the simulations are analyzed from two aspects. Firstly, in order
to understand the encryption algorithm and prove that our scheme is reliable and
secure, we give a classical numerical simulation. Secondly, we make a comparison
between optical image encryption based on DRPE technique and our scheme in terms
of security, robustness and computational complexity to demonstrate the advantage of
the proposed quantum encryption scheme.

4.1 Evaluation of the proposed scheme

Classical numerical simulation has been implemented on a plaintext image, which
consists of 256 × 256 pixels. Experiments are performed on a laptop with Intel(R)
Core(TM) 2 Duo CPU P7450 2.13 GHz 1.99 GB RAM equipped with the MATLAB
R2012a environment.

The plaintext image is shown in Fig. 3a, and the corresponding cipher image is
shown in Fig. 3b.

An ideal encryption scheme should resist against all kinds of attacks such as sta-
tistical attacks, brute-force attacks, differential attacks, cipher only attacks and the
known plaintext attacks, etc. According to the basic principles of cryptology, a desir-
able encryption scheme requires sensitivity to cipher keys, that is, the cipher should
have close correlation with the keys. In this section, the key sensitivity analysis and
statistical analysis on the proposed image encryption scheme are discussed. All the
analyses show that the proposed image encryption scheme is highly secure thanks to
its large key space and satisfactory permutation–diffusion architecture.
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Fig. 3 a The plaintext image, b the cipher image

4.1.1 Key sensitivity analysis

A good image encryption algorithm should be sensitive to the cipher key, and the
key space should be sufficiently large to make brute-force attack ineffective. It is
recommended in Ref. [37] that the ideal key space should be larger than 2100 while
considering the current computer computation speed. In our cryptosystem, the key
space is as large as the plaintext image, and the keys are two independent white
sequence uniformly distributed in [0, 1], which represent the key of spatial domain
and QFT frequency domain, respectively.

Key sensitivity is an essential property for any good cryptosystem, which ensures
the security of the cryptosystem against the brute-force attack. The key sensitivity of
a cryptosystem can be observed from two aspects: (i) the attacker employs slightly
different keys to decrypt the cipher image so that the decryption will fail to obtain the
plaintext image; (ii) the cipher image produced by the cryptosystem should be sensitive
to the secret key, i.e., if the attacker uses two slightly different keys to encrypt the same
plaintext image, then the two cipher images should be completely independent to each
other.

We will use the following three kinds of keys to decrypt the cipher image in order
to analyze the keys’ sensitivity: (i) the spatial and frequency domain keys are all right;
(ii) the right frequency domain key while the spatial domain key is wrong; and (iii)
the right spatial domain key with the wrong frequency domain key. The results of
the simulations are shown in Fig. 4. From the results, we can clearly see that the
keys decide the results. We can get the absolutely correct plaintext image when the
spatial and frequency domain key are all right, which is shown in the left of Fig. 4.
With a similar spatial domain key and the right frequency domain key, we get another
independent white sequence uniformly distributed in [0, 1], which is shown in the
middle of Fig. 4. From the results we can still see the outline of the plaintext image,
but very blurry. Finally, we use the right spatial domain key and generate a similar
random matrix as the wrong frequency domain key so that the decrypted image is a
random noise, which is shown in the right of Fig. 4.

Obviously, the decryption using a very similar key completely fails to obtain the
plaintext image. Because the key distribution is unknown for a large key space, the
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Fig. 4 Results for tests of keys’ sensitivity

plaintext image cannot be recovered even though there is a slight difference between
the encryption keys and the decryption keys, which ensures the double random phase
encryption to have high security.

4.1.2 Statistical analyses

The statistical analyses on the cipher image are of crucial importance for a cryptosys-
tem. An ideal cryptosystem should be robust against any statistical attacks. In order to
prove the security of the proposed encryption scheme, the adjacent pixel correlation
analysis and the histogram analysis on the proposed image encryption scheme are
discussed in this section.

4.1.2.1 Correlation among adjacent pixels

Each pixel in the plaintext image is highly correlated with its adjacent pixels either in
horizontal, vertical or diagonal direction. An ideal encryption design should produce
the cipher images with no such correlation in the adjacent pixels. We have computed
the correlation coefficients for horizontally, vertically and diagonally adjacent pixels,
respectively. The formulas of correlation coefficients are given as:

cov(x, y) = E{(x − E(x))(y − E(y))}, (14)

Cxy = cov(x, y)√
D(x)D(y)

, (15)

where x and y are gray-level values of two adjacent pixels in the image. E(x) =
1
N

∑N
i=1 xi , D(x) = 1

N

∑N
i=1 (xi − E(x))2. Then the same operations are performed

along the vertical and the diagonal directions.
The visual test of the correlation of adjacent pixels can be done by plotting the

distribution of the adjacent pixels in the plaintext image and its corresponding cipher
image. We select 10,000 pairs of adjacent pixels in each direction from the plaintext
image and its cipher image randomly. We have shown the distribution of horizontally,
vertically and diagonally adjacent pixels in the plaintext image ‘Lena’ and its corre-
sponding cipher image in Figs. 5, 6 and 7, respectively. The correlation coefficients
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Table 2 The correlation coefficients results of the plaintext image ‘Lena’ and its cipher image

The plaintext image (Lena) The cipher image

Horizontally Vertically Diagonally Horizontally Vertically Diagonally

0.9660 0.9660 0.8908 −0.0165 −0.0165 0.0297

results in horizontally, vertically and diagonally adjacent pixels of plaintext image
‘Lena’ and its corresponding cipher image are shown in Table 2. It is clear that the
correlation coefficients for the test cases are very small (or approximately zero) and
hence no correlation between the plaintext image and its corresponding cipher image
exists. From Figs. 5, 6, and 7, we can clearly know that the plaintext image has strong
correlation, while the correlation of the corresponding cipher image is random.

Fig. 5 The left is the distribution of horizontally adjacent pixels in the plaintext image and the right is the
distribution of horizontally adjacent pixels in the corresponding cipher image

Fig. 6 The left is the distribution of vertically adjacent pixels in the plaintext image and the right is the
distribution of vertically adjacent pixels in the corresponding cipher image
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Fig. 7 The left is the distribution of diagonally adjacent pixels in the plaintext image and the right is the
distribution of diagonally adjacent pixels in the corresponding cipher image

4.1.2.2 Histogram

Gray histogram is one of the simplest tools extensively used in digital image process-
ing. It describes an image’s gray content. An image histogram illustrates how pixels in
an image are distributed by plotting the number of pixels at each gray level. An image
histogram includes considerable information. Some types of images can be completely
described by the histogram. The distribution of the cipher is of much importance. More
specifically, it should hide the redundancy of the plaintext and should not leak any
information about the plaintext or the relationship between the plaintext and its cipher.

Here we plot the histograms of the plaintext image and the corresponding cipher
image as shown in Figs. 8 and 9, respectively. It is clearly seen that the histogram of
the cipher image is fairly uniform and significantly different from that of the plaintext
image so that it does not provide any clue to statistical attacks.

Fig. 8 The histogram of the plaintext image
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4.2 Comparison with the classical image encryption based on DRPE technique

4.2.1 Comparison in terms of statistical analyses

We have proposed many parameters when analyzing the performance of image-
encryption techniques. From those parameters, the criteria adopted for measuring
the performance of our scheme are summarized below.

• Key space: An ideal encryption scheme should have a large key space to make
brute-force attack infeasible.

• Security: An ideal encryption scheme should well resist various kinds of attacks
like statistical attack, differential attack, etc.

• High sensitivity: A desirable encryption scheme requires high sensitivity to cipher
keys, i.e., the cipher text should have a close correlation with the keys.

These parameters are somewhat dependent on each other. However, our compari-
son will be focused on them separately. Results of simulation experiments using the
proposed image encryption scheme as reported in the preceding section will be used
as the basis of our comparison with the optical method using DRPE technique. The
reason of selecting the method based on DRPE technique for performance compar-
ison is that because our proposed quantum encryption scheme is the generalization
of the method based on DRPE technique to quantum scenarios, it can demonstrate
representatively the advantage of the proposed quantum encoding scheme.

We will explain how classical numerical simulation can demonstrate the advantage
of the proposed quantum encoding scheme. First, we easily find that the proposed
quantum encryption scheme has a large key space. This is because ψ j and υ j are real
numbers and distributed uniformly between 0 and 2π , which implies a very large key
space.

At last, let us make a comparison between correlation of the quantum scheme and
the method using the DRPE technique for six images, as shown in Table 3.

From Table 3, we can easily see that our quantum encryption scheme has a better
performance than the method using the DRPE technique for six images as experiments.
For example, for the image canoe, horizontal correlation using the method based on
the DRPE technique is −0.0663, while it is −0.0157 in the proposed quantum encryp-
tion scheme; diagonal correlation using the method based on the DRPE technique is
−0.0450, while it is −0.0355 in the proposed quantum encryption scheme; vertical

Fig. 9 The histogram of the cipher image

123



3490 Y.-G. Yang et al.

Table 3 Comparisons between correlation of quantum scheme and the method using the DRPE technique
for six images

Encrypted images Horizontal correlation Diagonal correlation Vertical correlation

DRPE Quantum DRPE Quantum DRPE Quantum

canoe.jpg −0.0663 −0.0157 −0.0450 −0.0355 0.0703 −0.0373

pepper.jpg −0.0261 −0.0057 0.0302 0.0275 0.0048 −0.0377

football.jpg −0.0374 0.0136 −0.0162 0.0341 −0.0060 0.0227

pears.jpg 0.0035 −0.0194 0.0136 0.0030 0.0205 −0.0481

lena.jpg −0.0071 −0.0070 0.0421 −0.0633 −0.0199 −0.0232

baboon.jpg 0.0161 0.0344 0.0149 −0.0164 −0.0039 −0.0015

correlation using the method based on the DRPE technique is 0.0703, while it is
−0.0373 in the proposed quantum encryption scheme.

4.2.2 Comparison in terms of robustness

Maybe the numerical simulations above are not enough to show the claims and sup-
posed benefits of the proposed quantum image encryption/decryption scheme. Now
from the basic principles of quantum mechanics we will explain why the proposed
quantum encryption scheme is secure and robust. As we know, the reason why classical
encryption technique is useful in modern society is that it can safeguard the classical
data from unauthorized modification and eavesdropping. Classical data cannot change
irreversibly whether the adversary adopts any active or passive attack strategy. There-
fore, even if the classical data have suffered the attack, the legitimate parties cannot
detect this fact. In contrast, because of the quantum no-cloning theorem, it is impossi-
ble to directly copy the information encoded in an unknown quantum state. Moreover,
according to the quantum uncertainty of the quantum measurement theory, if one mea-
sures an unknown quantum state, it will collapse irreversibly. If the adversary wants to
obtain the information about the quantum state, he has to measure it, which will make
the quantum state collapse randomly into an eigenstate of the measurement operators
irreversibly. Therefore, the principles of quantum mechanics ensure the security and
robustness of the proposed quantum encryption scheme.

In contrast, the DRPE scheme is far from satisfactory because of its skew alignment
drawbacks and the difficulty of storing and transmitting the encryption results as the
complex amplitude distributions. Moreover, the security of the DRPE scheme has been
thoroughly analyzed and been found a few weaknesses and attacks mentioned above
[11–14]. Therefore, there exists the difficulty in practical use for the DRPE scheme.

4.2.3 Comparison in terms of computational complexity

Now let us first compute the computational complexity of the classical algo-
rithm. According to Eq. (3), ϕ(x, y) = FT −1{FT { f (x, y) exp[ j2πn(x, y)]}
exp[ j2πb(ξ, η)]}, FT and FT −1 represent the Fourier transform and its inverse
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Fig. 10 The logic diagram of a
full adder

Fourier transform, respectively. f (x, y) denotes the M × N plaintext image. For
simplicity, let M = N . There are N 2 pixels in a plaintext image. How many opera-
tions does this encryption use? We start by doing N 2 multiplications of f (x, y) and
exp[ j2πn(x, y)]. Then we perform a Fourier transform on f (x, y) exp[ j2πn(x, y)],
using N 4 complex multiplication operations. Next we further do N 2 multiplications
of FT { f (x, y) exp[ j2πn(x, y)]} and exp[ j2πb(ξ, η)]. At last we perform an inverse
Fourier transform on FT { f (x, y) exp[ j2πn(x, y)]} exp[ j2πb(ξ, η)]. Because the
computational complexity is same for Fourier transform and its inverse, computing an
inverse Fourier transform on FT { f (x, y) exp[ j2πn(x, y)]} exp[ j2πb(ξ, η)] needs
N 4 complex multiplication operations. We see that to realize the encryption algorithm
the total operations N 2+N 4+N 2+N 4 = 2N 2(N 2+1) are required. Assume f (x, y)
is a 256 × 256 plaintext image, i.e., N = 256, the number of the total operations is
2 × 2562(2562 + 1) ≈ 8589934592. For an n × n multiplier, n(n − 1) full adders and
n2 AND gates are required. Figure 10 is the logic diagram of a full adder. To realize
a full adder, 9 AND gates and 9 NOT gates are required.

It is obviously seen that the gates used by the classical algorithm is huge amazingly.
Therefore, the classical algorithm has a computational complexity of �(N 8) gates.

Next let us compute the computational complexity of the quantum encryption algo-
rithm. We start by doing a phase operation UK1 on the first qubit. This is followed
by a QFT operation on the (2n + 1) qubits. As we know [13], the quantum circuit
provides a �(n2) algorithm for performing the QFT. Then another phase operation
UK2 is done on the first qubit. At last, an inverse QFT is performed on the (2n + 1)
qubits. Therefore, the quantum encryption algorithm has a computational complexity
of �(n2) gates.

It is easily seen that the computational complexity of the two encryption schemes
depends on that of the Fourier transform. Even if we use the best classical FFT algo-
rithm to compute the discrete Fourier transform on 2n elements, it computes the dis-
crete Fourier transform using�(n2n) gates. In contrast, the quantum circuit provides
a �(n2) algorithm for performing the QFT. That is, it requires exponentially more
operations to compute the Fourier transform on a classical computer than it does to
implement the QFT on a quantum computer. This implies that the proposed quantum
encryption scheme takes advantage over its classical counterparts in terms of security,
robustness and computational complexity.
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5 Conclusion

In this paper, we have proposed a novel image encryption and decryption scheme
based on QFT and DRPE. We uses one phase coding in the quantum image domain and
another phase coding in the QFT domain to perform double quantum image encryp-
tion. The two random-phase encodings are used as the keys to enhance the security
of the proposed scheme. Because all operations in quantum computation must be
invertible, decryption is the inverse of the encryption process. Numerical simulations
and theoretical analyses are given to clarify its robustness, computational complexity
and advantages over its classical counterparts. It paves the way for introducing more
optical information processing techniques into quantum scenarios.
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