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Abstract Quantum discord quantifies the total non-classical correlations in mixed
states. It is the difference between total correlation, measured by quantum mutual
information, and the classical correlation. Another step forward towards the quantifi-
cation of quantum discord was by Dakić et al. (Phys Rev Lett 105:190502, 2010) who
introduced the geometric measure of quantum discord (GMQD) and derived an explicit
formula for a two-qubit state. Recently, Luo and Fu (Phys Rev Lett 106:120401, 2011)
introduced measurement-induced nonlocality (MIN) as a measure of nonlocality for
a bipartite quantum system. The dynamics of GMQD is recently considered by Song
et al. (arXiv: quant/ph.1203.3356) and Zhang et al. (Eur Phys J D 66:34, 2012) for
inertial observers. However, the topic requires due attention in noninertial frames, par-
ticularly, from the perspective of MIN. Here I consider X -structured bipartite quantum
system in noninertial frames and analyze the decoherence dynamics of GMQD and
MIN at finite temperature. The dynamics under the influence of amplitude damping,
depolarizing and phase flip channels is discussed. It is worth-noting that initial state
entanglement plays an important role in bipartite states. It is possible to distinguish the
Bell, Werner and general type initial quantum states using GMQD. Sudden transition
in the behaviour of GMQD and MIN occurs depending upon the mean photon number
of the local environment. The transition behaviour disappears for larger values of n̄,

i.e. n̄ > 0.3. It becomes more prominent, when environmental noise is introduced
in the system. In the presence of environmental noise, as we increase the value of
acceleration r , GMQD and MIN decay due to Unruh effect. The effect is prominent
for the phase flip and amplitude damping channels. However, in case of depolarizing
channel, no sudden change in the behaviour of GMQD and MIN is observed. The envi-
ronmental noise has stronger affect on the dynamics of GMQD and MIN as compared
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to the Unruh effect. Furthermore, Werner like states are more robust than General type
initial states at finite temperature.

Keywords Decoherence · GMQD · MIN · Finite temperature

1 Introduction

Quantum entanglement, a special quantum correlation, has attracted considerable
attention during recent years because many quantum information processes depend
on entanglement [1]. Main difficulty with entanglement is its quantification. Differ-
ent entanglement measures have been proposed [2,3]. Quantum correlation, one of
the key features in quantum information theory, has become an important tool to
study quantum many-body systems, for example, quantum phase transition in differ-
ent correlated systems. However, the quantitative and qualitative evaluation of such
correlations remains an open problem. So far, several quantifiers of non-classicality
of correlations have been introduced in literature [4–10], but still there is no clear cri-
teria for the faithfulness of them. Moreover, for the multipartite states, the geometric
measure of entanglement (GME) has been proposed [11–16]. The topic attracted due
respect in short span of time and bounds on several entanglement measures like von
Neumann Entropy [17], Negativity [18], Concurrence [19] and GME [20,21] were
obtained.

Recent investigations reveal that there exist quantum correlations other than entan-
glement. Quantum discord [22,23] quantifies the total non-classical correlations in a
quantum state. It was suggested that the quantum discord, rather than entanglement, is
responsible for the efficiency of a quantum computer, which is confirmed both theoret-
ically [24] and experimentally [25]. A systematical analysis of quantum and classical
correlations for bipartite and multipartite quantum systems have been proposed by
Okrasa and Walczak [26]. Quantum discord for the subclass of so-called X -states
[27–30], a qubit-qutrit [31] and qubit-qudit [32] systems have also been proposed.
Huang et al. [33] have proposed a new criterion for judging zero quantum discord for
arbitrary bipartite states. Yao et al. [34] have proposed the geometric interpretation of
the geometric discord. The dynamics of quantum discord for a two-qubit system in a
quantum spin environment have been proposed by Guo et al. [35]. Recently, discord
for multipartite quantum states has been investigated [36,37] and its dynamics under
decoherence [38].

However, the quantum discord for a general two qubit state remains a nontrivial
task and only the lower and upper bounds were investigated [39,40]. Motivated from
the difficultly in computing the quantum discord, the geometric measure of quantum
discord (GMQD) was proposed [6], which quantifies the amount of non-classical
correlations of a state in terms of its minimal distance from the set of genuinely classical
states. It can be defined as the nearest distance between the given state and the set of
zero-discord states. Recently, Luo and Fu [41,42] have introduced a geometric measure
of nonlocality which they termed as measurement-induced nonlocality (MIN). It can be
defined as the maximum distance between the bipartite state and its post-measurement
state, where the maximum is taken over all the von Neumann local measurements
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Decoherence dynamics of geometric measure 2723

which do not disturb the local state. Recent investigations in this direction includes
[43–60], where the behaviour of the dynamics of the system is discussed under different
scenarios. Furthermore, the dynamics of entanglement at zero and finite temperature
has been studied by many authors, for example [61–63].

The most difficult problem in realizing the quantum information technology is that
the quantum system can never be isolated from the surrounding environment com-
pletely. Interactions with the environment deteriorate the purity of the quantum states.
This general phenomenon, known as decoherence [64], is a serious obstacle against
the preservation of quantum super-positions over long periods of time. Decoherence
entails non-unitary evolutions, with serious consequences, like a loss of information
and probable leakage toward the environment. Therefore, in a realistic and practical
situation, decoherence caused by an external environment is inevitable and the influ-
ence of an external environmental system on the entanglement cannot be ignored.
However in some cases it can create quantum correlations in the system [65]. Under-
standing the dynamics of open quantum systems is of considerable importance. The
Schrodinger equation, which describes the evolution of closed systems, is generally
inapplicable to open systems, unless one includes the environment in the description.
This is, however, generally difficult, due to the large number of environment degrees
of freedom. An alternative is to develop a description for the evolution of only the sub-
system of interest. Much attention has been given to the phenomenon of decoherence
that causes an irreversible transfer of information from the system to the environment
[66,67] with the special attention to the degradation of entanglement [68–73]. On the
other hand, the behaviour of entanglement in noninertial frames was investigated for
the first time by Alsing et al. [74]. The subject have attracted much attention during
recent years [75–93]. It has also been investigated under decoherence for qubit-qubit
[94–97], qubit-qutrit system [98] and multipartite systems [99]. The entanglement
dynamics for noninertial observers in a correlated environment is considered in Ref.
[100], where it is shown that correlated noise compensates the loss of entanglement
caused by the Unruh effect. Recently, Oliveira et al. [101] have studied the entan-
glement measure for pure six-qubit quantum states. Whereas Zehua and Jiliang [102]
have studied how the Unruh effect affects the transition between classical and quantum
decoherence for a general class of initial states.

In this paper, I have investigated the decoherence dynamics of geometric measure
of quantum discord and measurement-induced nonlocality at finite temperature for
X -type initial states in relativistic frames. The two observers Alice and Bob share
an X -type state in noninertial frames. Alice is considered to be stationary whereas
Bob moves with a uniform acceleration r . It is shown that initial state entanglement
plays an important role in bipartite quantum states. Different decoherence channels
are considered parameterized by decoherence parameter p such that p ∈ [0, 1]. The
lower and upper limits of decoherence parameter represent the fully coherent and fully
decohered system, respectively. Whereas, the lower and upper limits of parameter X
correspond to t = ∞, 0, respectively. It is seen that different initial states can be
distinguished using GMQD such as the Bell diagonal, Werner and general type initial
states. It is also seen that the depolarizing channels heavily influences the dynamics
of GMQD and MIN as compared to the amplitude damping channel. Furthermore, no
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GMQD and MIN sudden death is seen at finite temperature even in the presence of
decoherence.

2 Decoherence dynamics of accelerated observers

The evolution of a system and its environment can be described by

USE (ρS ⊗ |0〉E 〈0|)U †
SE (1)

where USE represents the evolution operator for the combined system and |0〉E corre-
sponds to the initial state of the environment. By taking trace over the environmental
degrees of freedom, the evolution of the system can be obtained as

L(ρS) = TrE {USE (ρS ⊗ |0〉E 〈0|)U †
SE }

=
∑

μ
E 〈μ| USE |0〉EρSE 〈0|)U †

SE |μ〉E (2)

where |μ〉E represents the orthogonal basis of the environment and L is the operator
describing the evolution of the system. The above equation can also be written as

L(ρS) =
∑

μ
MμρS M†

μ (3)

where Mμ = E 〈μ| USE |0〉E are the Kraus operators as given in Ref. [103]. The Kraus
operators satisfy the completeness relation

∑
μ

M†
μMμ = 1 (4)

The decoherence process can also be represented by a map in terms of the complete
system-environment state. The dynamics of a d-dimensional quantum system can be
represented by the following map [104]

USE |ξl〉S ⊗ |0〉E =
∑

k
Mk |ξl〉S ⊗ |k〉E (5)

where {|ξl〉S} (l = 1, . . . , d) is the complete basis for the system and

|ξ1〉S ⊗ |0〉E → M0|ξ1〉S ⊗ |0〉E + · · · + Md2−1|ξ1〉S ⊗ |d2 − 1〉E

|ξ2〉S ⊗ |0〉E → M0|ξ2〉S ⊗ |0〉E + · · · + Md2−1|ξ2〉S ⊗ |d2 − 1〉E

·
·
·

|ξd〉S ⊗ |0〉E → M0|ξd〉S ⊗ |0〉E + · · · + Md2−1|ξd〉S ⊗ |d2 − 1〉E (6)
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Let Alice and Bob (the accelerated observer) share the following X -type initial
state [105]

ρAB = 1

4

(
IAB +

3∑

i=1

ciσ
(A)
i ⊗ σ

(B)
i

)
(7)

where IAB is the identity operator in a two-qubit Hilbert space, σ
(A)
i and σ

(B)
i are the

Pauli operators of the Alice’s and Bob’s qubit and ci (0 ≤ |ci | ≤ 1) are real numbers
satisfying the unit trace and positivity conditions of the density operator ρAB . In order
to study the entanglement dynamics, different cases for initial state are considered,
for example, the general initial state (|c1| = 0.7, |c2| = 0.9, |c3| = 0.4), the Werner
initial state (|c1| = |c2| = |c3| = 0.8), and Bell basis state (|c1| = |c2| = |c3| = 1).

Let the Dirac fields, as shown in Refs. [83,84], from an inertial perspective, can be
described by a superposition of Unruh monochromatic modes |0U 〉 = ⊗ω|0ω〉U and
|1U 〉 = ⊗ω|1ω〉U with

|0ω〉U = cos r |0ω〉I |0ω〉I I + sin r |1ω〉I |1ω〉I I (8)

and

|1ω〉M = |1ω〉I |0ω〉I I (9)

where cos r = (e−2πωc/a +1)−1/2, a is the acceleration of the observer, ω is frequency
of the Dirac particle and c is the speed of light in vacuum. The subscripts I and I I
of the kets represent the Rindler modes in region I and I I , respectively, as shown
in the Rindler spacetime diagram (see Ref. [92], Fig. (1)). By using Eqs. (8) and (9),
Eq. (7) can be re-written in terms of Minkowski modes for Alice (A) and Rindler
modes for Bob (B̃). The single-mode approximation is used in this study, i.e. a plane
wave Minkowski mode is assumed to be the same as a plane wave Unruh mode
(superposition of Minkowski plane waves with single-mode transformation to Rindler
modes). Therefore, Alice being an inertial observer while her partner Bob who is in
uniform acceleration, are considered to carry their detectors sensitive to the ω mode.
To study the entanglement in the state from their perspective one must transform
the Unruh modes to Rindler modes. Hence, Unruh states must be transformed into the
Rindler basis. Let Bob detects a single Unruh mode and Alice detects a monochromatic
Minkowski mode of the Dirac field. Considering that an accelerated observer in Rindler
region I has no access to the field modes in the causally disconnected region I I and by
taking the trace over the inaccessible modes, one obtains the following density matrix

ρAB̃ = 1

4

⎛

⎜⎜⎜⎝

(1+c3) cos2 r 0 0 c−cos r
0 (1+c3) sin2 r + (1 − c3) c+cos r 0
0 c+cos r (1−c3) cos2 r 0
c−cos r 0 0 (1+c3)+(1−c3) sin2 r

⎞

⎟⎟⎟⎠ (10)

where c+ = c1 + c2 and c− = c1 − c2.
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Fig. 1 (Color online). Geometric measure of quantum discord (GMQD) and measurement-induced non-
locality (MIN) are plotted as a function of acceleration r for Bell, Werner and General type initial states

Since noise is a major hurdle while transmitting quantum information from one
party to other through classical and quantum channels. This noise causes a distortion
of the information sent through the channel. It is considered that the system is strongly
correlated quantum system, the correlation of which results from the memory of the
channel itself. The action of a two qubit Pauli channel when both the qubits of Alice
and Bob are streamed through it, can be described in operator sum representation as
[1]

ρ f =
1∑

k1,k2=0

(Ak2 ⊗ Ak1)ρin(A†
k1

⊗ A†
k2

) (11)

where ρin represents the initial density matrix for quantum state and Aki are the
Kraus operators. A detailed list of single qubit Kraus operators for different quantum
channels under consideration is given in Table 1. In order to quantify the quantum
correlations, the dynamics of the system-environment interaction is investigated and
only the reduced matrices are considered. It is assumed that both Alice and Bob’s
qubits are influenced by the environment. The reduced-density matrix of the inertial
subsystem A and the noninertial subsystem B̃, can be obtained by taking the partial
trace of ρAB̃ E A ER̃

= ρAB̃ ⊗ρAB̃ E A EB̃
over the degrees of freedom of the environment
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Table 1 Single qubit Kraus
operators for amplitude
damping, depolarizing, and
phase flip channels where p
represents the decoherence
parameter.

Amplitude damping channel A0 =
[

1 0
0

√
1 − p

]
, A1 =

[
0

√
p

0 0

]
,

Depolarizing channel
A0 =

√
1 − 3p

4 I , A1 =
√

p
4 σx

A2 =
√

p
4 σy , A3 =

√
p
4 σz

Phase flip channel A0 = √
1 − pI, A1 = √

pσz

i.e.

ρAB̃ = TrE A EB̃
{ρAB̃ E A EB̃

}. (12)

3 GMQD and MIN at finite temperature

Let us consider a two-qubit system (two two-level atoms) is interacting with a thermal
reservoir. Unlike the Ref. [103], where the authors studied the system at T = 0, in the
present scheme, the effect of heat is included. The dynamics of the density matrix ρ̂

describing the two qubit system is given by [106]

dρ

dt
= 1

2
(n̄ + 1)�

2∑

i=1

{[
σ i−, ρσ i+

]
+

[
σ i−ρ, σ i+

]}

+1

2
n̄�

2∑

i=1

{[
σ i+, ρσ i−

]
+

[
σ i+ρ, σ i−

]}
(13)

where � is the spontaneous emission rate, σ i± (i = 1; 2) are the rasing (+) and
lowering (−) operators of atom i defined as σ i+ = |1〉 〈0|i , σ i− = |0〉 〈1|i , n̄ is the
mean occupation number of the reservoir (assumed to be the same for both qubits)
that can be related to the parameter X = exp−�(2n̄+1)t . Here, the quantity X is the
time-dependent parameter which can be used to monitor the evolution of GMQD
and MIN for the the two-qubit system. Notice that at t = 0, X = 1, and that at
t = ∞, X = 0. Therefore, physically meaningful values for X are between 0 and
1. On the right hand side of Eq. (13), the first term describes the depopulation of the
atoms due to stimulated and spontaneous emission, while the second term corresponds
to the re-excitations caused by the finite temperature. The final state of the system (for
the initial state of the form Eq. (10)) keeps its X -form at any time during its evolution
and leads to

⎡

⎢⎢⎣

ρ11[t] 0 0 ρ141[t]
0 ρ22[t] ρ23[t] 0
0 ρ32[t] ρ33[t] 0
ρ41[t] 0 0 ρ44[t]

⎤

⎥⎥⎦ (14)
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Fig. 2 (Color online). GMQD and MIN are plotted as a function of decoherence parameter p for Bell,
Werner and General type initial states for r = 0 (upper panel) amplitude damping channel and r = π/4
(lower panel) for the case of amplitude damping channel

The master equation of the system, governed by the first-order coupled differential
equations, can be solved to yield the expressions of the final density matrix as given in
Appendix [107]. The quantum discord, a measure of the minimal loss of correlation
in the sense of quantum mutual information, can be defined for a bipartite quantum
state as [22]

DA(ρ) := min
�A

{I (ρ) − I (ρ|�A)} (15)

where minimum is taken over all local von Neumann measurements �A.

I (ρ) := S(ρA) + S(ρB) − S(ρ) (16)

can be interpreted as the quantum mutual information,

S(ρ) := −Tr(ρ log ρ) (17)
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Fig. 3 (Color online). GMQD and MIN are plotted as a function of decoherence parameter p (upper panel)
for Bell, Werner and General type initial states for r = π/4 (lower panel) as a function of decoherence
parameter p and acceleration r for Werner type initial states, for phase flip channel

is the von Neumann entropy,

I (ρ|�A) : = S(ρB) − S(ρ|�A)

S(ρ|�A) : =
∑

k

pk S(ρk) (18)

and

ρk = 1

pk
(�A

k ⊗ IB)ρ(�A
k ⊗ IB) (19)

with

pk = Tr[(�A
k ⊗ IB)ρ(�A

k ⊗ IB)], k = 1, 2 (20)

Measurement-induced nonlocality can be viewed as a kind of quantum correlation
from a geometric perspective based on the local von Neumann measurements from
which one of the reduced states is left invariant. The MIN of ρ, denoted by M I N (ρ),
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Fig. 4 (Color online). GMQD and MIN are plotted as a function of the parameter X for General type initial
state (c1 = 0.2, c2 = −0.3, c3 = 0.3) for n̄ = 0.01, n̄ = 0.1 and n̄ = 0.3 for r = 0 (upper panel) and for
r = π/4 (lower panel) respectively

can be defined as [42]

M I NA(ρ) := max
�A

∥∥∥ρ − |�A(ρ)

∥∥∥
2

(21)

where ‖.‖ stands for the Hilbert-Schmidt norm (‖A‖ = [T r(A† A)]1/2) and the
maximum is taken over all local von Neumann measurement �A = {�A

k } with∑
k

�A
k ρA�A

k = ρA,

�A(ρ) =
∑

k

(�A
k ⊗ IB)ρ(�A

k ⊗ IB). (22)

Whereas the geometric measure of quantum discord for the class of X -states can be
defined as [108]

DG(ρ) := min
�A

‖ρ − χ‖2 (23)
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Fig. 5 (Color online). GMQD is plotted as a function of parameter c for depolarizing, amplitude damping
and phase flip channels for n̄ = 0.01 (upper graph) and n̄ = 0.1 (lower graph) for the Werner like states
(|c1| = |c2| = |c3| = c)

where the minimum is over the set of zero-discord states χ . The square of Hilbert-
Schmidt norm of Hermitian operators, ‖ρ − χ‖2 = Tr[(ρ − χ)2]. This quantity have
been evaluated by Dakić et al. [6] for an arbitrary two-qubit state.

4 Results and discussions

Instead of presenting analytical expressions for the geometric measure of quantum
discord and measurement-induced nonlocality, these quantities are interpreted in terms
of their corresponding graphs for various situations as illustrated in the figures captions.
Influence of different decoherence channels such as amplitude damping, depolarizing
and phase flip channels is investigated for X -type initial states in accelerated frames
at finite temperature. The results consist of three parts (1) the effect of acceleration
r on the GMQD and MIN of X -type initial states (2) the effect of decoherence on
the GMQD and MIN (3) the effect of finite temperature X on the GMQD and MIN
influenced by the decoherence channels.

In Fig. 1, the geometric measure of quantum discord (GMQD) and measurement-
induced nonlocality (MIN) are plotted as a function of acceleration r for Bell, Werner
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Fig. 6 (Color online). GMQD (upper panel, with p = 0.5) and MIN (lower panel, with r = π/4) are
plotted as a function of acceleration r, p respectively, and parameter X for General initial state (c1 =
0.2, c2 = −0.3, c3 = 0.3) with n̄ = 0.01 (upper graph) and n̄ = 0.1 (lower graph) for amplitude
damping, depolarizing and phase flip channels

and General type initial states. It is seen that GMQD can be used to distinguish initial
quantum states, whereas in case of MIN, all the three states overlap. In Fig. 2, GMQD
and MIN are plotted as a function of decoherence parameter p for Bell, Werner and
General type initial states for r = 0 (upper panel) and r = π/4 (lower panel) for the
case of amplitude damping channel. Here r = π/4 corresponds to infinite acceleration
limit. It can be seen that the depolarizing channels heavily influences the geometric
quantum discord and MIN as compared to amplitude damping channel. In Fig. 3,
GMQD and MIN are plotted as a function of decoherence parameter p (upper panel)
for Bell, Werner and General type initial states for r = π/4 (lower panel) as a function
of decoherence parameter p and acceleration r for Werner type initial states, for phase
flip channel. It is seen that the behaviour of phase flip channel is symmetrical around
50 % decoherence. It is also seen that for lower level range of decoherence, different
initial states can be distinguished. Furthermore, GMQD sudden birth appears for higher
level of decoherence for which the initial states become distinguishable. Whereas, for
the intermediate range of decoherence, it is difficult to distinguish different initial
states.

In Fig. 4, GMQD and MIN are plotted as a function of the parameter X for General
type initial state for n̄ = 0.01, n̄ = 0.1 and n̄ = 0.3 for r = 0 (upper panel) and for
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r = π/4 (lower panel) respectively. It is seen that a sudden change in the behaviour
(rise and then fall) of GMQD occurs depending upon the mean photon number of the
local environment. Whereas, MIN suddenly falls down at finite n̄ (i.e. very small mean
photon number) for higher values of the parameter X . In Fig. 5, GMQD is plotted for
depolarizing, amplitude damping and phase flip channels for n̄ = 0.01 (upper graph)
and n̄ = 0.1 (lower graph) for the Werner like states. A sudden change in the behaviour
of GMQD is seen depending upon the choice of the parameter c and the mean photon
number n̄. It is also seen that the mean number of photons plays a crucial role in the
dynamics of GMQD as we increase the value of n̄, the changing behaviour of GMQD
saturates for n̄ > 0.3. The sudden change in the behaviour of GMQD and MIN become
more prominent, when we introduce the environmental noise in the system.

In Fig. 6, GMQD (upper panel, with p = 0.5) and MIN (lower panel, with r = π/4)
are plotted as a function of acceleration r, p respectively, and parameter X for General
initial state for n̄ = 0.01 and n̄ = 0.1 (a) amplitude damping (b) depolarizing (c) phase
flip channels. Here upper graph corresponds to lower value of the mean number of
photons of the local reservoir. It is seen from the figure that as the value of acceleration
r increases, the GMQD and MIN are degraded, the effect is more prominent in case of
phase flip channel. The sudden transition in the behaviour of GMQD and MIN can be
seen for amplitude damping and phase flip channels. This sudden change is dependent
on the mean number of photons of the local environment. Similarly, sudden change in
the behaviour of MIN is also seen in the finite temperature regime (i.e. at finite n̄). It is
noticeable that in case of depolarizing channel, no sudden change in the behaviour of
GMQD and MIN is observed. It means that the depolarizing channel has destructive
interference effect on the local environment. Furthermore, the environmental noise
has stronger affect on the dynamics of GMQD and MIN as compared to the Unruh
effect. It is also seen that Werner like states are more robust than General type initial
states at finite temperature.

5 Conclusions

Decoherence dynamics of geometric measure of quantum discord (GMQD) and
measurement-induced nonlocality (MIN) is investigated for noninertial observers at
finite temperature. A two-qubit X -state is considered in noninertial frames and the
effect of acceleration r , decoherence and finite temperature is analyzed. Evolution of
GMQD and MIN is studied influenced by different environments such as amplitude
damping, depolarizing and phase flip channels. It is shown that initial state entangle-
ment plays an important role in bipartite quantum states. It is possible to distinguish
the Bell diagonal, Werner and general type initial states using the GMQD. A sudden
transition in the behaviour of GMQD and MIN occurs depending upon the mean pho-
ton number of the local environment at finite n̄ (i.e. for small mean photon number).
Therefore, mean photon number plays an important role in the dynamics of GMQD
and MIN. The transition behaviour disappears for larger values of n̄, i.e. n̄ > 0.3. This
transition behaviour become more prominent, when environmental noise is introduced
in the system. In the presence of environmental noise, as we increase the value of accel-
eration r , GMQD and MIN decay due to Unruh effect which is more prominent for
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the phase flip noise. This sudden change is dependent on the mean number of photons
of the local environment. It is notable that for the depolarizing channel, no sudden
change in the behaviour of GMQD and MIN is observed means that the depolarizing
channel has destructive interference effect on the local environment. Furthermore, the
environmental noise has stronger affect on the dynamics of GMQD and MIN as com-
pared to the Unruh effect. It is also seen that Werner like states are more robust than
General type initial states at finite temperature.

6 Appendix

ρ11[t] = 1
(2n̄+1)2 {n̄2 + [2(ρ11 − ρ44)n̄

2 + (ρ11 − ρ44 + 1)n̄]X

+[(2ρ11 + 2ρ44 − 1)n̄2 + (3ρ11 + ρ44 − 1)n̄ + ρ11]X2}
ρ22[t] = 1

(2n̄+1)2
{n̄(n̄ + 1) − [2(ρ11 + 2ρ33 + ρ44 − 1)n̄2

+(ρ11 + 4ρ33 + 3ρ44 − 2)n̄ + (ρ33 + ρ44 − 1)]X

−[(2ρ11 + 2ρ44 − 1)n̄2 + (3ρ11 + ρ44 − 1)n̄ + ρ11]X2}
ρ33[t] = 1

(2n̄+1)2
{n̄(n̄ + 1) + [2(ρ11 + 2ρ33 + ρ44 − 1)n̄2

+(3ρ11 + 4ρ33 + ρ44 − 2)n̄]X − [(2ρ11 + 2ρ44 − 1)n̄2

+(3ρ11 + ρ44 − 1)n̄ + ρ11]X2}
ρ44[t] = 1

(2n̄+1)2
{(n̄ + 1)2 − (n̄ + 1)[2n̄(ρ11 − ρ44) + (ρ11 − ρ44 − +)]X

+[(2ρ11 + 2ρ44 − 1)n̄2 + (3ρ11 + ρ44 − 1)n̄ + ρ11]X2}
ρ14[t] = ρ44 X, ρ23[t] = ρ23 X

where X = exp−�(2n̄+1)t and � is the spontaneous decay rate of the qubits.
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6. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord.

Phys. Rev. Lett. 105, 190502 (2010)
7. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899

(2001)

123



Decoherence dynamics of geometric measure 2735

8. Rossignoli, R., Canosa, N., Ciliberti, L.: Generalized entropic measures of quantum correlations.
Phys. Rev. A 82, 052342 (2010)

9. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum.
Phys. Rev. A 77, 022301 (2008)

10. Chakrabarty, I., Agrawal, P., Pati, A.K.: Quantum dissension: generalizing quantum discord for three-
qubit states. Eur. Phys. J. D 65, 605 (2011)

11. Wei, T.-C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and
multipartite quantum states. Phys. Rev. A 68, 042307 (2003)

12. Hübener, R., Kleinmann, M., Wei, T.-C., González-Guillén, C., Gühne, O.: Geometric measure of
entanglement for symmetric states. Phys. Rev. A 80, 032324 (2009)

13. Tamaryan, S., Wei, T.-C., Park, D.K.: Maximally entangled three-qubit states via geometric measure
of entanglement. Phys. Rev. A 80, 052315 (2009)

14. Tamaryan, S., Sudbery, A., Tamaryan, L.: Duality and the geometric measure of entanglement of
general multiqubit W states. Phys. Rev. A 81, 052319 (2010)

15. Martin, J., Giraud, O., Braun, P.A., Braun, D., Bastin, T.: Multiqubit symmetric states with high
geometric entanglement. Phys. Rev. A 81, 062347 (2010)

16. Chen, L., Xu, A., Zhu, H.: Computation of the geometric measure of entanglement for pure multiqubit
states. Phys. Rev. A 82, 032301 (2010)

17. Gour, G.: Reexamination of entanglement of superpositions. Phys. Rev. A 76, 052320 (2007)
18. Ou, Y.-C., Fan, H.: Bounds on negativity of superpositions. Phys. Rev. A 76, 022320 (2007)
19. Yu, C.-S., Yi, X.X., Song, H.-S.: Concurrence of superpositions. Phys. Rev. A 75, 022332 (2007)
20. Cavalcanti, D., Terra Cunha, M.O., Acin, A.: Multipartite entanglement of superpositions. Phys. Rev.

A 76, 042329 (2007)
21. Song, W., Liu, N.-L., Chen, Z.-B.: Bounds on the multipartite entanglement of superpositions. Phys.

Rev. A 76, 054303 (2007)
22. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys.

Rev. Lett. 88, 017901 (2001)
23. Brodutch, A., Terno, D.R.: Entanglement, discord, and the power of quantum computation. Phys.

Rev. A 83, 010301(R) (2011)
24. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100,

050502 (2008)
25. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without

entanglement. Phys. Rev. Lett. 101, 200501 (2008)
26. Okrasaa, M., Walczak, Z.: Quantum discord and multipartite correlations. Eur. Phys. Lett. 96, 60003

(2011)
27. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)
28. Liu, X., Ma, J., Xi, Z., Wang, X.: Optimal measurements to access classical correlations of two-qubit

states. Phys. Rev. A 83, 012327 (2011)
29. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X-states. Phys. Rev.

A 84, 042313 (2011)
30. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105

(2010)
31. Ali, M.: Quantum discord for a two-parameter class of states in 2xd quantum systems. J. Phys. A:

Math. Theor. 43, 495303 (2010)
32. Vinjanampathy, S., Rau, A.R.P.: Quantum discord for qubit-qudit systems. J. Phys. A: Math. Theor.

45, 095303 (2012)
33. Huang, J.-H., Wang, L., Zhu, S.-Y.: A new criterion for zero quantum discord. New J. Phys. 13,

063045 (2011)
34. Yao, Y., et al.: Geometric interpretation of the geometric discord. Phys. Lett. A 376, 358 (2012)
35. Guo, J.L., Mi, Y.J., Song, H.S.: Quantum discord dynamics of two-qubit system in a quantum spin

environment. Eur. Phys. J. D 66, 24 (2012)
36. Rulli, C.C., Sarandy, M.S.: Global quantum discord in multipartite systems. Phys. Rev. A 84, 042109

(2011)
37. Jianwei, Xu: Geometric global quantum discord. J. Phys. A: Math. Theor. 45, 405304 (2012)
38. Ramzan M.: Dynamics of multipartite quantum correlations under decoherence. arxiv:quant/

ph.1205.3133 (2012).

123



2736 M. Ramzan

39. Zhengjun, X., Lu, X.-M., Wang, X., Li, Y.: The upper bound and continuity of quantum discord. J.
Phys. A: Math. Theor. 44, 375301 (2011)

40. Rana, S., Parashar, P.: Tight lower bound on geometric discord of bipartite states. Phys. Rev. A 85,
024102 (2012)

41. Luo, S., Fu, S.: Global effects of quantum states induced by locally invariant measurements. Eur.
Phys. Lett. 92, 20004 (2010)

42. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)
43. Zhang, G.F., Fan, H., Ji, A.L., Liu, W.M.: Dynamics of geometric discord and measurement-induced

nonlocality at finite temperature. Eur. Phys. J. D 66, 34 (2012)
44. Sen, A., Sarkar, D., Bhar, A.: Monogamy of measurement induced non-locality. J. Phys. A: Math.

Theor. 45, 405306 (2012)
45. Yin, Y., et al.: Geometric measure of quantum discord for superpositions of Dicke states. J. Phys. B:

At. Mol. Opt. Phys. 44, 245502 (2011)
46. Xu, Z.Y., et al.: Comparison of different measures for quantum discord under non-Markovian noise.

J. Phys. A: Math. Theor. 44, 395304 (2011)
47. Altintas, F., Eryigit, R.: Quantum correlations in non-Markovian environments. Phys. Lett. A 374,

4283 (2010)
48. Benatti, F., Floreanini, R., Marzolino, U.: Bipartite entanglement in systems of identical particles:

The partial transposition criterion. Ann. Phys. 327, 1304 (2012)
49. Ferdi, A.: Geometric measure of quantum discord in non-Markovian environments. Opt. Commun.

283, 5264 (2010)
50. Xiao, S.M., et al.: Dynamics of quantum discord under decoherence from a spin environment. Opt.

Commun. 284, 555 (2011)
51. Li, J.-Q., Liang, J.-Q.: Quantum and classical correlations in a classical dephasing environment. Phys.

Lett. A 375, 1496 (2011)
52. Karpat, G., Gedik, Z.: Correlation dynamics of qubit-qutrit systems in a classical dephasing environ-

ment. Phys. Lett. A 375, 4166 (2011)
53. Zhi, H., Zou, J., Shao, B., Kong, S.-Y.: The decoherence dynamics of multipartite entanglement in a

non-Markovian environment. J. Phys. B: At. Mol. Opt. Phys. 43, 115503 (2010)
54. Au, J.H., Feng, M., Zhang, W.M.: Non-Markovian decoherence dynamics of entangled coherent

states. Quant. Inf. Comput. 9, 0317 (2009)
55. Mu, Q.-X., Zhang, Y.-Q., Song, J.: The dynamics of entanglement and quantum discord of two atoms

in coupled cavities. J. Mod. Opt. 59, 387 (2012)
56. Jin, J.-S., et al.: Quantum discord induced by white noises. JOSA B 27, 1799 (2010)
57. Zeeya, M.: Quantum computing: The power of discord. Nature 474, 24 (2011)
58. Mingjun, S., et al.: Geometric picture of quantum discord for two-qubit quantum states. New J. Phys.

13, 073016 (2011)
59. Wang, C.-Z., et al.: Classical correlation and quantum discord mediated by cavity in two coupled

qubits. J. Phys. B: At. Mol. Opt. Phys. 44, 015503 (2011)
60. Mahdian, M., Yousefjani, R., Salimi, S.: Quantum discord evolution of three-qubit states under noisy

channels. To appear in EPJD 66, 133 (2012)
61. Al-Qasimi, A., Daniel, F.V.J.: Sudden death of entanglement at finite temperature. Phys. Rev. A 77,

012117 (2008)
62. Tanás, R., Ficek, Z.: Sudden birth and death of entanglement of two atoms in a finite temperature

reservoir. Phys. Scr. T140, 014037 (2010)
63. Ali, M., Alber, G., Rau, A.R.P.: Manipulating entanglement sudden death of two-qubit X-states in

zero- and finite-temperature reservoirs. J. Phys. B: At. Mol. Opt. Phys. 42, 025501 (2009)
64. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford

(2002)
65. Amico, L., et al.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)
66. Zurek, W.H., et al.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36

(1991)
67. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys.

75, 715 (2003)
68. Scheel, S., Welsch, D.-G.: Entanglement generation and degradation by passive optical devices. Phys.

Rev. A 64, 063811 (2001)

123



Decoherence dynamics of geometric measure 2737

69. Hessian, H.A.: Entropy growth and degradation of entanglement due to intrinsic decoherence for an
initial mixed state in the multi-quanta JC model. Int. J. Theor. Phys. 47, 02971 (2008)

70. Mann, R.B., Villalba, V.M.: Speeding up entanglement degradation. Phys. Rev. A 80, 022305 (2009)
71. Ramzan, M., Khan, M.: Distinguishing quantum channels via magic squares game. Quant. Inf. Proc.

9, 667 (2010)
72. Kim, Y.-S., et al.: Protecting entanglement from decoherence using weak measurement and quantum

measurement reversal. Nature Phys. 8, 117 (2012)
73. Ramzan, M.: Three-player quantum Kolkata restaurant problem under decoherence. Quant. Inf.

Process. 12, 577 (2013)
74. Alsing, P.M., Milburn, G.J.: Teleportation with a uniformly accelerated partner. Phys. Rev. Lett. 91,

180404 (2003)
75. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in nonin-

ertial frames. Phys. Rev. A 74, 032326 (2006)
76. Lamata, L., Martin-Delgado, M.A., Solano, E.: Relativity and lorentz invariance of entanglement

distillability. Phys. Rev. Lett. 97, 250502 (2006)
77. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames.

Phys. Rev. Lett. 95, 120404 (2005)
78. Pan, Q., Jing, J.: Degradation of nonmaximal entanglement of scalar and Dirac fields in non-inertial

frames. Phys. Rev. A 77, 024302 (2008)
79. Wang, J., Pan, Q., Chen, S., Jing, J.: Entanglement of coupled massive scalar field in background of

dilaton black hole. Phys. Lett. B 677, 186 (2009)
80. Moradi, S.: Distillability of entanglement in accelerated frames. Phys. Rev. A 79, 064301 (2009)
81. Bruschi, D.E., et al.: The Unruh effect in quantum information beyond the single-mode approximation.

Phys. Rev. A 82, 042332 (2010)
82. Wang, J., Deng, J., Jing, J.: Classical correlation and quantum discord sharing of Dirac fields in

noninertial frames. Phys. Rev. A 81, 052120 (2010)
83. Aspachs, M., et al.: Optimal quantum estimation of the Unruh-Hawking effect. Phys. Rev. Lett 105,

151301 (2010)
84. Martn-Martnez, E., et al.: Unveiling quantum entanglement degradation near a Schwarzschild black

hole. Phys. Rev. D 82, 064006 (2010)
85. Montero, M., Martín-Martínez, E.: Fermionic entanglement ambiguity in noninertial frames. Phys.

Rev. A 83, 062323 (2011)
86. Montero, M., Martín-Martínez, E.: Entanglement of arbitrary spin fields in noninertial frames. Phys.

Rev. A 84, 012337 (2011)
87. Montero, M., et al.: Fermionic entanglement extinction in noninertial frames. Phys. Rev. A 84, 042320

(2011)
88. Moradi, S.: Relativity of mixed entangled states. Quant. Inf. Comp. 11, 957 (2011)
89. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev.

A 83, 022314 (2011)
90. Hwang, M.R., et al.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83, 012111 (2010)
91. Hossein, M.-D., et al.: Pseudo-entanglement evaluated in noninertial frames. Ann. Phys. 326, 1320

(2011)
92. Celeri, L.C., et al.: Sudden change in quantum and classical correlations and the Unruh effect. Phys.

Rev. A 81, 062130 (2010)
93. Wang, J., Jing, J.: Quantum decoherence in noninertial frames. Phys. Rev. A 82, 032324 (2010)
94. Wang, J., Jing, J.: System-environment dynamics of X-type states in noninertial frames. Ann. Phys.

327, 283 (2012)
95. Hu, M.-L., Fan, H.: Robustness of quantum correlations against decoherence. Ann. Phys. 327, 851

(2012)
96. Lu, X.-M., et al.: Geometric measure of quantum discord under decoherence. Quant. Inf. Comp. 10,

0994 (2010)
97. Ramzan, M., Khan, M.K.: Decoherence and entanglement degradation of a qubit-qutrit system in

non-inertial frames. Quant. Inf. Process. 11, 443 (2012)
98. Ramzan, M.: Decoherence and multipartite entanglement of non-inertial observers. Chin. Phys. Lett.

29, 020302 (2012)
99. Ramzan, M.: Entanglement dynamics of non-inertial observers in a correlated environment. Quant.

Inf. Proc. 12, 83 (2013)

123



2738 M. Ramzan

100. Oliveira, J., Oliveira, D., Ramos, R.: Entanglement measure for pure six-qubit quantum states. Quant.
Inf. Proc. 11, 255 (2012)

101. Tian, Zehua, Jing, Jiliang: How the Unruh effect affects transition between classical and quantum
decoherences. Phys. Lett. B 707, 264 (2012)

102. Kraus, K.: States, Effects and Operations: Fundamental Notions of Quantum Theory. Springer, Berlin
(1983)

103. Salles, A., et al.: Experimental investigation of the dynamics of entanglement: sudden death, com-
plementarity, and continuous monitoring of the environment. Phys. Rev. A 78, 022322 (2008)

104. Maziero, J., Werlang, T., Fanchini, F.F., Celeri, L.C., Serra, R.M.: System-reservoir dynamics of
quantum and classical correlations. Phys. Rev. A 81, 022116 (2010)

105. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93,
140404 (2004)

106. Ikram, M., Li, F.L., Zubairy, M.S.: Disentanglement in a two-qubit system subjected to dissipation
environments. Phys. Rev. A 75, 062336 (2007)

107. Luo, S.-L., Fu, S.-S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)
108. Song, W., et al.: Conditions for the freezing phenomena of geometric measure of quantum discord

for arbitrary two-qubit X -states under non-dissipative dephasing noises. arXiv: quant/ph 1203.3356
(2012).

123


	Decoherence dynamics of geometric measure  of quantum discord and measurement induced  nonlocality for noninertial observers  at finite temperature
	Abstract
	1 Introduction
	2 Decoherence dynamics of accelerated observers
	3 GMQD and MIN at finite temperature
	4 Results and discussions
	5 Conclusions
	6 Appendix
	References


