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Abstract The power of quantum mechanics has been extensively exploited to meet
the high computational requirement of classical image processing. However, existing
quantum image models can only represent the images sampled in Cartesian coordi-
nates. In this paper, quantum log-polar image (QUALPI), a novel quantum image
representation is proposed for the storage and processing of images sampled in log-
polar coordinates. In QUALPI, all the pixels of a QUALPI are stored in a normalized
superposition and can be operated on simultaneously. A QUALPI can be constructed
from a classical image via a preparation whose complexity is approximately linear in
the image size. Some common geometric transformations, such as symmetry trans-
formation, rotation, etc., can be performed conveniently with QUALPI. Based on
these geometric transformations, a fast rotation-invariant quantum image registration
algorithm is designed for log-polar images. Performance comparison with classical
brute-force image registration method reveals that our quantum algorithm can achieve
a quartic speedup.
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1 Introduction

As a novel topic in recent information science, quantum computation is considered
to be a promising candidate to overcome the limitations of classical computation. By
exploiting the inherent properties of quantum mechanics [1], a quantum computation
can find solutions of certain problems more efficiently than can a classical computa-
tion. Recent decades have witnessed a series of significant theoretical progresses in
quantum information processing, such as Shor’s integer factoring algorithm [2] and
Grover’s search algorithm [3] and some others [4]. The excellent properties of quantum
computation have motivated extensive research on quantum information processing.

Digital image processing [5] is important in many practical applications. How-
ever, the explosive increase of image data calls for efficient classical image processing
algorithms. To address this challenge, quantum image processing has been extensively
investigated in the last decade. To utilize quantum states to store image information,
four quantum image representation models, i.e., Qubit Lattice [6], Entangled Image
[7], Real Ket [8] and Flexible Representation of Quantum Images (FRQI) [9], have
been proposed. However, these existing quantum image models can only represent
images sampled in Cartesian coordinates so that complex affine transformations such
as rotation and scaling cannot be performed based on these models. Therefore, many
complex quantum image processing algorithms cannot be designed based on the exist-
ing models.

In this paper, quantum log-polar image (QUALPI), a novel quantum image repre-
sentation is proposed for storing and processing images sampled in log-polar coor-
dinates for the first time. In QUALPI, three entangled qubit (2-dimensional quantum
bit) sequences are utilized to store the gray scale information, the log-radius position
and the angular position information of each pixel in a log-polar image. Every pixel
will be stored into a basis state of a normalized superposition consisting of these qubit
sequences, so they can be operated on simultaneously.

A QUALPI can be constructed from a classical image via a preparation whose
complexity is approximately linear in the image size. Compared with the existing
quantum image models, more geometric transformations can be performed easily
based on QUALPI, including those complex ones such as symmetry transformation
and rotation.

Image registration is the process of obtaining the correspondence between two
images of the same scene or object but acquired with different sensors, times, or
viewpoints. It is widely used in computer vision, medical imaging, automatic target
recognition, and remote sensing image analysis [10]. Based on the rotation transfor-
mation of QUALPI, a fast quantum image registration algorithm is designed which
can achieve a quartic speedup over the classical image registration method. Therefore,
QUALPI might be more flexible and suitable for complex quantum image processing
than other state-of-the-art quantum image representations.
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The remainder of the paper is organized as follows. Section 2 discusses related
works. Section 3 describes the proposed quantum image representation model
QUALPI as well as its preparation procedure. Two types of quantum geometry transfor-
mations based on QUALPI, i.e., symmetry transformation and rotation, are presented
in Sect. 4 in detail. Then a fast quantum image registration algorithm is designed
in Sect. 5 based on the rotation transformation of QUALPI. Finally, conclusion and
possible future work are provided in Sect. 6.

2 Related work

The utilization of quantum information processing in digital image processing has been
quite successful in terms of performance improvement. So far, four quantum image
models for storing and processing images have been proposed, i.e., Qubit Lattice [6],
Entangled Image [7], Real Ket [8] and FRQI [9].

Qubit Lattice [6] maps every pixel to a single qubit. Entangled Image [7] is similar
to Qubit Lattice except that it utilizes the entangled state to express the relation of some
certain pixels. Both of them are similar to classical digital images so it is easy to find
quantum counterparts of classical image processing. However, they cannot provide
any performance improvement.

Real Ket [8] utilizes the coefficients of a basis state of a qudit (4-dimensional
quantum bit) sequence to represent the gray-scale of every pixel and stores an image
into a quantum superposition.

The state-of-the-art model of FRQI [9] for a 2n × 2n image is expressed as seen in
the following equation:

|I 〉 = 1

2n

2n−1∑

Y=0

2n−1∑

X=0

(cos θY X |0〉 + sin θY X |1〉) |Y X〉 (1)

where θY X is the phase of the color qubit which denotes the gray-scale value of pixel
(Y, X).

In FRQI, the position information of every pixel is mapped to a basis state of a
2-dimensional qubit sequence, while the gray scale information is stored in the prob-
ability amplitude of a single qubit. Since these two models utilize the superposition
of qubit sequence to store image, they can process the information of all pixels simul-
taneously.

Many researches on quantum image processing have been explored based on the
existing quantum image models. The works in [11,12] discussed some simple image
geometric transformations and color transformations respectively; significant perfor-
mance improvement of these quantum operations has been made compared with the
classical image operations. Sun et al. [13] extended FRQI and utilized 3 qubits to rep-
resent the full color information for an RGBα image. Zhang et al. [14] improved FRQI
and more complex color transformations could be performed based on the enhanced
model. Iliyasu et al. [15], Zhang et al. [16] designed the quantum watermarking algo-
rithms and obtained good performance. However, existing models can only store and
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process image sampled in Cartesian coordinates. Many complex affine transforma-
tions such as rotation and scaling cannot be performed with these models because
a lot of irreversible interpolations are needed. Restricted quantum image transforma-
tions have limited the development of complex quantum image processing algorithms.
This motivates us to find a better way of quantum image representation to overcome
the above limits.

Log-polar coordinates is a well-known sampling method in the field of image
processing. Many image processing algorithms have been studied based on log-polar
sampling. Araujo and Dias [17] introduced the fundamental theory of log-polar sam-
pling and analyzed two important properties, i.e., rotation and scale invariances. Based
on log-polar sampling, Zokai and Wolberg [18], Matungka et al. [19], Pun and Lee [20]
designed novel algorithms for image registration, target recognition and image classi-
fication respectively. Matungka [21] pointed out that log-polar sampling is nonlinear
and non-uniform, so adaptive polar sampling and logarithmic spiral sampling were
designed to address the problem. For the peculiar properties, we see that log-polar
sampling is more suitable for some complex image transformations such as rotation
and scaling. However, as far as we know, there is no research on utilizing quantum
mechanics to store and process images sampled in log-polar coordinates.

3 Quantum representation for log-polar images

To overcome the drawbacks of the existing quantum image models, a novel quantum
representation model QUALPI is proposed for the log-polar images in this paper.
In this section, the new model will be described in detail as well as the preparation
procedure of QUALPI.

3.1 Quantum image representation

Both Cartesian sampling and log-polar sampling are important 2-dimensional sam-
pling methods. Figure 1a, b show a comparison between the two sampling methods.
In Cartesian coordinates, every pixel (X, Y ) is indexed in the horizontal and vertical

Fig. 1 a A 4 × 4 image example sampled in Cartesian coordinates. b A 4 × 8 image example sampled in
log-polar coordinates. base = 2. c The sampling distribution of b in the angular and log-radius directions
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Fig. 2 A 2 × 8 log-polar image and its quantum representation expression of QUALPI

orientations. X and Y denote the positions in the two axes. While in log-polar coor-
dinates, every pixel is sampled as (ρ, θ) where ρ denotes the log-radius and θ the
angular position. Figure 1c depicts the sampling distribution of log-polar image in the
angular and log-radius directions. From this aspect, the log-polar image can also be
considered as a 2-dimensional pixel matrix.

The relationship between these two kinds of 2-dimensional image sampling meth-
ods is as follows:

ρ = logbase

√
(x − xc)

2 + (y − yc)
2, (2)

θ = tan−1 y − yc

x − xc
, (3)

where (xc, yc) denotes the center pixel of log-polar sampling in Cartesian coordinates
and base is the logarithmic base.

Inspired by the FRQI quantum image model [9], we propose a novel quantum
representation QUALPI to store and process the log-polar images. The sampling reso-
lutions of the log-radius and the angular orientations of a log-polar image are assumed
to be 2m and 2n respectively. For this image, the quantum image representation can
be expressed as seen in the following equation:

|I 〉 = 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(|g(ρ, θ)〉 ⊗ |ρ〉 ⊗ |θ〉) (4)

where g(ρ, θ) represents the gray scale of the corresponding pixel. The gray range of
the image is assumed to be 2q . Thus the gray scale can be encoded by binary sequence
C0C1 . . . Cq−2Cq−1 as seen in the following equation:

g(ρ, θ) = C0C1 . . . Cq−2Cq−1, g(ρ, θ) ∈ [0, 2q − 1] (5)

Equation (4) shows that the whole QUALPI quantum image is stored in a normalized
and equiprobable quantum superposition, in which each basis state represents one
pixel. The basis state is consisted of the tensor product of three qubit sequences,
where all the information of a pixel, i.e., the gray scale, the log-radius position and
the angular position, are stored in.

Figure 2 demonstrates an example of a 2 × 8 log-polar image with gray range 256,
i.e., m = 1, n = 3 and q = 8. It is obvious that the pixels in different quadrants have
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different gray scales. Meanwhile, in Fig. 2, the quantum representation of the log-polar
image is expressed and all pixels are stored in a normalized quantum superposition
|I 〉.

From (4), m + n + q qubits are utilized to store image information into a QUALPI
state for a 2m × 2n log-polar image with gray range 2q .

3.2 Quantum image preparation of QUALPI

In order to utilize quantum mechanics in image processing, image information will be
stored into quantum state firstly. Here how to prepare QUALPI quantum image from
classical log-polar image will be discussed.

Figure 3 shows the workflow of the quantum image preparation of the QUALPI
model. The whole procedure is divided into two steps. Firstly, for a 2m × 2n log-polar
image with gray range 2q , a quantum register with m + n + q qubits needs to be
initialized as seen in the following equation:

|I 〉0 = |0〉⊗m+n+q (6)

Step 1: At first, we will construct an empty QUALPI with size 2m ×2n from the initial
state |I 〉0.

Two common single quantum gates are shown in (7), which will be utilized to build
the quantum operation U1 of this step as in (8).

I =
[

1 0
0 1

]
, H = 1√

2

[
1 1
1 −1

]
(7)

U1 = I ⊗q ⊗ H⊗m+n (8)

Equation (9) represents the quantum transformation from the initial state |I 〉0 to the
middle state |I 〉1 via using the quantum operation U1.

U1(|I 〉0) = |0〉⊗q ⊗
⎛

⎝ 1√
2m

2m−1∑

ρ=0

|ρ〉
⎞

⎠ ⊗
⎛

⎝ 1√
2n

2n−1∑

θ=0

|θ〉
⎞

⎠

Fig. 3 The workflow of preparing the QUALPI quantum image model. The initial state will be transformed
into the QUALPI model through two steps
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= 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

|0〉⊗q |ρθ〉 = |I 〉1 (9)

The middle state |I 〉1 is an empty quantum image with size 2m × 2n , every pixel in
which is stored in a normalized quantum superposition and the gray scale is 0.

Step 2: Next we should set the gray scales of all pixels in the middle state |I 〉1.
Because the log-polar image resolution is 2m × 2n , 2m+n sub-operations are needed
to set gray scale for every pixel individually in this procedure.

For pixel (ρ, θ), the quantum operation for gray scale setting is Ωρθ as (10). In this
operation, every qubit in the gray scale qubit sequence is processed according to the
binary code of the gray scale value g(ρ, θ) in (5). When Ci = 1, the i th qubit will be
operated on by a controlled gate (m + n) − C Not . Otherwise, nothing will be done
for the qubit.

Ωρθ : |0〉⊗q → ⊗
i=0

q−1 |0 ⊕ Ci 〉
⊗

i=0

q−1 |0 ⊕ Ci 〉 = ⊗
i=0

q−1 |Ci 〉 = |g(ρ, θ)〉 (10)

The sub-operation to set gray scale for pixel (ρ, θ) will not affect other pixels. There-
fore for every sub-operation in Step 2, the normalized quantum operation is expressed
as Uρθ in the following equation:

Uρθ =
⎛

⎝I ⊗q ⊗
2m−1∑

j=0

2n−1∑

i=0, j i �=ρθ

| j i〉 〈 j i |
⎞

⎠ + Ωρθ ⊗ |ρθ〉 〈ρθ | (11)

Equation (12) denotes the quantum transformation of applying every sub-operation
on the middle state |I 〉1.

Uρθ (|I 〉1) = Uρθ

⎛

⎝ 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

|0〉⊗q |ρθ〉
⎞

⎠

= 1√
2m+n

Uρθ

⎛

⎝
2m−1∑

j=0

2n−1∑

i=0, j i �=ρθ

|0〉⊗q | j i〉 + |0〉⊗q |ρθ〉
⎞

⎠

= 1√
2m+n

⎛

⎝
2m−1∑

j=0

2n−1∑

i=0, j i �=ρθ

|0〉⊗q | j i〉 + Ωρθ |0〉⊗q |ρθ〉
⎞

⎠

= 1√
2m+n

⎛

⎝
2m−1∑

j=0

2n−1∑

i=0, j i �=ρθ

|0〉⊗q | j i〉 + |g(ρ, θ)〉 |ρθ〉
⎞

⎠ (12)

From (12), every sub-operation can set the gray scale for the corresponding pixel.
Therefore, the whole operation U2 shown in (13) is consisted of all the aforementioned
sub-operations.
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U2 =
2m−1∏

ρ=0

2n−1∏

θ=0

Uρθ (13)

Through the quantum operationU2, all pixels have been set gray scales and the quantum
state |I 〉2 is the final quantum image.

U2 (|I 〉1) = 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

Ωρθ |0〉⊗q |ρθ〉

= 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

|g(ρ, θ)〉 |ρθ〉 = |I 〉2 (14)

After these two steps, the whole quantum image preparation has been finished. Then
we will discuss the time complexity of this preparation procedure.

Theorem 1 In order to store a 2m × 2n log-polar image with gray range 2q into the
QUALPI quantum image model, the whole quantum image preparation will cost no
more than O(q(m + n) · 2m+n).

Proof The whole preparation is divided into two steps. The time complexities of each
step will be analyzed as follows.

Firstly, the quantum operation of Step 1 is U1. From (8), it is known that U1 will
cost O(q + m + n) because it is consisted of q + m + n single quantum gates.

Secondly, the main work U2 of Step 2 is to set gray scale for all the pixels in the
quantum image. The whole operation is consisted of 2m+n sub-operations shown in
(13).

Every sub-operation Uρθ will perform the quantum operation Ωρθ for the corre-
sponding pixel. In this quantum transformation, the i th qubit in the gray scale qubit
sequence of QUALPI will be operated on by a controlled quantum gate if the corre-
sponding binary bit Ci of g(ρ, θ) is equal to 1. Note that all the controlled quantum
gates are (m + n) − C Not (this quantum gate can be decomposed to no more than
O(m+n) Toffoli gates [22]). Therefore, the time complexity of the quantum operation
Uρθ is no more than O(q(m + n)). And the whole operation of Step 2 will cost no
more than O(q(m + n) · 2m+n).

Based on the aforementioned analyses, for a 2m × 2n log-polar image with gray
range 2q , the time complexity of the whole quantum image preparation of QUALPI
is no more than O(q(m + n) · 2m+n), which is approximately linear to the resolution
of the log-polar image. 
�

According to the Holevo Bound Theorem [25], when an exponential amount of
the classical image information is encoded into the QUALPI state via quantum image
preparation, we will not be able to retrieve the whole image information perfectly via
quantum measurements. Therefore the proposed quantum image model and algorithms
cannot be used in image-showing tasks.

In general, the aim of many image processing tasks is not to show the whole image,
but to extract a little of more important information through analyzing the image data
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(for example, these image processing tasks always need to solve some problems like
“whether or not the image contains a target of interest”,“which pixel in the image
has the minimum gray-scale” and “how many targets the image has” and so on. The
commonness of these tasks is that the output is a Boolean or Integer which is no
more than Holevo’s bound). QUALPI is designed for these kinds of image processing
tasks. It utilizes a quantum superposition to encode the image information so that the
quantum image processing algorithm based on QUALPI which will be discussed later
can achieve an amazing speedup compared with the classical counterpart. That is the
reason why we discuss the quantum image processing and design the quantum image
representation QUALPI.

4 Geometric transformations on QUALPI quantum image

In this section, we will discuss how to utilize the QUALPI quantum image model
to perform geometric transformations. Because of the peculiar properties of the log-
polar images, two kinds of geometric transformations of the QUALPI images, i.e.,
symmetry transformation and rotation, can be performed flexibly and quickly.

4.1 Quantum symmetry transformation

Symmetry transformation is a kind of important geometric transformation, including
centrosymmetry and axisymmetry. For the classical images, the position information
of all pixels needs to be modified during symmetry transformations. Therefore, when
the sampling resolution is large, the time requirements of these image operations are
unacceptable. In the QUALPI quantum image model, all the pixels are stored in a quan-
tum superposition and can be operated on simultaneously during transforming. Three
kinds of symmetry transformations are discussed, including quantum centrosymmetry,
quantum horizontal axisymmetry and quantum vertical axisymmetry.

4.1.1 Quantum centrosymmetry

Centrosymmetry is a geometric transformation that all pixels will be rotated half a
circumference around the image center. Assume that the angular resolution of the
image is 2n , the angular positions of all pixels should be shifted counter-clockwise
by 2n−1. For the QUALPI quantum image model, centrosymmetry can be performed
only by overturning the highest qubit |θ0〉 in the angular sequence |θ〉 of the quantum
image |I 〉.

For a 2m × 2n QUALPI quantum image with gray range 2q , UC is the quantum
centrosymmetry operation as seen in the following equation:

UC = I ⊗q+m ⊗ X ⊗ I ⊗n−1 (15)

where X denotes the quantum Not gate as seen in the following equation:
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Fig. 4 a Quantum circuit of UC . ⊕ denotes the quantum Not gate. Since the quantum identity gate I will
not modify the quantum state, we do not draw it in the quantum circuit. b The log-polar toy image. c The
result of image b through the quantum centrosymmetry UC

X =
[

0 1
1 0

]
= |0〉 〈1| + |1〉 〈0| (16)

Equation (17) represents the quantum transformation of the quantum centrosymmetry
for the quantum image |I 〉.

UC |I 〉 = UC

⎛

⎝ 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(|g(ρ, θ)〉 ⊗ |ρ〉 ⊗ |θ〉)
⎞

⎠

= 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(
|g(ρ, θ)〉 ⊗ |ρ〉 ⊗ ∣∣θ0

〉 ⊗
(

⊗
i=1

n−1 |θi 〉
))

= 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(
|g(ρ, θ)〉 ⊗ |ρ〉 ⊗

∣∣∣(θ + 2n−1) mod 2n
〉)

(17)

If θ ′ = θ0θ1 . . . θn−2θn−1, the quantum image will be transformed as (18) after quan-
tum centrosymmetry.

UC |I 〉 = 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(
∣∣g(ρ, θ ′)

〉 ⊗ |ρ〉 ⊗ |θ〉) (18)

Figure 4 gives the quantum circuit of UC in the model QUALPI and toy image [24]
is used as a log-polar image example. This quantum operation would make quantum
image rotate half a circumference.
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4.1.2 Quantum axisymmetry

Axisymmetry is a kind of geometric transformation that all pixels will be overturned
around a certain axis. We only focus on two kinds of common axisymmetries, i.e.
horizontal axisymmetry and vertical axisymmetry. When the image resolution of the
angular orientation is 2n , they will make different operations for the QUALPI quantum
image.

For horizontal axisymmetry, the angular positions of all pixels should be changed to
the angle difference between 2n and the current position θ . For the QUALPI quantum
image model, horizontal axisymmetry will overturn all the qubits in the angular qubit
sequence |θ〉 in |I 〉.

The quantum operation of horizontal axisymmetry for a QUALPI quantum image
is UH A as seen in the following equation:

UH A = I ⊗q+m ⊗ X⊗n (19)

Equation (20) represents the quantum transformation of the quantum horizontal
axisymmetry for the quantum image |I 〉.

UH A |I 〉 = UH A

⎛

⎝ 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(|g(ρ, θ)〉 ⊗ |ρ〉 ⊗ |θ〉)
⎞

⎠

= 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(
|g(ρ, θ)〉 ⊗ |ρ〉 ⊗

(
⊗

i=0

n−1
∣∣θi

〉))

= 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(|g(ρ, θ)〉 ⊗ |ρ〉 ⊗ ∣∣2n − θ
〉)

(20)

If θ ′′ = θ0θ1 . . . θn−2θn−1, the QUALPI quantum image will be transformed as (21)
after quantum horizontal axisymmetry.

UH A |I 〉 = 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(
∣∣g(ρ, θ ′′)

〉 ⊗ |ρ〉 ⊗ |θ〉) (21)

Figure 5 gives the quantum circuit of UH A in the QUALPI model and the example
of toy image. This quantum operation would make quantum image overturn based on
the horizontal axis.

For quantum vertical axisymmetry, the angular positions of all pixels should be
changed into the angle difference between 2n−1 and the current position θ (mod 2n).
The operation will overturn all the qubits of the angular sequence |θ〉 except the highest
qubit |θ0〉 for the QUALPI quantum image |I 〉.
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Fig. 5 a Quantum circuit of UH A . In UH A , all the qubits in the angular sequence |θ〉 are overturned.
b The log-polar toy image. c The result of image b through the quantum horizontal axisymmetry UH A

The quantum operation of vertical axisymmetry for a QUALPI quantum image is
UV A as seen in the following equation:

UV A = I ⊗q+m+1 ⊗ X⊗n−1 (22)

Equation (23) represents the quantum transformation of the quantum vertical axisym-
metry for the quantum image |I 〉.

UV A |I 〉 = UV A

⎛

⎝ 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(|g(ρ, θ)〉 ⊗ |ρ〉 ⊗ |θ〉)
⎞

⎠

= 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(
|g(ρ, θ)〉 ⊗ |ρ〉 ⊗ |θ0〉 ⊗

(
⊗

i=1

n−1
∣∣θi

〉))

= 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(
|g(ρ, θ)〉 ⊗ |ρ〉 ⊗

∣∣∣(2n−1 − θ) mod 2n
〉)

(23)

If θ ′′′ = θ0θ1 . . . θn−2θn−1, the quantum image will be transformed as (24) after
quantum vertical axisymmetry UV A.

UV A |I 〉 = 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(
∣∣g(ρ, θ ′′′)

〉 ⊗ |ρ〉 ⊗ |θ〉) (24)
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Fig. 6 a Quantum circuit of UV A . All the qubits in the angular sequence |θ〉 are overturned except |θ0〉.
b The log-polar toy image. c The result of image b through the quantum vertical axisymmetry UV A

Figure 6 gives the quantum circuit of UV A in the QUALPI model and the example
of toy image. This quantum operation would make quantum image overturn based on
the vertical axis.

From (15), (19) and (22), it is obvious that for all three kinds of quantum symmetry
transformations, every qubit is operated by only one single qubit gate. It means the
time complexities of these quantum operations are O(q + m + n).

4.2 Quantum rotation transformation

Rotation is a common geometric transformation of images sampled in the log-polar
coordinates. Different from the images sampled in Cartesian coordinates, rotation
transformation of a log-polar image is lossless and reversible because there is no
interpolation operation. Meanwhile, many features of a log-polar image are invariant
to arbitrary rotation transformation. Therefore, it is obvious that log-polar image has
rotation-invariance [17]. The special properties result from a rotation of a log-polar
image is just the shift operation in angular directions.

Here we discuss the quantum rotation transformation of the QUALPI quantum
image model. Because all the pixels in the quantum image can be rotated simultane-
ously, the quantum rotation will be more flexible and faster.

4.2.1 Unit rotation transformation

Firstly, we focus on the quantum unit rotation. For this transformation, all the pixels of
a log-polar image will rotate counter-clockwise by one unit. For the QUALPI quantum
image model, it will add the angular positions of every pixel by 1 (mod 2n).
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Fig. 7 The quantum circuit of
R1 for a 2m × 2n log-polar
image with gray range 2q . The
qubit |θi 〉 will be overturned
only when∣∣θi+1θi+2 . . . θn−1

〉 = |11 . . . 1〉

The quantum unit rotation operation is defined as R1 in the following equation:

R1 |I 〉 = R1

⎛

⎝ 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(|g(ρ, θ)〉 ⊗ |ρ〉 ⊗ |θ〉)
⎞

⎠

= 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(|g(ρ, θ)〉 ⊗ |ρ〉 ⊗ ∣∣(θ + 1) mod 2n 〉)
(25)

From (25), it is obvious that the angular positions of all pixels will be shifted by
one unit. Through the discussion about the shift operation of quantum image in [11],
it is known that we can build the quantum circuit of the quantum operation R1 as
Fig. 7. For a 2m × 2n log-polar image with gray range 2q , R1 can be decomposed to
n controlled-not gates.

Through the analysis of the shift operation in [11], it is known that the time com-
plexity of the quantum operation R1 is no more than O(n2) for a 2m × 2n log-polar
image.

4.2.2 Arbitrary rotation transformation

For arbitrary rotation, we can utilize some unit rotations to finish it naively. However,
when the rotation angle is large, the procedure will cost much time. For example, the
worst case happens if the rotation angle is 2n − 1, the time complexity of 2n − 1
units rotation will be approximately O(n22n). Then a fast quantum rotation method
for arbitrary rotation is designed to simplify the naive procedure.

Assume that we will make a rotation transformation Rx for the quantum image
and the rotation angle can be encoded by binary sequence r0r1 . . . rn−2rn−1 in the
following equation:

Rx = r0r1 . . . rn−2rn−1, ri ∈ {0, 1}, Rx ∈ [0, 2n − 1]
(26)
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Fig. 8 The quantum circuit of
R2k for a 2m × 2n log-polar
image with gray range 2q . The
lowest k qubits in the angular
sequence |θ〉 will not be
modified in this quantum
operation

Then Rx can be represented as seen in the following equation:

Rx =
n−1∑

i=0

ri × 2n−1−i (27)

Therefore, when Rx rotation is performed, the procedure can be divided into n sub-
operations. If ri = 0, none operation will be done for the i th sub-operation. Otherwise
we need to do a 2n−1−i rotation R2n−1−i for the quantum image.

Next, we will discuss the quantum 2k rotation transformation R2k . Similar to the
quantum unit rotation R1, quantum 2k rotation R2k will add the angular positions of
every pixel by 2k (mod 2n). And this operation means to make a unit shift for the
highest n − k qubits of the angular sequence |θ〉 in the QUALPI quantum image.

The quantum rotation operation R2k is defined as seen in the following equation:

R2k |I 〉 = R2k

⎛

⎝ 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(|g(ρ, θ)〉 ⊗ |ρ〉 ⊗ |θ〉)
⎞

⎠

= 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(
|g(ρ, θ)〉 ⊗ |ρ〉 ⊗

∣∣∣(θ + 2k) mod 2n
〉)

= 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(|g(ρ, θ)〉 ⊗ |ρ〉

⊗
∣∣∣(θ0θ1 . . . θn−k−1 + 1) mod 2n−k

〉
⊗ |θn−kθn−k+1 . . . θn−1〉) (28)

The quantum circuit of this operation R2k is shown in Fig. 8. Similar to the discussion of
R1, the time complexity of R2k is approximately O((n − k)2). Therefore, an arbitrary
rotation will be decomposed into n rotation operations at most and the total time
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complexity of the arbitrary rotation transformation is no more than O(n3). Compared
with the naive method, an approximately exponential speedup can be achieved by
using the fast quantum rotation.

5 Quantum image registration based on QUALPI

Image registration is one of the most important topics in image processing which can
obtain the correspondence of two different images for a same scene or object from
different circumstances.

In this section, a fast quantum image registration algorithm is proposed based on
the QUALPI quantum image model. Using this quantum algorithm, the exact rotation
difference between two quantum images can be found out. Figure 9 shows an example
of image-pair. Our task is to find the unknown rotation difference between the two
log-polar images.

5.1 Classical brute-force image registration algorithm

In order to obtain the rotation difference between the reference image and the observed
image, a classical image registration algorithm is brute-force image matching. It con-
tinues trying every rotation angle for the reference image and comparing the trans-
formed image with the observed image until a matching is reached. The pseudo code
of this classical algorithm is shown in Algorithm 1. Assume that the resolution of the
log-polar image is 2m × 2n .

Firstly, since the rotation is unknown, all the possible rotations have to be tried.
Thus the whole procedure will make O(2n) tries averagely.

Secondly, every classical rotation operation will cost approximately O(2m+n)

because the positions of all pixels will be changed in log-polar coordinates.

Fig. 9 An example of image registration for two toy log-polar images. The observed image is transformed
by the reference image via an unknown rotation
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Algorithm 1: Brute-force image registration algorithm
input : I1 and I2 are the reference image and the observed image respectively
output: R denotes the result, i.e. the rotation difference

1 for i=0 to 2n − 1 do
2 Itemp = Rotation(I1, i);
3 if compare(Itemp, I2) == 0 then

// whether the two images are matched entirely
4 R = i ;
5 return R;

6 return -1; // The two images cannot be matched exactly

Thirdly, the pixel pairs in all the positions between the two images will be com-
pared in the similarity comparison stage. Therefore, every image comparison will cost
O(2m+n).

From the analyses, the time complexity of the whole algorithm is approximately
O(2m+2n) for a 2m × 2n log-polar image pair.

Recently, feature-based image registration algorithms are also widely explored in
the practical image processing since they usually cost less time. However, as an original
method, brute-force algorithm is simpler, and it is preferred when the transformation
between two images is single such as the example in Fig. 9. Therefore, it is prone to
design the quantum counterpart of brute-force image registration algorithm.

5.2 Quantum image registration algorithm

In this section, a fast quantum image registration algorithm is designed to obtain the
rotation difference between the two log-polar images based on the QUALPI quantum
image model. The whole workflow of the quantum image registration algorithm is
given as follows:

Step 1: Quantum Image Preparation. During this step, the reference image and
the observed image will be stored into the QUALPI states. The details of quantum
image preparation have been introduced in Sect. 3.2.

Step 2: Quantum Image Expanding. In this procedure, the quantum state of the
reference image is expanded to an image set in which each element represents a
transformed result of the reference image with a specific rotation angle. Section 5.2.1
introduces the details of this quantum procedure.

Step 3: Quantum Image Searching. Based on Grover’s Search Algorithm, the
observed image will be found out in the image set produced in Step 2. Section 5.2.2
depicts this quantum search procedure.

Step 4: Quantum Measurement. After Grover iterations in Step 3, the quantum
measurement is applied to the final quantum state, and the output is the index of the
observed image in the image set. The accuracy of the output is nearly 100 %. And the
value of the index is just the angle of the rotation difference between the reference
image and the observed image. Section 5.2.3 gives the description in detail.
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The time complexity of the quantum image registration algorithm is discussed in
Sect. 5.2.4. The proposed algorithm can achieve an approximately quartic speedup in
time complexity compared with that of the classical counterpart in Sect. 5.1.

5.2.1 Quantum image expanding

To find out the rotation difference between the reference image and observed image,
the first step is to expand the reference image into an image set in which all the images
are transformed from the reference image with difference rotations. Therefore, a fast
quantum image expanding procedure is designed to fulfill this task.

For a 2m ×2n log-polar image with gray range 2q , we need another quantum register
with n qubits to represent the order of every expanded image. The order denotes the
angle of the rotation difference between the original reference image and the expanded
image.

Before the expanding procedure, we should initialize the order register as |0〉⊗n

and make tensor product between the order register and the reference quantum image
|I 〉. The whole quantum state is |I0〉 is shown as follows,

|I0〉 = |0〉⊗n |I 〉 = |0〉⊗n ⊗ 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(|g(ρ, θ)〉 ⊗ |ρ〉 ⊗ |θ〉) (29)

The workflow of the quantum image expanding procedure is shown as follow which
will make the full expanding for the reference image in the angular orientation.

The whole procedure of quantum image expanding will iterate n times. For the i th
iteration, two steps will be performed.

Step 1: Make quantum operation Ei as (30). It will make a hadamard gate on the
i th qubit in the order register.

Ei = I ⊗i−1 ⊗ H ⊗ I n−i+q+m+n (30)

To be convenient, we define that |+〉 = 1√
2

|0〉 + 1√
2

|1〉.
When i = 0, Equation (31) shows the quantum transformation of the quantum

operation E0.

|I1〉 = E0 |I0〉 = |+〉 |0〉⊗n−1 ⊗ |I 〉 (31)

When i > 0, the quantum transformation is represented as seen in the following
equation:

|Ii 〉 = Ei |Ii−1〉 = |+〉⊗i+1|0〉⊗n−i−1 ⊗ |I 〉 (32)

Through Step 1, the whole quantum state will be divided into two parts on the i th qubit
in the order register.

Step 2: According to the value of the i th qubit in the order register, make different
operations for the different basis states of the whole superposition. Only when the
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Fig. 10 The workflow of the quantum image expanding procedure when the angular resolution is 23. 
denotes a basis state which is an expanded image with order X. The whole algorithm includes 3 iterations.
And the last quantum state |I3〉 is the superposition of all the possible expanded images

i th qubit in the order register is |1〉, the corresponding basis states will be rotated
counter-clockwise by 2n−1−i . This quantum operation is denoted as Ti in the following
equation:

Ti = I ⊗i−1 ⊗ |0〉 〈0| ⊗ I ⊗n−i+q+m+n + I ⊗i−1 ⊗ |1〉 〈1| ⊗ I ⊗n−i ⊗ R2n−1−i

(33)

Equation (34) represents the quantum transformation of the operation Ti .

Ti |Ii 〉 = Ti

(
1√
2
|+〉⊗i |0〉 |0〉⊗n−i−1 ⊗ |I 〉 + 1√

2
|+〉⊗i |1〉 |0〉⊗n−i−1 ⊗ |I 〉

)

= 1√
2
|+〉⊗i |0〉 |0〉⊗n−i−1 ⊗ |I 〉 + 1√

2
|+〉⊗i |1〉 |0〉⊗n−i−1 ⊗ R2n−1−i |I 〉

(34)

After the n iterations, the whole state will be transformed to the result state |In〉.
Figure 10 depicts the procedure of the quantum image expanding procedure for a

quantum image with angular resolution 23. Through n iterations (n = 3 in Fig. 10), the
quantum procedure will change the initial state |I0〉 into the final result state as (35).
Because every rotation operation will be performed simultaneously for half of all the
basis states in the quantum superposition, the whole procedure can be decomposed
into only n controlled rotation operations.
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Fig. 11 The quantum circuit of the quantum image expanding procedure for a 2m × 2n log-polar image
with gray range 2q . The detailed quantum rotation operation of R2k is shown in Fig. 8

|In〉 = 1√
2n

2n−1∑

i=0

|i〉 Ri |I 〉

= 1√
2n

2n−1∑

i=0

|i〉
⎛

⎝ 1√
2m+n

2m−1∑

ρ=0

2n−1∑

θ=0

(|g(ρ, θ〉 ⊗ |ρ〉 ⊗ ∣∣(θ + i) mod 2n 〉)
⎞

⎠

(35)

From (35), the order register is entangled with the quantum image state. For every
basis state in the superposition |In〉, the quantum image state represents the expanded
image resulted from the reference image through a certain rotation which is stored in
the order register. 2n expanded images are stored in an equiprobable and normalized
superposition and they can be operated on simultaneously.

Figure 11 gives the quantum circuit of the quantum image expanding procedure
for a 2m × 2n log-polar image. From the circuit, the whole procedure is consisted
of n hadamard gates and n controlled rotation gates. Since every controlled rotation
operation in the circuit will cost no more than O(n2) as discussed in Sect. 4.2.2, the
time complexity of the whole procedure is approximately O(n3).

5.2.2 Quantum image searching

After image expanding, the reference image is transformed into a quantum image
database. In the final quantum state |In〉, the order register can be considered as the
image index while every basis state represents an expanded image as an element in the
image database. According to the image registration problem, it is known that there is
at least one record in the database which is the same with the observed image. Then we
will utilize Grover’s search algorithm [3] to do the image retrieving in the database.
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Firstly, we need another ancillary qubit to be set as seen in the following equation:

|−〉 = 1√
2
(|0〉 − |1〉) (36)

Equation (37) represents the tensor product between the image database and the ancil-
lary qubit.

|In〉 |−〉 = 1√
2n

2n−1∑

i=0

|i〉 Ri |I 〉 ⊗ |−〉 (37)

Then we design new quantum oracle U f for the image database as seen in the following
equation:

U f (|i〉 Ri |I 〉 | j〉) = |i〉 Ri |I 〉 | j ⊕ f (Ri |I 〉)〉 (38)

where f (Ri |I 〉) is shown as (39) and it can assess the similarity between the expanded
image Ri |I 〉 and the observed image

∣∣I ′〉 which is designed in a similar way of [23].

f (Ri |I 〉) =
{

1, if sim(Ri |I 〉 ,
∣∣I ′〉) = 1

0, else
(39)

Through the new quantum oracle, the whole quantum state will be transformed as seen
in the following equation:

|Ψ 〉 = 1√
2n

⎛

⎝
2n−1∑

i=0,i �= j

|i〉 Ri |I 〉 + (−1) | j〉 R j |I 〉
⎞

⎠ (40)

Through this oracle and the ancillary qubit, the whole quantum state |Ψ 〉 will be
divided into two parts:

|Ψ 〉 = 1√
2n

⎛

⎝
2n−1∑

i=0,i �= j

|i〉 Ri |I 〉 + (−1) | j〉 R j |I 〉
⎞

⎠ (41)

where j is just the index of the observed image in the image set.
From the well-known Grover Iteration [3], the number k of the iterations for the

whole procedure is
[

π
4

√
2n

]
. After these iterations, the final quantum state |Ψ 〉 will

be transformed as seen in the following equation:

|Ψ 〉=cos

(
2k+1

2
θ

)⎛

⎝ 1√
2n −1

2n−1∑

i=0,i �= j

|i〉 Ri |I 〉
⎞

⎠+sin

(
2k+1

2
θ

)
| j〉 R j |I 〉 (42)

where θ = 2 arccos
√

1 − 1
2n .
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5.2.3 Quantum measurement

In the last stage, the quantum measurement for the order register in the final quantum
state [shown in (42)] is applied using the computational basis {|0〉 , |1〉 · · · |2n − 1〉}.

Because k =
[

π
4

√
2n

]
and θ = 2 arccos

√
1 − 1

2n , we know that 2k+1
2 θ ≈ π

2 and
∣∣sin( 2k+1

2 θ)
∣∣2 ≈ 1. It means that via the quantum measurement for the order register,

the probability of the output index j is approximately 100 %.
The result j of the proposed algorithm is an n-bit integer while the final quantum

state is consisted of 2n + m + q qubits [from (42)], so the proposed quantum image
registration algorithm obeys the Holevo Bound Theorem [25].

5.2.4 Asymptotic complexity

In general, the time cost of the quantum state preparation usually does not include the
time complexity of quantum algorithm. Meanwhile the cost of quantum measurement
can be ignored, so we will mainly focus on the other two steps in the whole algorithm.

Firstly, we utilize the quantum image expanding algorithm for the reference image
and obtain a quantum image database. The time complexity is approximately O(n3).

Then, we design a new quantum oracle for the quantum image database and utilize
Grover’s search algorithm to search the observed image in the database. Through
quantum measurement, the algorithm can obtain the value of the rotation difference
between the reference image and observed image. Since the number of basis states in
the database is 2n , approximately O(

√
2n) quantum Grover iterations are operated on

in the procedure.
Therefore, the time complexity of the quantum image registration is no greater

than O(
√

2n) which has an approximately quartic decrease compared with that of the
classical image registration algorithm.

6 Conclusion and future work

Quantum computation has become a novel and important tool in the field of image
processing. In this paper, a novel quantum image model QUALPI is proposed. Different
from the existing quantum image models, QUALPI is, for the first time, designed for
the images sampled in log-polar coordinates.

Since all the pixels of a log-polar image can be stored and operated on simulta-
neously in the QUALPI model, some complex geometric transformations, such as
quantum symmetry transformation and quantum rotation transformation, can be per-
formed. Based on a fast quantum image expanding algorithm and quantum image
searching, a quantum image registration algorithm is proposed to obtain the rotation
difference between two quantum images. Compared with the classical brute-force
image registration method, the new quantum image registration algorithm can achieve
a quartic speedup. Therefore, QUALPI is more suitable for complex image processing
than the existing quantum image models in the literature.
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In the QUALPI model, for each radius, the circumference is sampled with the same
number of sample pixels. Hence, image pixels close to the center are oversampled while
those which are far away from the center are under-sampled, which is a drawback of the
sampling method of the log-polar image. In [21], adaptive log-polar and logarithmic
spiral are proposed to address the non-uniform sampling problem. Designing proper
quantum image models for these enhanced log-polar images will be one of our future
researches. In addition, since rotation is only one kind of the affine transformations,
the proposed quantum image registration algorithm is still preliminary for practical
applications. How to utilize quantum mechanics to design a more powerful quantum
image registration algorithm accounting for real affine transformations is also worth
investigating in the future work.
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