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Abstract Secret sharing plays a fundamental role in both secure multi-party com-
putation and modern cryptography. We present a new quantum secret sharing scheme
based on quantum Fourier transform. This scheme enjoys the property that each share
of a secret is disguised with true randomness, rather than classical pseudorandomness.
Moreover, under the only assumption that a top priority for all participants (secret shar-
ers and recovers) is to obtain the right result, our scheme is able to achieve provable
security against a computationally unbounded attacker.

Keywords Secret sharing · Quantum Fourier transform · Computational
indistinguishable · Simulator

1 Introduction

Secret sharing plays a crucial role in cryptography, which enables a dealer to distribute
his secret among a group of players. The dealer usually divide his secret message into
n pieces, where n is the number of the intended secret sharers. A piece of a secret is
customarily called a share (or a shadow). In a (t, n) threshold scheme, any group of
t (for threshold) or more players is sufficient to recover the secret, while any number
of less than t shares contain no information about the secret (except for the length
of the secret). In classical world, a popular technique to implement (t, n) threshold
scheme uses Lagrange interpolation method, which was presented by Shamir [1], and

W. Yang (B) · R. Shi
School of CS. Tech., University of Science and Technology of China, Hefei 230026, China
e-mail: qubit@ustc.edu.cn

L. Huang · L. He
Suzhou Institute for Advanced Study, USTC, Suzhou 215123, China

123



2466 W. Yang et al.

was often called Shamir’s secret sharing scheme (SSSS). At the same year, Blakley
[2] independently introduced another threshold scheme for secret sharing.

However, classical secret sharing protocols have some limitations. For example,
most of them make use of random bits. In order to distribute a one-bit secret among
threshold t players, t−1 random bits are necessary. On the other hand, classical secret
sharing schemes generally do not involve the secure transmission of the shares, leaving
this work to other cryptographic protocols [3]. With the boom in quantum information
and computation, quantum secret sharing (QSS) is attracting more and more interest,
and quantum state sharing (QSTS) is offering new perspectives. QSTS is QSS of
quantum information, and it has no classical counterpart. From the point of view of
information theory, QSS is the generalization of classical secret sharing.

The first QSS scheme was presented by Hillery et al. [4], which took advantage
of multipartite entangled Greenberger– Horne–Zeilinger (GHZ) state to achieve both
QSS and QSTS. After that, Cleve, Gottesman and Lo investigated quantum (k, n)

threshold scheme and showed that the threshold parameter k should satisfy the con-
dition that k ≤ n < 2k − 1. They also considered the connection between QSS
and quantum error-correction code. Soon Gottesman [5] generalized their results and
showed that the size of each share in a QSS scheme must be at least as large as the
size of the secret. From then on, a number of QSS and QSTS protocols were presented
one after another. See, for example [3,6–13].

In 2003, a special and interesting QSS scheme was proposed by Hsu [9]. In Hsu’s
work, through Grovers quantum searching algorithm, a (2, 2) threshold scheme was
established. The basic idea that underlies the protocol in [9] remarkably differs from the
ideas that underlie the protocols mentioned above. Then a natural question which arises
is: can we design other special and interesting QSS schemes via different mechanisms?
Bear this in mind and inspired by Dolev et al.’s [14] work, we propose a new QSS
protocol based on quantum Fourier transform (QFT) in this paper. The scheme is an
(n, n) threshold one. Our QSS protocol enjoys the nice property that each share is
protected by a random number. These numbers are generated totally randomly and
uniformly, which is guaranteed by the principles of quantum mechanics. In contrast
with traditional situation, classical random numbers are usually generated from a
biasing resource and only offer pseudo randomness most of the time. Moreover, our
new QSS scheme via QFT makes sense from the perspective of efficiency (or the
number of qubits consumed in a scheme). The advantage of our QSS scheme is the
efficiency gain due to using qudits rather than qubits to serve as the quantum channels.
We will show that the new QSS protocol achieves a desirable speed-up compared with
a kind of direct QSS using secure quantum key distribution. At last, our QSS scheme
is proven to be secure based on a cryptographic simulator.

2 Assumptions and definitions

As stated by Katz and Lindell [15], exact definitions and precise assumptions are
essential for a cryptographic protocol. The above two elements, together with rigorous
proofs of security, constitute the basic principles of modern cryptography. We start with
assumptions which are necessary in our QSS scheme. Note that each party may change
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his local input before executing the protocol. For example, if one party can recover the
secret using his true input and the outcome of the joint computation running with his
fake input and other parties’ true inputs, then he may obtain the secret exclusively. (Of
course, it is the case that if two or more participants are not honest, then none will get
the secret exactly.) However, this situation is unavoidable even when the parties utilize
a trusted party. On the other side, noticing that other parties may take the same strategy
to obtain the secret exclusively, the cheating party may reconsider the effectiveness of
replacing his true input with a fake one. Therefore, if we assume that the first choice
of a participant is to obtain the right secret and only when this situation is satisfied he
may take all kinds of cheating strategies to prevent other participants from getting the
secret rightly, then we can safely get rid of the possibility of a participant adopting the
attack method of substituting his private input with a fake one. Formally, we have

Assumption 1 In a QSS scheme, suppose the first priority of each participant is to
learn the secret exactly.

In fact, Assumption 1 can be replaced with a weaker one: suppose in the course of
secret recovery the number of the cheating participants, whose strategy is to modify the
true inputs, is not equal to 1. In other words, if the number of the cheating participants
is 0, then all the participants will learn the right secret. In another case, if the number
of the cheating parties is larger than 1, then none will get the secret rightly. However,
this weaker assumption is somehow obscure and not straightforward, so we still adopt
Assumption 1 as the only cryptographic assumption throughout our QSS protocol.

The following definitions are essential in the security proof of our QSS scheme.
We use the same definitions as those in [16].

Definition 1 (View) Let f be a functionality for cooperative computation and Π be
a multi-party protocol for computing f . The view of each party, during an execution
of Π on the inputs of all parties, is a tuple which includes the input of the party,
the outcome of the party’s internal coin tosses, and the intermediate messages he has
received.

It is worthwhile mentioning that the output of each party during an execution of Π

is implicit in the party’s view of the execution.

Definition 2 (Computational Indistinguishable) Two probability ensembles {Xn}n∈N

and {Yn}n∈N are computationally indistinguishable if they are indistinguishable by any
probabilistic polynomial-time algorithm.

For example, we have two probability ensembles {Xn} = r and {Yn} = 10r , where
r is distributed uniformly and randomly in real number field. Given that Alice outputs
a sequence of values using one of {Xn} and {Yn} as the resource, and Bob outputs
another sequence using another probability ensemble. Then we cannot distinguish
between these two sequences and thus cannot tell which is adopted by Alice, and vice
verse. In this situation, we say that these two probability ensembles are computational
indistinguishable.
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3 QSS scheme

In our QSS protocol, each participant gets from the secret sharer his private shadow
si . The goal to recover the right value of the secret can be expressed as a functionality
f (·), where f (·) is defined as:

f (s1, s2, . . . , sn) =
n∑

i=1

si (1)

Meanwhile, the value of each si is protected. In order for n participants to get a correct
and privacy-preserving result, these participants can perform as follows.

Without loss of generality, we can assume that all si (1 ≤ i ≤ n) are positive
integers. Because the case that some si s are not integers can be treated simply by
multiplying a sufficiently large positive integer for all the input data. Let N be a
sufficiently large positive integer. Suppose that the n parties share a priori an n-particle
entangled states

|S〉 = 1√
N

N−1∑

j=0

| j〉1| j〉2 · · · | j〉n, (2)

where each | j〉 is an N -dimensional basis state, and |S〉 is used to computing the
summation. When the scheme begins, each participating party first applies an N -mode
quantum discrete Fourier transform to his particle which comes form the composite
quantum system |S〉. The quantum version of the discrete Fourier transform [17,18]
is a unitary transformation F which can be expressed in a chosen computational basis
{|0〉, |1〉, . . . , |N − 1〉} as:

F | j〉 = 1√
N

N−1∑

k=0

e2π i jk/N |k〉 (3)

Then each participant performs a transformation Ui on his particle, where Ui is defined
to be:

Ui | j〉 = | j ⊕ si 〉, (4)

where ⊕ denotes addition modulo N . After these two transform operations, each par-
ticipant makes a quantum measurement in computational basis, i.e. {|0〉, |1〉, . . . , |N −
1〉}. Suppose their measurement results are ŝ1, ŝ2, . . ., ŝn . Then they broadcast these
numbers via a public classical channel. Now each participant can compute the sum-
mation by:

n∑

i=1

si = ŝ1 ⊕ ŝ2 ⊕ · · · ⊕ ŝn (5)
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The notation ⊕ in Eq. (5) represent addition modulo N as well. Till now, each
participant is able to get the secret.

4 Analysis and proofs

4.1 Correctness

We would like to analyse the correctness of the above scheme first. After the two
transform operations by all participants, |S〉 is transformed into a new state |Ŝ〉:

|Ŝ〉 = (U 1F) ⊗ (U 2F) ⊗ · · · ⊗ (U nF)|S〉

= 1√
N

N−1∑

j=0

(U 1F)| j〉1 ⊗ (U 2F)| j〉2 ⊗ · · · ⊗ (U nF)| j〉n

= 1√
N

N−1∑

j=0

⎛

⎝U 1 1√
N

N−1∑

k1=0

e2π i jk1/N |k1〉
⎞

⎠ ⊗

· · · ⊗
⎛

⎝U n 1√
N

N−1∑

kn=0

e2π i jkn/N |kn〉
⎞

⎠

= 1√
N

N−1∑

j=0

N− n
2

∑

k1,...,kn

e
2π i j

N (k1+···+kn)|k1 ⊕ s1〉 ⊗ · · · ⊗ |kn ⊕ sn〉 (6)

In the last step of Eq. (6), exchanging the order of summation, we get

|Ŝ〉 = N− n+1
2

∑

k1,...,kn

⎛

⎝
N−1∑

j=0

e
2π i j

N (k1+···+kn)

⎞

⎠

|k1 ⊕ s1〉 ⊗ · · · ⊗ |kn ⊕ sn〉 (7)

If we denote
∑N−1

j=0 e
2π i j

N (k1+···+kn) as ζ , and denote k1 + · · · + kn as K , then by
calculation, we have

ζ =
{

N K = 0(mod N )

0 otherwise
(8)

The second part of Eq. (8) is proven in “Appendix”. Combining Eqs. (7) and (8), we
can get that

|Ŝ〉 = N− n+1
2

∑

K=0(mod N )

|k1 ⊕ s1〉 ⊗ · · · ⊗ |kn ⊕ sn〉 (9)
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Let ŝi be defined as in Sect. 3, then by Eq. (9) we know that

ŝ1 ⊕ ŝ2 ⊕ · · · ⊕ ŝn

= k1 ⊕ s1 ⊕ k2 ⊕ s2 ⊕ · · · ⊕ kn ⊕ sn

= (s1 + s2 + · · · + sn) ⊕ K

= s1 + s2 + · · · + sn

=
n∑

i=1

si (10)

It goes to show that Eq. (5) is correct.
Now we can safely conclude that if all the participants execute the above scheme

honestly, they will all learn the secret rightly.

4.2 Efficiency

In this subsection we discuss the efficiency of our QSS scheme. Intuitively, a simpler
but not trivial (n, n) threshold QSS can proceed as follows. In order to share a secret
between n players, the secret owner divides his secret into n random shadows—each
shadow for a player. He then sends the i th shadow to player i respectively, using any of
existing quantum key distribution (QKD) schemes. Obviously, this scheme does work,
and its security is guaranteed by QKD, which has been proven to be unconditionally
secure [19–22]. Therefore, a new QSS protocol should, at least, be as efficient as this
one. For sake of concision, we call this kind of secret sharing scheme via QKD IQSS
(Intuitive QSS) hereafter. We know that Holevo [23] proved an important theorem on
the classical information capacity for a quantum channel. The Holevo theorem claims
that, for any classical message, the cost of transmitting it from one party to another
party using qubits is the same as the cost of sending it in terms of classical bits. If the
mission requires k bits on average, then it also requires k qubits on average. Hence no
matter what QKD protocol is invoked, the secret owner will communicate at least m
qubits to each player to transmitting a shadow, where m is the length of each shadow.
We now get that, to share a secret among n participants, nm qubits are essential for an
IQSS.

To evaluate the efficiency (or the number of qubits consumed in a QSS scheme)
of the above IQSS protocol, we would first like to introduce an important conclusion
proved by Csirmaz [24].

Theorem 1 [24] In any (n, n) threshold secret sharing scheme, if it is information-
theoretically secure, then the size of each shadow is at least as large as the size of the
secret.

Given the length of the secret is M , then by Theorem 1 we know that m ≥ M . Thus
we obtain that nM qubits are necessary for an information-theoretically secure IQSS.

As for our QSS protocol based on QFT, in order to share and recover an M-bit
secret within n parties, we need only 1 qu d it (with d = M) to create each | j〉
of the state |S〉 in Eq. (2). That is to say, n qudits (with d = M) are necessary in
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our QSS scheme. We know that O(log2 M) qubits are sufficient to “simulate” any
system of arbitrary m level. This implies that our QSS scheme would about require
n log2 M qubits. Therefore it is evident that our scheme provides a desirable efficiency
enhancement over IQSS.

Clearly, the advantage of our QSS scheme via QFT is the efficiency gain due to
using qudits rather than qubits to serve as the quantum channels. If we weigh up this
in terms of the number of qubits used in QSS schemes, then n log2 M versus nM gives
us a definite result. This can also be deemed as a situation to embody the superiority
of quantum entanglement.

4.3 Security

To accomplish the security proof, we will construct corresponding simulator for each
participant who attempts to cheat in our QSS scheme. The general idea underlying the
method of simulator is that if a simulator for a player can emulate the execution of a
protocol with only the input this player’s private data and the intermediate messages
he has received during the execution of the protocol, then we can safely conclude that
this protocol is secure against this player and he is not able to obtain more information
about other players’ private data. This is because the simulator itself has no knowledge
about those private data. For more discussion of simulator, view and computational
indistinguishable, we refer readers to Ref. [16].

Let us begin the security proof. We need to present a simulator for each party’s
view. The simulator for participant i is denoted as Ei . The view of party i can be
expressed as a tuple (si , ui , vi , M−i ), where si represents the secret shadow of party
i , ui is the state of his local particle (i.e., which in the state | j〉i in Eq. (2)), vi is his
local output and M−i stands for the set of the values declared by all the participants
other than party i . Taking this view as the input, the simulator Ei selects uniformly
and randomly a number on [0, N − 1] and outputs v′

i . Similarly, Ei uniformly and
randomly chooses n − 1 values on [0, N − 1] to output a set M ′−i . The total output of
Ei can now be expressed as (si , ui , v

′
i , M ′−i ). We show that this output and the view

of participant i are computational indistinguishable. Clearly, the first two elements are
same, so we only need to consider the last two elements. i.e., vi versus v′

i , and M−i

versus M ′−i . Note that although the QFT and unitary transformation Ui of each party
are determinate, the measurement outcome of the party is totally random and its value
is taken from [0, N − 1] uniformly. Therefore, there is no method to distinguish from
vi and v′

i , even with a quantum computer. Similarly, M ′−i is distributed identically to
M−i . That is to say, the distribution of Ei ’s total output is identical to the view of
party i in the real execution and the two tuples are computational indistinguishable.
According to the basic idea of simulator, we are convinced that the QSS protocol is
secure.

In addition, from the process of the above proof, we know that party i does have
the possibility of learn the secret exclusively by announce v′

i instead of vi . However,
as stated in Sect. 2, under Assumption 1, if his top priority is to obtain the right secret,
he will follow the QSS protocol with an honest vi .
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Till now, we know that our QSS scheme based on QFT is secure against any com-
putationally unbounded attacker.

5 Conclusion

In summary, we have shown that QFT can be utilized to construct secret sharing.
Under the only cryptographic assumption that the first priority of each party is to learn
the right secret, the QSS via QFT has been proven to be secure using a cryptographic
simulator. Furthermore, a comparison of qubits consumed in QSS shows that our new
protocol offers a desirable efficiency promotion over any IQSS scheme that reaches
the upper bound of the efficiency ruled by the Holevo theorem.
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6 Appendix: Proof of Equation (8)

The case that ζ = N if K = 0 mod N is obvious, thus we only focus on the proof of
ζ = 0 if K 
= 0 mod N . When K 
= 0 mod N , we know that

ζ =
N−1∑

j=0

e
2π i j

N K (11)

Let 2π K
N = t , then Eq. (11) can be rewritten as

ζ =
N−1∑

j=0

ei j t =
N−1∑

j=0

cos j t + i
N−1∑

j=0

sin j t (12)

It is not hard to verify and prove the following two Lagrange’s trigonometric iden-
tities [25]:

N∑

n=0

cos nθ = −1

2
+ sin

(
N + 1

2

)
θ

2 sin 1
2θ

(13)

and

N∑

n=0

sin nθ = cos 1
2θ − cos

(
N + 1

2

)
θ

2 sin 1
2θ

(14)
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Now we consider the first item of the right side of Eq. (12) using (13):

N−1∑

j=0

cos j t =
N∑

j=1

cos j t − cos Nt + cos 0 =
N∑

j=1

cos j t

= −1

2
+ sin

(
N + 1

2

)
t

2 sin 1
2 t

= −1

2
+ sin

(
2π K + π K

N

)

2 sin π K
N

= −1

2
+ sin π K

N

2 sin π K
N

= 0 (15)

The last step of (15) holds iff K 
= 0 mod N .
Similarly, we can get that

∑N−1
j=0 sin j t = 0 using (14) with K 
= 0 mod N .

So far, we can safely reach the conclusion that ζ = 0 iff K 
= 0 mod N and thus
Eq. (8) follows.
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