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Abstract We define genuine total, classical and quantum correlations in tripartite
systems. The genuine tripartite quantum discord can be interpreted as ‘quantum advan-
tage’ in tripartite superdense coding. We find in a symmetrical tripartite state, for total
correlation and classical correlation, the genuine tripartite correlations are no less than
the pair-wise correlations. However, the genuine quantum tripartite correlation can be
surpassed by the pair-wise quantum correlations. Analytical expressions for genuine
tripartite correlations are obtained for pure states and rank-2 symmetrical states. The
genuine correlations in both entangled and separable states are calculated.

Keywords Genuine correlations · Quantum discord · Symmetrical states

1 Introduction

It is believed that various quantum correlations are resources in quantum information
processing. Such quantum correlations include entanglement and quantum discord,
they are closely related but different from each other. Much progress has been made
in studying quantum entanglement [1], it is also found that theories of entanglement
may be applied in quantum phase transitions and adiabatic quantum computation [2].
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Quantum discord, introduced and studied in Refs. [3–7], has recently drawn much
attention as well. There is nonzero quantum discord in general separable states in
comparison the entanglement vanishes in this case. Additionally, entanglement may
disappear at a finite time [8], while quantum discord decays asymptotically even at a
finite temperature, which is known as the robustness of quantum discord [9]. In gen-
eral, it seems that quantum discord is more common than entanglement in quantum
states. For specific applications of quantum discord in quantum information proto-
cols, the deterministic quantum computation with one qubit (DQC1) [10] and state
discrimination [11,12] can be realized using states with zero entanglement but positive
quantum correlation. The importance of quantum discord is also presented in quan-
tum communication [13]. The operational significance of discord consumption has
been discussed theoretically and experimentally [14]. Generally, numerical methods
is required for calculating quantum discord. By far, analytical evaluation of quantum
discord are developed for some special two-qubit states, e. g. X states [15,16]. A sim-
ple method is pointed out to get the analytical quantum discord of a rank-two bipartite
state by relationship with entanglement of formation (EOF) [17].

Despite the great potential advantages of multipartite quantum correlations, the
problem of quantifying and characterizing the correlation contained in the multipar-
tite quantum systems is still open. Recently, much effort has been devoted in classifying
multipartite states and measuring the quantum correlations contained in these states.
There exist two kinds of tripartite states according to the behavior of states under the
action of LOCC (local operations and classical communication) [18]. Moreover, in Ref.
[19], basing on the action of SLOCC (stochastic local quantum operations assisted
by classical communication), the complete classification of all different classes of
four qubits has been discussed. For more general case, since of nine different ways of
entangling four qubits, there should exist nine families of states. A global measure is
proposed for quantum correlations of multipartite systems [20]. The quantum dissen-
sion which measures the quantum correlations in a tripartite state is introduced in Ref.
[21]. Moreover in Ref. [22], the genuine total, quantum and classical correlations in
multipartite system are defined by employing relative entropy as a distance measure
of correlations [23]. Some general criteria about the definition of genuine n-partite
correlations has been given by Bennett et al. [24].

In this paper, we try to provide some new definitions of genuine tripartite corre-
lations. The genuine total or quantum correlation goes to zero if and only if there is
a bipartition of the tripartite system such that no total or quantum correlation exist
between the two parts. The operational significance of genuine tripartite quantum dis-
cord is discussed. We also obtain the analytical expressions of the genuine tripartite
correlations in pure and rank-two states. Genuine total, quantum and classical corre-
lations are compared with their pairwise counterparts. We find that the genuine total
and classical correlations are greater than their pairwise counterparts in symmetrical
states, but this quantitative relation does not hold for quantum correlations. Our def-
inition of genuine tripartite quantum correlation is no greater than the one defined in
[22], but the two definitions coincide for pure states.

The remainder of this paper is arranged as follows. In Sect. 2, we give our new def-
initions of genuine tripartite correlations and investigate the case of pure and symmet-
rical tripartite states, and then discuss the operational significance of genuine tripartite
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Genuine correlations of tripartite system 2373

quantum discord. In Sect. 3, we will illustrate by examples the tripartite genuine quan-
tum discord and classical correlations in symmetrical systems. Section 4 is devoted to
the conclusion.

2 An optimal genuine tripartite correlations

Let us briefly recall the definition of two-particle quantum discord [3]:

D(ρa:b) ≡ I (ρa,b) − J (ρa:b), (1)

where the mutual information I (ρa,b) = S(ρa) + S(ρb) − S(ρab), with S(ρ) =
−tr(ρ log2 ρ), characterizes the total correlations, and J (ρa:b) = S(ρa) − min{Eb

l }
S(ρa|{Eb

l }) is called the classical correlation. Here {Eb
l } is positive operator valued

measures (POVM) performed on system b and S(ρa|{Eb
l }) = ∑

l
pl S(ρa|Eb

l
), where

ρa|Eb
l

= T rb(Eb
l ρab)/pl and pl = T rab(Eb

l ρab).
The operational significance of discord consumption has been discussed [14].

Quantum discord quantifies a resource which can be consumed during encoding to
give coherent interactions an operationally meaningful advantage. Under the assump-
tion that D(ρa:b) ≤ D(ρb:a), Bob possesses particle b while Alice owns particle a
and encodes information within it. His aim is to get the encoded data. The encoded
state which resulted from that Alice encodes a random variable K with probability
P(P = K ) = pk by applying a corresponding unitary operator Uk is:

ρ̃ab =
∑

k

pkUkρabU †
k . (2)

The amount of discord consumed in encoding is the difference between D(ρa:b) and
D(ρ̃a:b):

�D(ρa:b) = D(ρa:b) − D(ρ̃a:b). (3)

Then, Alice gives particle a to Bob. When bob is only allowed to a single local mea-
surement on each of a and b, his best possible performance, the maximal information
he can get, is Ic. When he can operate arbitrary operations on system a and b even the
joint system ab, his maximum performance is Iq . The extra quantum advantage that
coherent interactions can potentially deliver is defined as the difference �I = Iq − Ic.
From Ref. [14]:

�D(ρa:b) − J̃ (ρa:b) ≤ �I ≤ �D(ρa:b). (4)

Specially, �I = �D = D(ρa:b) in case of maximal encoding when D(ρ̃a:b) =
J (ρ̃a:b) = 0. It is noticed that there always exists maximal encoding [14].

A state of n particles is said to possess genuine n-partite correlations when it is
nonproduct in every bipartite cut [24]. From this point of view, we can define genuine
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tripartite correlations in tripartite states ρabc ≡ ρ as

T (3)(ρ) ≡ min[I (ρa,bc), I (ρb,ac), I (ρc,ab)], (5)

where I (ρi, jk) = S(ρi )+ S(ρ jk)− S(ρ) is the mutual information between one-qubit
part and the left two-qubit part, which goes to zero if and only if ρ = ρi ⊗ ρ jk . This
definition of genuine total correlation coincides with which defined in Ref. [22].

Consistent with the definition of T (3), and taking the operational significance of
discord consumption into consideration, we define genuine tripartite quantum discord
as:

D(3)(ρ) = min[D(ρa:bc), D(ρb:ac), D(ρc:ab)], (6)

where D(ρi : jk) = S(ρ jk) + S(ρi | jk) − S(ρ), S(ρk|i j ) = min{Ei j
m }[S(ρ

k|{Ei j
m })], and

{Ei j
m } is a two-particle POVM operating on i and j . It must be the form that X(i)-C(jk)

(X: quantum or classical states, C: classical states ) when the genuine tripartite quantum
discord D(3)(ρ) = D(ρi : jk) of a state is null. Therefore, the tripartite states can be
divided into two groups: X(i)-C(jk) and X(i)-Q(jk) (Q: quantum states), according to
the null or non-zero genuine tripartite quantum discord.

Then, we define genuine tripartite classical correlations as:

J (3)(ρ) = min[J (ρa:bc), J (ρb:ac), J (ρc:ab)], (7)

where J (ρi : jk) = S(ρi ) − S(ρi | jk).
Now, we explain the operational significance of genuine tripartite quantum con-

sumption in our definition. We assume that min[D(ρa:bc), D(ρb:ac), D(ρc:ab)] =
D(ρa:bc). Alice owns particle a and encodes information within it. Bob possesses
particle b and Chris owns particle c. The aim of Bob and Chris is to get the encoded
data. They must cooperate with each other, so that they can get the most information.
The encoded state which resulted from that Alice encodes a random variable K with
probability P(P = K ) = pk by applying a corresponding unitary operator Uk is:

ρ̃abc =
∑

k

pkUkρabcU †
k . (8)

The amount of discord consumed in encoding is the difference between D(ρa:bc) and
D(ρ̃a:bc):

�D(ρa:bc) = D(ρa:bc) − D(ρ̃a:bc). (9)

Then, Alice gives particle a to Bob and Chris. There are two situations when Bob
and Chris decode the information. For the first situation, Bob and Chris can not store
their qubits until they receive Alice’s qubit, so they must operate their own qubits
first, and then operate Alice’s qubit. Therefore, they must operate qubit a and the
system of qubits b,c separately. When Bob and Chris are only allowed to a single
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local measurement on each of a and bc, their best possible performance, the maximal
information they can get, is Ic. For the second situation, they can operate arbitrary
operations on system a and bc even the joint system abc, their maximum performance
is Iq . The extra quantum advantage that coherent interactions can potentially deliver
is the difference �I = Iq − Ic. According to Ref. [14], we can get that:

�D(ρa:bc) − J̃ (ρa:bc) ≤ �I ≤ �D(ρa:bc). (10)

Specially, like the bipartite case, �I = �D = D(ρa:bc) in case of maximal encoding
when D(ρ̃a:bc) = J (ρ̃a:bc) = 0. It is noticed that there always exists maximal encod-
ing [14]. The genuine tripartite correlations is greater than the bipartite counterpart
sometimes, so that the upper bound of �I is greater as well.

We discuss some properties of genuine tripartite correlations below. Without loss
of generality, we make the following assumption:

I (ρc,ab) ≤ I (ρa,bc) ≤ I (ρb,ac). (11)

The left discussion about pure and symmetrical states in this section is based on
it. According to Schmidt decomposition, S(ρc|ab) = 0 and S(ρi ) = S(ρ jk) in the
tripartite pure states. By assumption (11), we have S(ρc) = S(ρab) ≤ S(ρa) =
S(ρbc) ≤ S(ρb) = S(ρac). Therefore, we can obtain the genuine tripartite total,
classical correlations and quantum discord:

T (3)(ρ) = 2S(ρc) = 2S(ρab),

D(3)(ρ) = J (3)(ρ) = S(ρab) = S(ρc). (12)

It means that genuine tripartite classical correlations and quantum discord are both
equal to half of the genuine tripartite total correlations and satisfy T (3)(ρ) = D(3)(ρ)+
J (3)(ρ) in a pure state, which coincide with the genuine correlations defined in Ref
[22].

When the tripartite quantum system is symmetrical, i. e., the state of the whole
system is invariant under the permutations of the three parties, the genuine tripartite
total, classical and quantum correlations can be regarded as:

T (3)(ρ) = S(ρc) + S(ρab) − S(ρ),

J (3)(ρ) = S(ρc) − S(ρc|ab),

D(3)(ρ) = S(ρab) + S(ρc|ab) − S(ρ). (13)

We can see that the genuine total correlation is the sum of genuine classical and
quantum correlations in a symmetrical tripartite state. Now, we derive some properties
of the genuine correlations.

123



2376 L. Zhao et al.

Theorem For a symmetrical tripartite quantum state, the genuine tripartite total and
classical correlations is no less than the any pairwise counterpart, respectively

T (3)(ρ) ≥ T (2)(ρ),

J (3)(ρ) ≥ J (2)(ρ), (14)

where the T (2) and J (2) are pairwise total and classical correlations respectively.

Proof of Theory The mutual information does not increase when discards quan-
tum subsystem: I (ρc,a) ≤ I (ρc,ab) [25], it is obvious that genuine tripartite cor-
relations is no less than pairwise correlations of symmetrical tripartite systems.
For classical correlations, we have J (3)(ρ) = J (ρc:ab) and J (2)(ρ) = J (ρc:a).
Direct calculations lead to J (3)(ρ) − J (2)(ρ) = S(ρc|a) − S(ρc|ab). Notice that
S(ρc|a) = min{Ea⊗I b} S(ρc|{Ea

l ⊗I b}), and that {Ea
l ⊗ I b} may not be the optimal

POVM {Eab
l } in the definition of S(ρc|ab). Therefore, we have J (3)(ρ) ≥ J (2)(ρ).

This completes the proof.

For quantum correlations, there are no fixed quantitative relation between genuine
and pairwise quantum correlations, which we will illustrate in the next section by
some concrete examples.

3 Analytic expression of genuine tripartite quantum discord for rank-two
symmetrical states

We now consider genuine quantum discord of rank-two symmetrical states of three
qubits, which we can get the analytic results. A rank-two symmetrical tripartite system
can be written as

ρ = p|ϕ1〉〈ϕ1|abc + (1 − p)|ϕ2〉〈ϕ2|abc, (15)

where |ϕi 〉abc is a three-qubit symmetrical state. The state in Eq. (15) can be purified
to a four-qubit pure state by attaching an auxiliary system d:

|�abcd〉 = √
p|ϕ1, 0〉 + √

1 − p|ϕ2, 1〉. (16)

According to the Koashi–Winter relation in Ref. [17], we can obtain E(ρcd) = S(ρc|ab)

and deduce the genuine tripartite discord in Eq. (13) as:

D(3)(ρ) = S(ρab) + E(ρcd) − S(ρ). (17)

Here E(ρcd) is the EOF between qubits c and d, which is defined as

E(ρcd) = min{pi ,|φi 〉cd }
∑

i

pi S(T rc(|φi 〉〈φi |)), (18)
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and can be calculated as follows: E(ρcd) = −h log2 h − (1 − h) log2(1 − h), where

h = 1+
√

1−C2
cd

2 , Ccd being the concurrence of ρcd [26,27]. Optimal POVM {Eab
i } in

the definition of D(3) related to the optimal pure state decomposition {pi , |φi 〉cd} for
EOF as follows [17]:

ρi
c|ab = T rab{Eab

i ρ}/pi = T rd{|φi 〉〈φi |}. (19)

Obviously, we can obtain the genuine tripartite correlations even in general rank-two
states.

We study two concrete examples to investigate more closely the properties of gen-
uine tripartite correlations. Firstly, consider a symmetric tripartite system as the form:

ρ = p|000〉〈000| + (1 − p)|φφφ〉〈φφφ| (20)

where |φ〉 = cos θ |0〉 + sin θ |1〉. This is a three-qubit separated state with no entan-
glement of any type. We calculate nonzero eigenvalues of ρ and ρab as well as the
analytical formula of h:

λabc
1 = 1

8
(4 − √

2
√

8 − pq(22 − 15 cos 2θ − 6 cos 4θ − cos 6θ),

λabc
2 = 1

8
(4 + √

2
√

8 − pq(22 − 15 cos 2θ − 6 cos 4θ − cos 6θ),

λab
1 = 1

4
(2 − √

2
√

2 − pq(5 − 4 cos 2θ − cos 4θ),

λab
2 = 1

4
(2 + √

2
√

2 − pq(5 − 4 cos 2θ − cos 4θ),

h = 1

8

(
4 +

(
16 + 15pq(cos 2θ − 18 + 2 cos 4θ + cos 6θ)

+ 8

√

pq(sin θ)6
√

pq(5 sin θ + sin 3θ)2
) 1

2
)
, (21)

where q = 1 − p. Then from Eq. (17), we obtain the the analytic expression for the
genuine tripartite quantum discord:

D(3)(ρ) = −λab
1 log2 λab

1 − λab
2 log2 λab

2

−(1 − h) log2(1 − h)

−h log2 h + λabc
1 log2 λabc

1

+λabc
2 log2 λabc

2 . (22)

The analytical results are plotted in Fig. 1. Figure 1a is D(3)(ρ) as a function of p
and θ . We see that the D(3)(ρ) is equal to zero when p = 0 or p = 1, and it takes
the maximal value for p = 1

2 when θ is fixed. It is not difficult to find that D(3)(ρ) is
symmetric with p = 1

2 when θ is fixed. This can be understoodas follows. The state

123



2378 L. Zhao et al.

Fig. 1 a D(3)(ρ) as a function of θ and p. b D(3)(ρ) − D(2)(ρ) as function of θ and p

in Eq. (20) can be transformed into ρ′ = (1 − p)|000〉〈000| + p|φφφ〉〈φφφ| by the
unitary operator U ′ = U ⊗U ⊗U , where U = {cos θ, sin θ; sin θ,− cos θ}. Genuine
correlations are preserved under local unitary operations, that is D(3)(ρ) = D(3)(ρ′).
Hence, D(3)(ρ) is invariant when p and 1 − p are interchanged. Then, we find that
D(3)(ρ) takes the maximal value when p = 1

2 and θ = 0.688. In Fig. 1b plots the
difference between D(3) and D(2) as a function of p and θ . The cases that D(3)(ρ) is
less than, equal to or greater than D(2)(ρ) are all possible. Therefore, in superdense
coding, the ‘quantum advantage’ when Bob and Chris possess particle b and c may
be greater than, equal to or less than the case when only Bob owns particle b.

We then turn to find out the corresponding optimal measurements by which we
get the genuine tripartite quantum discord. The case for p = 1

2 is discussed in here.
Firstly, we achieve the optimal pure state decomposition of ρcd which minimized the
EOF of the state using the method in Ref. [27]:

|φ1〉 = 1

2

(√
1 + cos2θ + sinθ

)
|00〉

+1

2
cosθ

(√
1 + cos2θ − sinθ

)
|01〉

+1

2

(√
1 + cosθ2 − sinθ

)
sinθ |11〉,

|φ2〉 = 1

2

(√
1 + cos2θ − sinθ

)
|00〉

+1

2

(
cosθ

√
1 + cos2θ + cosθsinθ

)
|01〉

+1

2

(√
1 + cos2θsinθ + sin2θ

)
|11〉. (23)

Then from Eq. (19), we have the optimal measurement bases for D(3) as

|Eab
1 〉 =

√
3 + cos 2θ + √

2 sin θ

2
√

2
|00〉

−
sinθ

(√
3 + cos 2θ − √

2sinθ
)

2
√

3 + cos 2θ
|11〉
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Fig. 2 Correlations for the state, ρ = p|000〉〈000| + (1 − p)|φφφ〉〈φφφ|, vary with θ when p = 1/2 :
D(3)(ρ)(blue solid line), J (3)(ρ) (black dashed line), D′(3)(ρ) (red dot-dashed line), J ′(3)(ρ) (orange
dotted line) (Color figure online)

−
cosθ

(√
3 + cos 2θ − √

2sinθ
)

2
√

3 + cos 2θ
(|01〉 + |10〉), (24)

|Eab
2 〉 =

√
3 + cos 2θ − √

2 sin θ

2
√

2
|00〉

+
sinθ

(√
3 + cos 2θ + √

2sinθ
)

2
√

3 + cos 2θ
|11〉

+
cosθ

(√
3 + cos 2θ + √

2sinθ
)

2
√

3 + cos 2θ
(|01〉 + |10〉). (25)

The other two measurements with above two measurements constitute a set of
orthogonal basis which satisfy that

∑4
k=1 |Eab

k 〉〈Eab
k | = I . It must be noticed that

|Eab
k 〉 can not always be written as |Ea

l 〉 ⊗ |Eb
m〉.

The genuine tripartite classical and quantum correlations we defined are different
with which defined in Ref. [22]. Here we compare our measure for genuine correlations
with those defined in Ref. [22], where J ′(3)(ρ) = S(ρc) − S′(ρc|ab) and D′(3)(ρ) =
S(ρab) + S′(ρc|ab) − S(ρabc) with S′(ρc|ab) = min{Ea

l ,Eb
m }[S(ρc|{Ea

l ,Eb
m })] are the

genuine quantum and classical correlations. Since {Ea
l ⊗ Eb

m} may not be the optimal
POVM {Eab

m } in the definition of D(3), we have D(3)(ρ) ≤ D′(3)(ρ) and J (3)(ρ) ≥
J ′(3)(ρ). The comparison is shown in Fig. 2 which is the θ -dependent correlations
variation curves when p = 1

2 . From Fig. 2, we can see that D(3)(ρ) and D′(3)(ρ) are
quite close to each other. However, the two measures of genuine quantum correlation
do not coincide for θ �= 0 or π/2. It means that even for separable state in Eq. (20),
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Fig. 3 Correlations for the state, ρabc = p|G H Z〉〈G H Z |+(1− p)|W 〉〈W |, vary with p. a D(3)(ρ) (solid
line), D(2)(ρ) (dashed line), τ3 (dot-dashed line). b D(3)(ρ) (solid line), J (3)(ρ) (dashed line), D′(3)(ρ)

(dot-dashed line), J ′(3)(ρ) (dotted line)

the optimal measurement {Eab
m } in the definition of genuine quantum correlation D(3)

can not be written as Eab
m = Ea

l ⊗ Eb
m . Another interesting phenomenon is that the

genuine quantum correlation D(3)(ρ) may surpass the genuine classical correlation
J (3)(ρ) even for separable states.

Now, we consider a state of this form

ρ = p|G H Z〉〈G H Z | + (1 − p)|W 〉〈W |, (26)

where |G H Z〉 = 1√
2
(|000〉 + |111〉) and |W 〉 = 1√

3
(|100〉 + |010〉 + |001〉). The

genuine tripartite discord of the state as in Eq. (26) can be calculated using the same
method as above state. Therefore,

D(3)(ρ) = −
(

1 − p

3
+ p

2

)

log2

(
1 − p

3
+ p

2

)

−
(

2

3
(1 − p)

)

log2

(
2

3
(1 − p)

)

−
( p

2

)
log2

( p

2

)

+p log2 p + (1 − p) log2(1 − p). (27)

Figure 3a shows D(3)(ρ) is greater than D(2)(ρ). There is a transition point at p = 0.51
for D(2)(ρ) because of the sudden change of the measurement basis. The three-tangle
τ3 [29] of the state (26) which we showed in the Fig. 3a has been obtained in ref
[28]. We can see that the genuine quantum discord is no less than the three-tangle τ3.
Figure 3b shows D′(3)(ρ), D(3)(ρ), J (3)(ρ) and J ′(3)(ρ) as functions of p. The four
quantities coincide only for p = 0 or p = 1, where the state in Eq. (26) is just the |W 〉
state or |G H Z〉 state. For p ∈ (0, 1), we can see that in this state, the gap between
D′(3)(ρ) and D(3)(ρ), as well as that between J (3)(ρ) and J ′(3)(ρ) can be very large.
Moreover, the ordering is different, i.e., J (3) is greater than D(3) while J ′(3) is less
than D′(3).
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4 Conclusion and discussion

In summary, we have investigated the genuine correlations in tripartite quantum states.
We proposed the definitions for genuine tripartite quantum and classical correlations,
and obtained the analytical expression of them for rank-two symmetrical states of
three qubits, as well as the operational significance of tripartite genuine quantum
discord. The tripartite genuine correlations can be regard as bipartite correlations
between particle a and joint system of particle b, c. The tripartite genuine quan-
tum discord can be used to quantify ‘quantum advantage’ in superdense coding.
We have shown that, genuine tripartite classical correlations and quantum discord
are both equal to half of genuine tripartite total correlations in pure tripartite states,
which coincide with the definition of genuine correlation given in [22]. For a sym-
metrical tripartite state, the quantitative relation between genuine tripartite quantum
discord and its pairwise counterpart is not fixed, while the genuine tripartite total
and classical correlations are no less than their any pairwise counterparts. Interest-
ingly, the genuine quantum correlation can surpass the genuine classical correla-
tion even in some separable states. The main results of this paper are illustrated in
Table 1.

We can extend the definitions of genuine tripartite correlations to symmetric n-
particle systems. The genuine n-partite correlations of symmetric states can be defined
as: T (n)(ρ) ≡ I (ρ(a1),(a2...an)). It is worthy to mention that T (n)(ρ) is the minimum
mutual information of any bipartite-cut of the n-partite symmetric states. We first
prove it in four-partite symmetric states by strong subadditively principal: S(ρabc) +
S(ρb) ≤ S(ρab) + S(ρbc). We can induce that S(ρabc) + S(ρd) ≤ S(ρab) + S(ρcd)

since S(ρb) = S(ρd) and S(ρbc) = S(ρcd) in symmetric states, then we get that
I (ρ(abc),d) ≤ I (ρ(ab),(cd)). It is easy to prove it in n-partite symmetric states. Like
the tripartite case, the genuine n-partite quantum discord and classical correlations of
symmetric states can be defined as follows:

D(n)(ρ) = D(ρa1:(a2...an)),

J (n)(ρ) = J (ρa1:(a2...an)). (28)

The operational significance of n-particle genuine quantum discord consumption can
be considered as this way: under the condition that D(n)(ρ) = D(ρa1:(a2...an)), Alice
owns particle a1 and encodes information in it when the other n − 1 person have
particles a2 . . . an respectively. Then Alice sends particle a1 to them. Only the n − 1
person collaborate with each other, can they decode the most of the information.

Table 1 Main results: the expressions of genuine tripartite correlations and properties of some particular
states, where RTST (Rank-two symmetrical states) and RTS (Rank-two states)
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Therefore, the inequality (10) is valid when it is extended into n-particle symmetric
systems.

We also have discussed the difference between correlations we defined and which
defined in Ref. [22]. The reason of the difference is the different measurement. The
POVM’s on i and j in Ref. [22] is of the form that {Ei

l , E j
m} while we use {Ei j

k }. That is
to say i and j are treated as two systems in Ref. [22] whereas we regard them as a whole
system. It is noticeable that {Ei j

k } can not always be expressed as Ei j
k = Ei

l ⊗ E j
m . If it

can, the result of different definitions would be coincident. Moreover, it is possible that
there exists null genuine tripartite discord by our definitions while genuine tripartite
discord is nonzero with the definitions in Ref. [22].

The study of various correlations in multipartite states is of interests not only for
quantum information science but also for many-body systems in condensed matter
physics and statistical mechanics. However, no consensual measures of various corre-
lations in multipartite case are found, even in the well-studied entanglement case. The
correlation measures in tripartite states proposed in this paper should be a start point
in completely quantifying the multipartite correlations. It will also be interesting to
use the correlation measures presented in this paper in some real physical systems.
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