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Abstract In this work, we present a novel and efficient information-processing way,
multiparty-controlled joint remote state preparation (MCJRSP), to transmit quan-
tum information from many senders to one distant receiver via the control of many
agents in a network. We firstly put forward a scheme regarding MCJRSP for an arbi-
trary single-particle state via Greenberg–Horne–Zeilinger entangled states, and then
extend to generalize an arbitrary two-particle state scenario. Notably, different from
conventional joint remote state preparation, the desired states cannot be recovered but
all of agents collaborate together. Besides, both successful probability and classical
information cost are worked out, the relations between success probability and the
employed entanglement are revealed, the case of many-particle states is generalized
briefly, and the experimental feasibility of our schemes is analysed via an all-optical
framework at last. And we argue that our proposal might be of importance to long-
distance communication in prospective quantum networks.

Keywords Controlled joint remote state preparation ·
Greenberg–Horne–Zeilinger state · Classical information cost

1 Introduction

Quantum information theory has opened up the possibility of novel form of informa-
tion processing tasks which are not possible in the region of classical information.
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Recently, one of remarkable approaches to quantum information processing has been
remote state preparation (RSP), which is originally presented by several seminal
perspectives [1–3]. RSP is dedicated to accomplishing an information-transmitted
task that one sender transports a known quantum state to one receiver in distant loca-
tion via local operations and classical communication (LOCC). Over the past decade,
a large number of research groups focused on the topic about RSP, and reported enor-
mous promising and feasible schemes both theoretically [4–16] and experimentally
[17–22]. Very recently, another effective method of information-processing, so-called
joint remote state preparation (JRSP), has been explored. In JRSP, the information
of quantum state to be delivered is mathematically split into many pieces so as to
guarantee the information security. Hence, the state cannot be restored by the receiver
unless all the senders collaborate together. This is readily the main motivation for
exploiting JRSP. To date, JRSP has received much attention, and a large number
of proposals have been presented, e.g., JRSP of one-particle states [23–27], JRSP
of two-particle states [26–34], JRSP of three-particle states [33–39], JRSP of four-
particle states [40–43] and JRSP of multi-particle states [44–46] have been investi-
gated.

It is well known that controlled information-processing is a hot topic in the field of
quantum information communication. As a matter of fact, many authors have focused
on it, and proposed many significant concepts, such as controlled teleportation [47,48],
controlled secure direct communication [49], controlled logic gates [50,51], and so
forth. In this paper, we will investigate another new approach, namely, multiparty-
controlled joint remote state preparation (MCJRSP), which can be used for JRSP of
arbitrary single- and two-particle states via the control of multi-agent. The receiver
can get access to the desired state, as long as all the agents collaborate through LOCC.
However, if one agent does not cooperate, the desired state cannot fully be recovered
by the receiver, that is to say, the desired state is unable to be restored by anyone
or several of the staff but the agents all collaborate. It deserves emphasizing that the
state information is mathematically distributed to the senders rather than anyone of the
agents. In this sense, the information delivery actually takes place between the senders
and the receiver, while the agents are capable of supervising the whole preparation
procedure including switching its occurrence. Thus, we claim that MCJRSP might
be of importance to long-distance communication with multi-node in prospective
quantum networks.

This paper is structured as follows. In the next section, our first MCJRSP scheme for
an arbitrary single-particle state is expounded, which uses one multiple Greenberg–
Horne–Zeilinger (GHZ) state as quantum channel. Additionally, success probability
of the scheme (SPS) and classical information consumption (CIC) are calculated. And
then we extend to generalize our second MCJRSP scheme for an arbitrary two-particle
state in Sect. 3, which takes two GHZ-class states as quantum channels. SPS and CIC
are figured out as well. In Sect. 4, some interesting points are discussed including the
relations between the SPS and the employed entanglements, the generalization to the
case of many-particle states and the feasibility of the proposed schemes. At last, we
close the paper with a brief summary.
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Multiparty-controlled joint remote state preparation 3225

2 MCJRSP for an arbitrary single-particle state

In this scheme, there are (n + 3) authorized participators, say, Alice, Bob, Dick, and n
agents labeled by the sequence C1, C2, . . . , Cn . Alice and Bob are the states’ senders
while Dick as the receiver. Given both Alice and Bob are arranged to jointly prepare
an arbitrary single-particle state within distant receiver’s site via the supervision of n
agents, which can be written as

|�〉 = cosθ |0〉 + sinθeiϕ |1〉, (1)

where θ ∈ [0, π/4] and ϕ ∈ [0, 2π ]. To begin with, the participants share one GHZ-
class entangled state described as

|�〉ABC1 · · ·
︸︷︷︸

n−2

Cn D =
0,1
∑

i

αi |i〉
⊗

n+3 (2)

in advance, without loss of generality, we suppose that α0 is real and the coefficients
satisfy |α0| ≤ |α1|. Particle A is hold by Alice, B by Bob, C1 by agent C1, . . . , D
by Dick, respectively. To accomplish MCJRSP, Alice and Bob firstly make single-
particle von Neumann measurements on particles A and B under a set of measuring
basis {|Mi 〉} and {|N j 〉}, respectively. And {|Mi 〉} and {|N j 〉} are given by

( |M1〉
|M2〉

)

=
(

cosθ sinθ

sinθ −cosθ

) ( |0〉
|1〉

)

, (3)

and

( |N1〉
|N2〉

)

=
⎛

⎝

1√
2

1√
2

e−iϕ

1√
2

− 1√
2

e−iϕ

⎞

⎠

( |0〉
|1〉

)

, (4)

respectively. Thus, the whole system state can be redescribed as

|�〉 =
2

∑

i, j=1

|Mi 〉A ⊗ |N j 〉B ⊗ |�i j 〉C1···Cn D

= 1√
2
[|M1〉1|N1〉2(α0cosθ |0〉⊗n+1 + α1sinθeiϕ |1〉⊗n+1)C1···Cn D

+|M1〉1|N2〉2(α0cosθ |0〉⊗n+1 − α1sinθeiϕ |1〉⊗n+1)C1···Cn D

+|M2〉1|N1〉2(α0sinθ |0〉⊗n+1 − α1cosθeiϕ |1〉⊗n+1)C1···Cn D

+|M2〉1|N2〉2(α0sinθ |0〉⊗n+1 + α1cosθeiϕ |1〉⊗n+1)C1···Cn D], (5)

where |�i j 〉C1···Cn D ≡ A〈Mi |B〈N j |�〉ABC1···Cn D (i, j = 1, 2). Subsequently, Alice
and Bob inform Dick of their outcomes via classical channels (i.e., sending some
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classical bits). At the same time, the agents carry out the measurement on their own
particles under the measuring basis {|+〉, |−〉} respectively. By the way, {|+〉, |−〉} is
given by

|±〉 = 1√
2
(|0〉 ± |1〉). (6)

Note that, both Alice (Bob) and Dick make an agreement in advance that bit ’0’
corresponds to the outcome |M1〉1 (|N1〉2), ’1’ to |M2〉1 (|N2〉2) hereafter. Besides,
the agents and Dick make an agreement that the outcome |+〉 corresponds to ’0’, while
|−〉 to ’1’. Thus, in terms of the received information bits, Dick exactly knows the
collapse of his particle, and then can reconstruct the desired state after performing some
appropriate unitary operations. Before illustrating it, it is declared that the outcomes
|Mi 〉 and |N j 〉 correspond to (i, j) hereafter for short. Suppose that Alice’s and Bob’s
measurement outcomes are (1,1). Then Alice sends bit ’0’ to Dick and Bob sends bit
’0’ through classical channels. Upon the classical messages, Dick readily realizes the
remaining particles are in the state of

1

N
(α0cosθ |0〉⊗n+1 + α1sinθeiϕ |1〉⊗n+1)C1···Cn D, (7)

where N = √|α0cosθ |2 + |α1sinθ |2 is the normalized coefficient. Besides Dick will
receive the all agent’s messages to inform their measuring outcome. Thus, extra n bits
will be cost.

Given that Dick receives k’0’+(n − k)’1’(k ∈ Z
+) from the agents. Now we can

classify them into two cases:

Case 1 k is even while n is odd, or n is even while k is odd.

In this case, based on the classical bits he realizes that his particle D is

1

N
(α0cosθ |0〉 − α1sinθeiϕ |1〉)D. (8)

Next, he carries out an unitary transformation σz on his particle, where

σz = |0〉〈0| − |1〉〈1|. (9)

By doing this, the single-particle state will become

1

N
(α0cosθ |0〉 + α1sinθeiϕ |1〉)D. (10)

Subsequently, he introduces an auxiliary particle A′ with being in state of |0〉, and then
operates a bipartite unitary transformation U 1, which is taken as
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U 1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0

0 α0
α1

0

√

1 −
(

α0
α1

)2

0 0 −1 0

0

√

1 −
(

α0
α1

)2
0 −α0

α1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (11)

Thus, the state of Dick’s particle will evolve as

1

N

⎡

⎣α0(cosθ |0〉 + sinθeiϕ |1〉)D|0〉A′ + α1

√

1 −
(

α0

α1

)2

sinθeiϕ |1〉D ⊗ |1〉A′

⎤

⎦ .

(12)

At last, he measures his auxiliary particle in the basis {|0〉, |1〉}. If |1〉A′ is probed,
his particle D will develop into a trivial state, that is MCJRSP fails in such situation;
otherwise, |0〉A′ is attained, he readily realizes the particle will be in (cosθ |0〉 +
sinθeiϕ |1〉)D ≡ |�〉D . In this sense, MCJRSP has been achieved in Dick’s site. At
the same time, one can figure out the success probability

P =
∣

∣

∣

∣

N√
2

∣

∣

∣

∣

2

×
∣

∣

∣

α0

N
∣

∣

∣

2 = |α0|2/2, (13)

and the CIC should be calculated as 1 + 1 + n = n + 2 bits in this case.

Case 2 Both k and n are even, or both k and n are odd.

After receiving the bits, he knows his particle is in the state of

1

N
(α0cosθ |0〉 + α1sinθeiϕ |1〉)D, (14)

which is the same as Eq. (10). And applying the same analyzing methods as above,
Dick can realize MCJRSP with the success probability of |α0|2/2 and CIC of n + 2.

On the other hand, Alice’s and Bob’s outcome maybe (1, 2), if so, by the same
analysis methods as the previous, it is found that one can accomplish MCJRSP for the
arbitrary single-particle state with the same SPS and CIC as the above. However, if
the outcome is one of the other two, i.e., (2, 1) or (2, 2), it is obvious that Dick can not
convert his collapsed state into the desired state whatever the agents’ outcomes are.
This displays MCJRSP fails in this case. Thus, the senders don’t send any messages
to Dick so as to acquire economical classical resource consumption. Therefore, we
can restart the preparation procedure to achieve MCJRSP. In all, our current scheme
enables one to implement MCJRSP for an arbitrary single-particle state with SPS of
2 × P = |α0|2 and CIC of n + 2 bits on average. For clarity, the quantum circuit has
been shown in Fig. 1.
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Fig. 1 Quantum circuit diagram for MCJRSP of an arbitrary single-particle state. M1 and M2: two-
particle projective measurement under the corresponding basis {|Mi 〉} and {|N j 〉}, respectively; The box
with an index: a single-particle projective measurement under measuring basis {|0〉, |1〉}; DAUO: Dick’s
approximate unitary operation on particle D; U1: one local bipartite collective unitary transformation on
Dick’s particles

3 MCJRSP for an arbitrary two-particle state

Now let us extend the former scheme to a version for an arbitrary two-particle entangled
state. Likewise, there are (n +3) legitimate participators, Alice, Bob, C1, C2, . . . , Cn ,
and Dick. Alice and Bob are the states’ senders while Dick as the receiver. Given both
Alice and Bob are designated to jointly prepare an arbitrary two-particle entangled state
within distant receiver’s site under the control of the agents. In general, an arbitrary
two-particle state reads as

|˜�〉 = a|00〉 + beiξ1 |01〉 + ceiξ2 |10〉 + deiξ3 |11〉, (15)

where a, b, c, d and ξi are real. At the start, the senders, the receiver and the agents
share two GHZ-class entangled states

|�〉A1 B1C1···Cn D1 =
0,1
∑

i

βi |i〉
⊗

n+3,

|�〉A2 B2C ′
1···C ′

n D2
=

0,1
∑

j

γ j | j〉
⊗

n+3, (16)

where, β0 and γ0 are real and the coefficients satisfy |β0| ≤ |β1| and |γ0| ≤ |γ1|.
Particles A1 and A2 are held by Alice, B1 and B2 by Bob, C1 and C ′

1 by agent
C1, . . . , D1 and D2 by Dick. To realize MCJRSP, Alice and Bob operate two-particle
projective measurements on the particle pairs (A1, A2) and (B1, B2) under a set of
measuring basis {| ˜Mi 〉} and {| ˜N j 〉}, respectively. Here, {| ˜Mi 〉} and {| ˜N j 〉} are given by

⎛

⎜

⎜

⎝

| ˜M1〉
| ˜M2〉
| ˜M3〉
| ˜M4〉

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

a b c d
b −a d −c
c −d −a b
d c −b −a

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

|00〉
|01〉
|10〉
|11〉

⎞

⎟

⎟

⎠

, (17)
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and

⎛

⎜

⎜

⎝

| ˜N1〉
| ˜N2〉
| ˜N3〉
| ˜N4〉

⎞

⎟

⎟

⎠

= 1

2

⎛

⎜

⎜

⎝

1 e−iξ1 e−iξ2 e−iξ3

1 −e−iξ1 e−iξ2 −e−iξ3

1 −e−iξ1 −e−iξ2 e−iξ3

1 e−iξ1 −e−iξ2 −e−iξ3

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

|00〉
|01〉
|10〉
|11〉

⎞

⎟

⎟

⎠

, (18)

respectively. Since one can rewrite the total system state as

2
∑

i, j=1

| ˜Mi 〉A1 A2 ⊗ | ˜N j 〉B1 B2 ⊗ |˜�i j 〉C1C ′
1 · · ·
︸︷︷︸

2n−2

D1 D2

= 1

2
[| ˜M1〉A1 A2 | ˜N1〉B1 B2(aβ0γ0|00〉⊗n+1 + bβ0γ1eiξ1 |01〉⊗n+1

+cβ1γ0eiξ2 |10〉⊗n+1 + dβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M1〉A1 A2 | ˜N2〉B1 B2(aβ0γ0|00〉⊗n+1 − bβ0γ1eiξ1 |01〉⊗n+1

+cβ1γ0eiξ2 |10〉⊗n+1 − dβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M1〉A1 A2 | ˜N3〉B1 B2(aβ0γ0|00〉⊗n+1 − bβ0γ1eiξ1 |01〉⊗n+1

−cβ1γ0eiξ2 |10〉⊗n+1 + dβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M1〉A1 A2 | ˜N4〉B1 B2(aβ0γ0|00〉⊗n+1 + bβ0γ1eiξ1 |01〉⊗n+1

−cβ1γ0eiξ2 |10〉⊗n+1 − dβ1γ1eiξ3 |11〉)C1C ′
1···D1 D2

+| ˜M2〉A1 A2 | ˜N1〉B1 B2(bβ0γ0|00〉⊗n+1 − aβ0γ1eiξ1 |01〉⊗n+1

+dβ1γ0eiξ2 |10〉⊗n+1 − cβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M2〉A1 A2 | ˜N2〉B1 B2(bβ0γ0|00〉⊗n+1 + aβ0γ1eiξ1 |01〉⊗n+1

+dβ1γ0eiξ2 |10〉⊗n+1 + cβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M2〉A1 A2 | ˜N3〉B1 B2(bβ0γ0|00〉⊗n+1 + aβ0γ1eiξ1 |01〉⊗n+1

−dβ1γ0eiξ2 |10〉⊗n+1 − cβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M2〉A1 A2 | ˜N4〉B1 B2(bβ0γ0|00〉⊗n+1 − aβ0γ1eiξ1 |01〉⊗n+1

−dβ1γ0eiξ2 |10〉⊗n+1 + cβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M3〉A1 A2 | ˜N1〉B1 B2(cβ0γ0|00〉⊗n+1 − dβ0γ1eiξ1 |01〉⊗n+1

−aβ1γ0eiξ2 |10〉⊗n+1 + bβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M3〉A1 A2 | ˜N2〉B1 B2(cβ0γ0|00〉⊗n+1 + dβ0γ1eiξ1 |01〉⊗n+1

−aβ1γ0eiξ2 |10〉⊗n+1 − bβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M3〉A1 A2 | ˜N3〉B1 B2(cβ0γ0|00〉⊗n+1 + dβ0γ1eiξ1 |01〉⊗n+1

+aβ1γ0eiξ2 |10〉⊗n+1 + bβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M3〉A1 A2 | ˜N4〉B1 B2(cβ0γ0|00〉⊗n+1 − dβ0γ1eiξ1 |01〉⊗n+1

+aβ1γ0eiξ2 |10〉⊗n+1 − bβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2
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+| ˜M4〉A1 A2 | ˜N1〉B1 B2(dβ0γ0|00〉⊗n+1+cβ0γ1eiξ1 |01〉⊗n+1

−bβ1γ0eiξ2 |10〉⊗n+1 − aβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M4〉A1 A2 | ˜N2〉B1 B2(dβ0γ0|00〉⊗n+1−cβ0γ1eiξ1 |01〉⊗n+1

−bβ1γ0eiξ2 |10〉⊗n+1 + aβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M4〉A1 A2 | ˜N3〉B1 B2(dβ0γ0|00〉⊗n+1−cβ0γ1eiξ1 |01〉⊗n+1

+bβ1γ0eiξ2 |10〉⊗n+1 − aβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

+| ˜M4〉A1 A2 | ˜N4〉B1 B2(dβ0γ0|00〉⊗n+1+cβ0γ1eiξ1 |01〉⊗n+1

+bβ1γ0eiξ2 |10〉⊗n+1 + aβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

]. (19)

Subsequently, Alice and Bob inform Dick of their outcomes via classical channels,
respectively. Specifically, both Alice (Bob) and Dick make an agreement in priori that
bits ’00’ correspond to the outcome | ˜M1〉12 (| ˜N1〉34), ’01’ to | ˜M2〉12 (| ˜N2〉34), ’10’ to
| ˜M3〉12 (| ˜N3〉34), and ’11’ to | ˜M4〉12 (| ˜N4〉34). Take an example, suppose that Alice’s
and Bob’s measurement outcomes are (1,2). Then Alice sends bits ’00’ to Dick and
Bob sends bits ’10’ through classical channels. Through the classical information,
Dick readily obtains that the remaining particles have been in the state of

˜N (aβ0γ0|00〉⊗n+1 − bβ0γ1eiξ1 |01〉⊗n+1 + cβ1γ0eiξ2 |10〉⊗n+1

−dβ1γ1eiξ3 |11〉⊗n+1)C1C ′
1···D1 D2

, (20)

where ˜N = 1/
√|aβ0γ0|2 + |bβ0γ1|2 + |cβ1γ0|2 + |dβ1γ1|2. And then the agents

make single-particle projective measurements on their own particles under the basis
{|+〉, |−〉}, and then Cl (l = 1, . . . , n) sends the measuring outcome of his particles
Cl and C ′

l to Dick via bits ’ξlζl ’(ξl , ζl ∈ {0, 1}). Besides, let p = ∑n
l=1 ξl , and

q = ∑n
l=1 ζl . According to the message, Dick can classify them into four types as

follows:

(I) Both p and q are even.

In this case, Dick acquires that his particles are being in the state of

˜N (aβ0γ0|00〉 − bβ0γ1eiξ1 |01〉 + cβ1γ0eiξ2 |10〉 − dβ1γ1eiξ3 |11〉)D1 D2 , (21)

and then he carries out an unitary operation σz on his particle D2.

(II) Both p and q are odd.

In this case, the state of Dick’s particles is

˜N (aβ0γ0|00〉 + bβ0γ1eiξ1 |01〉 − cβ1γ0eiξ2 |10〉 − dβ1γ1eiξ3 |11〉)D1 D2 . (22)

Accordingly, he performs an unitary operation σz on his particle D1.

(III) p is odd and q is even.
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In this case, Dick’s particles have collapsed into

˜N (aβ0γ0|00〉 − bβ0γ1eiξ1 |01〉 − cβ1γ0eiξ2 |10〉 + dβ1γ1eiξ3 |11〉)D1 D2 . (23)

Next, he makes an unitary operation σz on his particles D1 and D2, respectively.

(IV) p is even and q is odd.

In this case, Dick realizes that his particles’ state is

˜N (aβ0γ0|00〉 + bβ0γ1eiξ1 |01〉 + cβ1γ0eiξ2 |10〉 + dβ1γ1eiξ3 |11〉)D1 D2 . (24)

Then, he executes an unitary operation I on his particles, respectively, where

I = |0〉〈0| + |1〉〈1|. (25)

Whatever the parity outcome is, the subsystem of Dick will collapse into

˜N (aβ0γ0|00〉 + bβ0γ1eiξ1 |01〉 + cβ1γ0eiξ2 |10〉 + dβ1γ1eiξ3 |11〉)D1 D2 , (26)

after he makes the corresponding unitary operations mentioned before. Subsequently,
in order to reconstruct the desired state, he introduces an auxiliary particle A′′ with
being in |0〉, and then makes a triplet unitary transformation U 2, which is taken as a
form of 8 × 8 matrix

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 0 0 0

0 γ0
γ1

0 0 0

√

1−
(

γ0
γ1

)2
0 0

0 0 β0
β1

0 0 0

√

1−
(

β0
β1
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Thus, the state of Dick’s particle will develop into

U 2
˜N (aβ0γ0|00〉 + bβ0γ1eiξ1 |01〉 + cβ1γ0eiξ2 |10〉 + dβ1γ1eiξ3 |11〉)D1 D2 ⊗ |0〉A′′

=˜N

⎡

⎣β0γ0(a|00〉+beiξ1 |01〉+ceiξ2 |10〉+deiξ3 |11〉)D1 D2 ⊗ |0〉A′′

+
⎛

⎝bβ0γ1

√

1−
(

γ0

γ1

)2

eiξ1 |01〉 + cβ1γ0

√

1 −
(

β0

β1

)2

eiξ2 |10〉

+dβ1γ1

√

1 −
(

β0γ0

β1γ1

)2

eiξ3 |11〉
⎞

⎠

D1 D2

⊗ |1〉A′′

⎤

⎦ .

(28)

At last stage, he measures his auxiliary particle in the basis {|0〉, |1〉}. If |1〉A′′ is probed,
his particles D1 and D2 will collapse into a trivial state, that is our MCJRSP fails in
this situation; otherwise, |0〉A′′ is obtained, he realizes that the particles have readily
been in |˜�〉. That is to say, our MCJRSP succeeds in this case. At the same time, we
can figure out the success probability should be

P ′ = 1

4| ˜N |2 × |β0γ0 ˜N |2 = |β0γ0|2
4

. (29)

Of course, Alice’s and Bob’s outcome may be (1,1), (1,3), (1,4). If so, by the same
analysis methods as the previous, it is found that Dick can achieve MCJRSP for the
single-particle state with SPS of |β0γ0|2/4 and CIC of 4 + 2n bits. For simplicity,
we don’t depict them one by one. As a summary, the senders’ measurement outcome
(i, j), the parity of p and q, Dick’s appropriate unitary operations on his particles
D1 and D2, and necessary triplet collective unitary transformation have been listed in
Table 1, and for clearness the quantum circuit has been sketched in Fig. 2. However, if

Table 1 The senders’
measurement outcome (i, j), the
parity of p and q (p, q), Dick’s
appropriate unitary operations
on his particles D1 and D2
(DAUO), and triplet collective
unitary transformation (U )

(i, j) p, q DAUO U

(1, 1) even,even ID1 ⊗ ID2 U2

odd,odd σz,D1 ⊗ σz,D2

odd,even σz,D1 ⊗ ID2

even,odd ID1 ⊗ σz,D2

(1, 3) even,even σz,D1 ⊗ σz,D2 U2

odd,odd ID1 ⊗ ID2

odd,even ID1 ⊗ σz,D2

even,odd σz,D1 ⊗ ID2

(1, 4) even,even σz,D1 ⊗ ID2 U2

odd,odd ID1 ⊗ σz,D2

odd,even ID1 ⊗ ID2

even,odd σz,D1 ⊗ σz,D2
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Fig. 2 Quantum circuit diagram for MCJRSP of arbitrary two-particle states. ˜M1 and ˜M2: two-particle
projective measurement under the corresponding basis {|˜Mi 〉} and {|˜N j 〉}, respectively; the box with an

index: a single-particle projective measurement under measuring basis {|0〉, |1〉}, U2: one local triplet
collective unitary transformation on Dick’s particles

the outcome is one of other twelve outcomes, Alice confirms that Dick cannot convert
his collapsed state into the desired state whatever the other agents’ outcomes are. This
displays MCJRSP fails in these cases. Thus, Bob doesn’t send any messages to Dick
any more. Therefore, we need to restart the preparation procedure.

To sum up, we have proposed a MCJRSP scheme for an arbitrary two-particle state
with SPS of 4 × ˜P = |β0γ0|2, and the CIC equals to 4 + 2n bits totally.

4 Discussions

Up to now, we have derived two MCJRSP schemes for arbitrary single- and two-
particle states, which have, to our best knowledge, not been pointed out before. And
the required quantum operations, classical information consumption and success prob-
ability are shown explicitly. Now we will have some interesting discussions on our
schemes.

4.1 The relations between SPS and the employed quantum channels

In our first scheme, one GHZ-class entangled state is used as the quantum channels. The
total SPS is |α0|2, which relates to the smaller coefficient of entanglement employed.
As to the second scheme, the total SPS is |β0γ0|2, which relates to the smaller coeffi-
cients of entanglements employed as well. That indicates that the success probability
is inherently determined by the shared entanglements set up in priori. For clarity, we
have shown that relation charts between SPS and the employed channels in Fig. 3.
From the figure, one can see that the SPS can be peaked, i.e., 50 and 25 %, respectively,
when |α0| = |β0| = |γ0| = 1/

√
2 is hold. This indicates that maximally entangled

states are taken as the quantum channels in this situation.

4.2 The generalization to the case of many-particle states

In previous sections, we firstly detail a MCJRSP scheme for an arbitrary single-particle
state, and then extend to a two-particle version. Now, let us turn to briefly analyze both

123



3234 D. Wang, L. Ye

(b)(a)

Fig. 3 The diagram of relations between SPS and the employed channels. a Corresponds to the chart of
the relation between SPS and the smaller coefficient of the employed channel in the first scheme, and b
corresponds to the chart of that in the second scheme

classical and quantum aspects of resource consumption with respect to MCJRSP for
an arbitrary m-particle (m ≥ 3) state.

(1) Quantum resources: m (n+3)-particle GHZ-class entangled states shared among
two senders, one receiver and n agents, and an auxiliary particle;

(2) Classical resources: m × (n + 2) classical bits to communicate among the par-
ticipants, which is indispensable during the implementation.

In addition, the necessary quantum operations are embodied in the following:

(a) Two m-particle projective measurements. Both of them are performed by two
senders under the corresponding measuring basis, respectively.

(b) m single-particle projective measurements performed by each agent under the
basis {|+〉, |−〉}.

(c) m appropriate single-particle unitary operations. The receiver needs to fulfill them
perfectly after acquiring the state of his particles.

(d) One (m + 1)-particle collective unitary operation and one single-particle projec-
tive measurement performed by the receiver.

4.3 The experimental feasibility

Now let us proceed to analyse the experimental feasibility of the schemes presented.
In our MCJRSP proposals, one- and two-particle projective measurements and local
two- and three-particle unitary transformations are considerably important during the
preparations of the desired states. By far, projective measurement has received a great
deal of attention [52–54]. Some researchers [52,53] have conjectured that any projec-
tive measurement can be decomposed into a sequence of weak measurements, which
cause only small changes to the state. Moreover, multi-particle projective measure-
ment via linear optics, has been investigated by numerous spectacular works [55–58].
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With regard to three-particle unitary transformations, it is well known that any many-
particle unitary transformation can be decomposed into some single-particle rotation
operations and a Controlled-Not gate transformation. In fact, single-particle rotating
operations had been explored by various protocols [59,60], and Controlled-Not gate
had been successfully demonstrated via an all-optical system [61–63]. Thereby, our
schemes, in principle, are feasible in the framework of linear optics, and further we
expect that they could be demonstrated in prospective experiments.

5 Summary

To summarize, we have elaborated two efficient MCJRSP schemes for arbitrary single-
and two-particle pure states with the control of multi-agent, respectively. With the assis-
tance of GHZ-class entanglements and LOCC, our schemes can be realized with certain
success probability in receiver’s location via the control of many agents. Importantly,
our schemes can be easily extended to the case of many-particle states. Additionally,
it has been revealed that SPS is only determined by the smaller coefficients of the
employed channels. The experimental feasibility of the current schemes is analyzed
as well, it is proved that our schemes are compatible with today’s technologies, and
further we expect that they could be demonstrated in prospective experiments via
all-optical systems. Remarkably, our work might be of importance to long-distance
communication in prospective quantum networks.
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